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Abstract: The FSV method is a recognized validation tool that initially assesses the similarity be-
tween data sets for electromagnetic measurements and models. Its use may be extended to many 
problems and applications, and in particular, with relation to electrical systems, but it should be 
characterized in terms of its uncertainty, as for measurement tools. To this aim, the Guide to the 
Expression of Uncertainty in Measurement (GUM) is applied for the propagation of uncertainty 
from the experimental data to the Feature Selective Validation (FSV) quantities, using Monte Carlo 
analysis as confirmation, which ultimately remains the most reliable approach to determine the 
propagation of uncertainty, given the significant FSV non-linearity. Such non-linearity in fact 
compromises the accuracy of the Taylor approximation supporting the use of first-order deriva-
tives (and derivative terms in general). MCM results are instead more stable and show sensitivity 
vs. input data uncertainty in the order of 10 to 100, highly depending on the local data samples 
value. To this aim, normalized sensitivity coefficients are also reported, in an attempt to attenuate 
the scale effects, redistributing the observed sensitivity values that, however, remain in the said 
range, up to about 100. 

Keywords: electromagnetic modeling; FSV method; IEEE standards; simulation; uncertainty; 
validation; verification 

1. Introduction
Numerical models are widely used to assess performance, reliability, and safety in 

various conditions and configurations for many systems and applications. Models can 
replace the physical system [1] for several reasons: the system may be still in the design 
phase, or it may be inaccessible or cannot be modified to perform the required tests; for 
example, when aiming at testing exceptional, and possibly critical or dangerous, condi-
tions, as well as when the model represents a cheaper and faster solution, especially in 
the case of complex or new fabrication technologies [2,3]. Models were used to this aim, 
for example, when integrated circuits at the very beginning had extremely large fabrica-
tion costs and uncertain fabrication times [2], or when expensive materials are used, such 
as for superconductive coils [3]. Similarly, direct voltage control for complex scenarios of 
interconnected renewables, and wind parks in particular, is fully tested using a hard-
ware-in-the-loop model in highly severe dynamic conditions, providing evidence of re-
al-world applicability and design margins beyond the availability of a single instance of 
installation [4]. In this particular case, the proposed digital twin validation is achieved by 
comparison with another trusted model running on a different simulator, in line with the 
approach outlined in [5]. However, in the specific case of [4], the discussed validation 
results are only qualitative, displaying overlapped curves, without a quantitative esti-
mation of the degree of similarity; thus, as a matter of fact, they leave the indeterminacy 
of the accuracy of the proposed model. In addition, a thorough model validation was 
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carried out with multiple criteria, including FSV, in some different electronic and elec-
trical applications: load forecasting by means of wavelets [6], the impact of batteries 
on DC grid impedance and the transmission efficiency of power line communication 
signals [7], and the demonstration of efficient shielding of an inductive power transfer 
system [8]. 

When comparing simulated and experimental data (or those originating from a 
trusted model), several characteristics denoting the similarity can be collected and pro-
cessed to formulate the necessary judgment: curve shapes, peaks, and slopes are all ele-
ments that capture the attention of the expert, who will put in the background other 
features that are often caused by noise, outliers, and other artifacts. 

Several validation methods have been proposed in various fields of science; for 
example, those applied to economics, crystallography, and electromagnetics, and they 
have been reviewed, discussed, and quantitatively assessed and confronted for some test 
cases [9]. The relatively recent Feature Selective Validation (FSV) method [10] is a com-
plex and complete validation tool with wide applicability to several fields of engineering, 
with particular emphasis on electronic and electrical engineering: pure EMC applications 
were presented in 2010 from studying reverberating chambers [11], and near- and far 
field radiation from heatsinks [12]; a thorough validation of a railway line model against 
experimental data is discussed in [13], with considerations on the influence of sec-
ond-order system elements; counterfeiting detection via electromagnetic fingerprint is 
instead evaluated in [14]; finally, the modeling of a high voltage direct current system is 
discussed in [15]. Older examples can be found, especially in the field of microelectronics, 
when models of semiconductor devices began to appear at different levels of complexity 
[1], and are now widely available resources in many desktop circuit simulators. 

A validation tool should be considered as an instrument that performs a quantitative 
assessment of an existing instrument (the model); in other words, a calibration. This is 
achieved by comparing a set of simulation outputs with a set of reference data, which 
may be experimental measurements or other simulation results, possibly provided by a 
trusted (validated) model or simulator. Such a validation instrument should be charac-
terized in terms of uncertainty, so as to provide a final statement of confidence intervals 
for the observed accuracy of the validated model. For the purpose of verifying the FSV 
method itself, it can be fed with experimental or simulation results only, providing data 
curves with a controlled amount of diversity (e.g., slightly adjusting one parameter of the 
experiment, or simply repeating experiments under identical conditions for the utmost 
similarity, except for noise and repeatability issues). 

The FSV tool is particularly useful when a simple metric that measures the distance 
(or error) between the simulation output and the reference data is not sufficient. The 
reason is that simple metrics, based, for instance, on Euclidean distance (known also as 
L2 norm) or absolute difference (known also as L∞ norm) calculated with a bin-to-bin 
correspondence are not able to capture the similarity of shape and slope, and they miss 
the similarity between slightly shifted and stretched curves (as is commonplace when 
there are slight deviations of parameters of frequency responses). 

From a metrological standpoint, the resulting uncertainty of the validated model 
will never be better than the uncertainty of the validation instrument, and efforts should 
be undertaken to minimize the uncertainty of the reference cases (experimental data) and 
their propagation through the validation instrument itself (the FSV method, in our case). 

Uncertainty evaluation for FSV is not completely new [16,17], but these approaches 
were semi-quantitative and uncertainty propagation was never considered. In particular, 
in [16], the term uncertainty is erroneously used as an equivalent of the error between 
data points, and the analysis is based on the interpretation of the crossing points of 
curves [17]. Focuses that are made instead on the histogram that is the very final result of 
the FSV method then provide an interesting analysis based on fuzzy set theory, but they 
neglect the behavior of the intermediate quantities amplitude difference measure (ADM) 
and feature difference measure (FDM), which will be discussed in Section 2. 
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Considering FSV as a measuring gauge to assess the performance of a model against 
reference data, the GUM (Guide to the Expression of Uncertainty in Measurement) [18] 
should be used for its characterization. In the following, the law of propagation of un-
certainty (LPU) through the algorithm is calculated by determining the sensitivity coef-
ficients as first-order derivatives, then by looking for a confirmation using Monte Carlo 
analysis, which instead provides a more general method to estimate dispersion and con-
fidence interval. The FSV implementation used for the evaluation takes into considera-
tion the findings in [19], as summarized in Section 2. 

The work is then structured as follows. Section 2 briefly presents the FSV algorithm 
implementation, making reference to previous literature to document the details. Section 
3 simply exposes the Type B approach to the LPU determination through first-order de-
rivatives as sensitivity coefficients. Section 4 reports the calculated derivatives and sen-
sitivity coefficients of the FSV formulation, which is a novel analysis approach. The 
Monte Carlo method (MCM), as a more generally applicable method (as indicated by 
GUM), is then introduced in Section 5, clarifying the simulation conditions. The results 
for selected test cases are then reported and discussed in Section 6, providing quantita-
tive results for the reliability of the Type B approach through derivatives, the sensitivity 
values calculated using the MCM approach and their dependency on data values, and 
ways to provide sensitivity information for general use. 

2. Implementation of the FSV Method 
The problem of the validation of a model may be stated as the quantitative assess-

ment of the similarity between the model output o and the experimental data m (which 
we said may also be from another model or theoretical results). The discussion of FSV 
implementation (IEEE Std. 1597.1 [10]) and its possible pitfalls and unclear points, with 
consequences for variability and systematic errors, can be found in [19]. Only the main 
elements for supporting the estimate of uncertainty and its discussion are reported be-
low: the approach and equations are taken from the IEEE Std. 1597.1, besides other ref-
erences where explicitly indicated. 

The FSV assessment can be decomposed in three phases: 
• First, the original data sets are preprocessed to extract the “dc”, low frequency (“lo”) 

and high frequency (“hi”) portions, obtained via first a Fourier transform (FFT), 
followed by Inverse FFT, after cutting the frequency intervals and smoothing the 
data; 

• The three sub-intervals are fed to the second phase, where the ADM and FDM 
quantities are calculated; 

• Their root-mean-square combination is the Global Difference Measure (GDM) and 
represents the last phase. 
For the presentation of results, a useful technique is the “Grade and Spread” dia-

gram [20–22]: the spread term measures the spread of the distribution, and the grade 
term is similar to skewness. As a note, for an assessment of the results, skewness and 
kurtosis will be used, as the shape of the distribution has an influence on the confidence 
interval determination. 

When calculating the FFT, a zero padding of vectors should be avoided, using vec-
tors that are as close as possible to their original length and possibly FFT, with 
prime-number factorization. 

For the padding of points missing after the calculation of the derivative, the two 
methods “taper” and “fcb” show very similar results, which are most important for the 
categories of Excellent and Very Good, where a minimum of dispersion is desirable: the 
“taper” method is implemented in the following. To clarify, “taper” and “fcb” are de-
fined in [19] as progressively reducing the distance between the two samples used to 
calculate the derivative (until the first and last points are reached) for “taper”, or using a 
forward, center, and backward difference calculation for “fcb”. 
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2.1. Vectors Preparation 
Identified as the first step, the original data vector x in domain d is decomposed into 

dc, lo, and hi vectors, proceeding through the transformed domain D. The separation is 
performed with a DFT (Discrete Fourier Transform)/IDFT (Inverse DFT) pair [10], iden-
tifying the three intervals DC, LO, and HI in domain D based on the calculation of the Ib 
index: the first five data samples, the samples up to index Ib, and then that remaining 
beyond Ib. 
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The amount of applied zero padding, zp, is the minimum for bringing the vectors 
DC (used only for ODM), LO, and HI to the same length, so as to combine then their an-
ti-transformed versions for the calculation of indexes. 
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The determination of Ib is based on the known 40% threshold that is applied to the 
area of the curve (that means Ib indicates the index at which the low-frequency portion of 
data points amounts to 40% of the total). 
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Vector separation across Ib is implemented with a linear tapering across Nb samples; 
then, the IDFT for each of them is calculated to return to the original domain, as indicated 
in (3). 

2.2. Calculation of FSV Indexes 
To complete steps two and three, the ADM, FDM, and GDM indexes are calculated, 

as shown below. Equations (5)–(12) are taken from the IEEE Std. 1597.1 [10], and are 
slightly reshaped for clarity. In particular, the numeric coefficients of the FDM expres-
sions are provided in the IEEE Std. 1597.1, without an explanation, but they are supposed 
to come from the number of samples used in the derivative operators described in the 
standard itself. 
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The prime and double prime indicate the first and second derivatives, and the sub-
scripts indicate the considered vector portion (“lo” or “hi”). Derivatives in FDMi are 
calculated as a difference, using an index interval that is ±2 for “lo” and ±3 for “hi”, but 
without dividing by the differential of the independent variable, which would make 
these terms difference quotients. This may be identified as a little pitfall, and will be 
considered again in Section 3, when the propagation of uncertainty is calculated. 

GDM is calculated using the original definition [10], which is the root summed 
square of the ADMi and FDMi terms, as shown in (11) and (12): 

22 )()( iii FDMADMGDM +=  (11)
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2.3. Visualization and Interpretation 
The IEEE Std. 1597.1 requires classification of the FSV GDM values with an inter-

pretation scale, as in Table 1. 

Table 1. Interpretation scale for GDM. 

Lower Bound Upper Bound Quality Descriptor 
0.0 0.1 Excellent (E) 
0.1 0.2 Very Good (VG) 
0.2 0.4 Good (G) 
0.4 0.8 Fair (F) 
0.8 1.6 Poor (P) 
1.6 +∞ Very Poor (VP) 

3. Propagation of Uncertainty 
When speaking of model uncertainty, it is assumed that systematic errors have been 

compensated for or removed, and that the remaining error is random and may be de-
scribed by random variables and their statistics. Examples of systematic errors for the 
FSV algorithm itself are those considered in [19], due to ambiguity in some points of the 
standard and implementation issues. Of course, other systematic errors may affect the 
measured data, and also in this case, it is supposed that they have been removed, or that 
they are negligible. 

The quantities are then characterized by uncertainty regarding their estimate, which 
is best expressed as the dispersion of their probability density function (PDF), either de-
rived from the observed distribution (Type A approach [18]), or based on the available 
information (or some degree of belief) of the possible sources of variability (Type B ap-
proach [18]). 

For the propagation of uncertainty, a model is necessary; i.e., an algebraic relation-
ship F between the input quantities Xi and the output Z: Z = F(Xi). In general, the propa-
gation of uncertainty between two quantities p and q is based on sensitivity coefficients 
Sp(q), which indicate that uncertainty propagates from q (the independent variable) to p, 
and they are determined as first-order derivatives between the two quantities of interest. 
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Using first-order derivatives, a linearization by Taylor expansion is implicit around 
a point μ, defined by the expectation of Xi (or mean) μi = E(Xi), as shown in (13). 
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The first term is the expectation of the output, and the second term determines the 
uncertainty of z. Two important limitations arise: 
1. To apply (13), the non-linearity of F must be negligible (GUM Clause 5.1.2 [18]); 

otherwise, the linear truncation in the Taylor expansion could lead to misleading 
results (we will see that this is often the case due to the significant non-linearity in 
the FSV method); 

2. The assumption of normality of Z derived from the application of the Central Limit 
Theorem (GUM Clause 5.1.2 [18]) should be considered with caution; this will be 
verified indirectly by calculating the skewness and kurtosis of the MCM output, but 
not by thoroughly assessing the normality of distribution. 
Related to point 1, a key element that needs verification is the use of absolute values 

for both the data vectors and the FSV derivative: such non-linearity is variable and de-
pends on the type of data fed to FSV, and can thus be assessed accurately only on a 
case-by-case basis, which thus undermines the generality of the approach based on de-
rivatives. 

The so obtained closed-form uncertainty expressions are then validated via MCM, 
which can similarly be applied to cases where the formal calculation of derivatives is 
impossible or too complex. MCM is by all means a valid and effective tool in general, and 
for situations in which it is difficult to apply the GUM uncertainty framework, or where 
its conditions are not fulfilled. Taking from [23]: 
1. The contributory uncertainties are not of the same magnitude: it is evident that ADM 

and FDM respond differently to different types of input data (e.g., containing wide 
slopes or narrow zig-zags, or some amount of noise); 

2. The calculation of the partial derivatives is affected by heavy approximations, or is 
even not possible, as it turns out when considering non-linearity; 

3. The probability distributions are not the assumed Gaussian or Student t, which was 
verified, at least for the GDM, in [20]; 

4. As often occurs, PDFs are not symmetric [20]; or 
5. The output quantities are characterized by a significant standard uncertainty in the 

order of their magnitude; this last statement is added for completeness, but it is in 
general not relevant, as long as input data have a good measurement quality, with 
uncertainty in the order of some % or less. 

4. Law of Propagation of Uncertainty and First-Order Derivatives 
This section reports the core of the problem, i.e., verifying whether an approach to 

uncertainty propagation based on first-order derivatives is viable and accurate. 
The determination of the propagation of uncertainty is achieved by the calculation 

of the partial derivatives of relevant FSV indexes, namely ADMi and FDMi, with respect 
to one of the input vectors (the m vector is assumed without loss of generality), assuming 
the other vector o is held fixed (the m and o vectors are, in reality, interchangeable). This 
approach is novel as it could not be found in the related literature. 

First-order derivatives are calculated based on the assumption that all variables are 
uncorrelated, as is customary. Equation (14) repeats the ADMi expression, making ex-
plicit the terms that are then derived in (15) to (19) with respect to the applicable input 
data, namely mlo,i and mdc,i. The derivative sensitivity coefficients for the three FDMi terms 
are calculated in (20) to (22), and then the overall derivatives with respect to the applica-
ble input data (mlo,i and mhi,i) are shown in (23) and (24). 
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It is observed that the derivatives to use for the propagation of uncertainty are in-
tended in the “usual” way of limiting of the difference quotient, while the derivatives 
indicated in the original FDM expressions (indicated by a hat ^) are calculated simply as 
differences. 

We may spend a few words on the selected method for derivative calculation in FSV 
and the IEEE Std. 1597.1. The objective is, of course, a reduction in the impact of noisy or 
peaky data: the numerator of the difference quotient picks two data points farther away, 
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resulting in a sort of masking of small local peaks. Better smoothing is achieved using 
higher-order methods for the calculation of the derivative, such as the five-point stencil: 

x
xxfxxfxxfxxff

d12
)d2()d(8)d(8)d2( +−−+−−−=′  (25)

Here, the numerator depends on the curve characteristics and on the variability of 
the samples. Applying an independent random variation at each sample and reasoning 
on the expectation, the average of the numerator does not change, whatever the method 
of calculation of the derivative. The standard deviation, conversely, will be lower, pass-
ing from a classic two-point difference to more elaborated schemes, such as the 5-point 
stencil. 

It is also worth noting that the FDMi sensitivity coefficients contain a second-order 
((20) and (21)) or a third-order (22) derivative of the input data, in principle suffering 
from noisy or peaky data. We will see that they suffer indeed from edge effects, but they 
are not substantially larger than the ADMi sensitivity values. 

Going back to the objective of this section, the calculated sensitivity coefficients (see 
(15) through (24)) may be used to derive the uncertainty of the output quantity GDM 
described by (11) and (12). We may assume that the elements of the input data vectors are 
independent. However, a small amount of correlation between the adjacent FSV quanti-
ties is due to the calculation of derivatives made by taking the difference of adjacent 
samples: this is too complicated to propagate, and is in any case a second-order aspect. 
For this reason, the FSV quantities ADMi and FDMi are assumed to be independent for 
each i-th sample of the input vectors. 

5. Monte Carlo Method and Uncertainty Estimation 
In the MCM-based uncertainty analysis, calculations are performed repeatedly, each 

with differing input values, to obtain probability distributions of the target output. Input 
values are sampled from their respective distributions, either known or assumed [24,25]. 
Calculations consist of running the model subject to assessment, which in the present 
case is the FSV evaluation for a given test data set. MCM is thus inherently computa-
tionally expensive, particularly when running the model requires much computing time. 
For the specific data vectors of the considered test cases (amounting to some hundreds of 
samples, as clarified below in Section 6) and the number of iterations M determined be-
low, the computational time for the MATLAB scripts with figure generation was about 4 
h, running within a virtual machine using Windows 7 64 bit, 16 GB RAM, and four 
physical Intel i7 10875H cores with 2.3 GHz clocks. 

For the MCM computational load, a minimization of the number of runs is a rele-
vant point to consider [26]. Two elements in general can reduce the number of runs and 
the overall computational effort and time: sampling efficiency and convergence moni-
toring. 

The concept of sampling efficiency can be best described as the number of simula-
tion runs required to reach some level of accuracy. A well-known variance-reduction 
technique for MCM is Latin hypercube sampling [27], with improved performance over 
random sampling, with the specific objective of better space filling. 

The ability then to halt the analysis when a sufficient level of accuracy has been 
reached equally allows for a reduction in the overall duration and calculation time: this is 
achieved by monitoring convergence, followed by the addition of successive trials if the 
stop criterion is not met. When only the mean of the desired target output is relevant, an 
estimate of the sample variance can be used as a stop criterion; conversely, when more 
complex aggregate results are the objective (distributions, percentiles, and dispersion it-
self, as in the present case), the batch statistics and the similarity of distributions can be 
applied instead. However, whereas for random sampling the addition of new trials is 
straightforward, optimized space sampling techniques are not so flexible, since the sam-
pling scheme is generally predetermined. 
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For this reason, in this work, the analysis for the determination of the uncertainty 
and the sensitivity coefficients is carried out using a basic random sampling scheme and 
by keeping the MCM code simple. 

Sensitivity coefficients are determined by dividing the sample dispersion of the 
output σZi (in our case, corresponding to σADMi or σFDMi) by the applied standard deviation 
σn of the injected noise at each MCM run. 

With random sampling and a priori determination of the trials, the number of trials 
M for a given coverage probability p can be determined based on GUM [18]: 

p
M

−
>
1
104  (26)

For p = 95%, the resulting minimum number of trials is 2 × 105 (selected for the tests 
carried out in the following). 

The combined uncertainty u and the confidence interval CI can be estimated from 
the set of the output results Zi using the known multiplicative factor of the sample 
standard deviation of the set σZi, assuming that it is approximately Gaussian u = 1.96 σZi 
for the mentioned p = 95% level of confidence. 

As the resulting PDFs may be asymmetric (a behavior common to almost all indexes, 
as discussed in [1,20]), higher-order moments are relevant as well. Skewness sk and kur-
tosis ku are important parameters of the distribution of the output results. The accuracy 
provided by MCM is inversely proportional to the number of trials M: for a normal dis-
tribution sk = 0 with a standard deviation of √(6/M), and ku = 3 with a standard deviation 
of √(24/M), that for the selected M value are both well below 1%, so that the sk and ku es-
timates are to be considered “exact”. 

To limit the effects of the intrinsic non-linearity implicit in the FSV method, the ap-
plied MCM perturbation is limited to σn = 0.1%: the random noise applied to each data 
sample is obtained using a zero-mean normal distribution with a dispersion equal to 
0.1% of the data sample value. 

6. Comparison and Verification of the Approaches to the Propagation of Uncertainty 
The results obtained with the two methods (sensitivity coefficients with first-order 

derivatives of Section 4 and MCM of Section 5) are now compared for a set of test cases 
where raw data are available and the problem details are well known. 

There is a significant degree of variability in the derivatives and a general sensitivity 
to the data range, which obviously depends on the problem nature, with the data being, 
for instance, large impedance values (e.g., railway pantograph impedance values [13,28]), 
near-unity reflection coefficients (as provided by scattering parameters of cable harness, 
transmission lines, and connectors), or very small electric field values (as is common in 
electromagnetic emissions measurements caused by electronic devices, power convert-
ers, and electrical machinery [29–31]), to give some examples. As such behavior was ob-
served in the preliminary tests, additional verification of the suitable data 
pre-conditioning and derived indexes, with more general validity, was carried out. 

Data were taken from two real test cases: 
• Test case 1: impedance curves of a 2 × 25 kV 50 Hz railway line (Italian high-speed 

line), with measurements carried out between 100 Hz and 20 kHz for the purpose of 
the validation of line models [13]; this data set contains vectors of N = 201 data 
samples. 

• Test case 2: scattering S11 reflection loss, related to the input impedance of a test 
fixture for avionic connectors under various mechanical stresses (unpublished re-
sults); measurements were carried out with a vector network analyzer between 100 
MHz and 6 GHz; this data set contains vectors of N = 418 data samples. 
It is worth underlining that a characteristic of several performance indexes was used 

for model validation: the use of absolute values for index calculation in the case of noise 
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injection causes under-utilization of the Excellent sub-interval, thus negatively biasing 
the overall judgment towards poorer performance [9,20]. 

Test cases were selected, so as to carry out the verification using real data for dif-
ferent degrees of similarity between the curves, and thus, of different ADMi and FDMi 
values: FSV expressions are in fact non-linear, and the values of the derivatives depend 
on the position along the data vector. Different degrees of similarity between pairs of 
data vectors are available; in particular, in test case 2: impedance curves were taken by 
moving along the railway line by 500 m each time, as shown later in Section 6.1, and at 
positions towards the end, there is better overlapping for adjacent positions. 

Selected test cases are briefly introduced in the following, before providing a com-
parison of analytically calculated first-order derivatives with MCM results. 

As will be demonstrated, the sensitivity of ADMi and FDMi changes significantly for 
the data provided in linear scale and using a logarithmic compression (dB); for this rea-
son, the results of ADMi and FDMi sensitivity are shown for both scenarios for each test 
case. 

6.1. Test Case 1: Railway Line Impedance 
The tests carried out on a 2 × 25 kV 50 Hz railway line in Italy [13] provide a large set 

of curves, with various degrees of differences, thus allowing a test of FSV characteristics 
under a range of conditions (see Figure 1). It may be observed that all curves are similar 
at low frequency, and then begin to separate at some kHz. 

 
Figure 1. Line impedance curves of test case 1 [13] for positions along the line from 45.0 km to 48.5 
km. Note the closer similarity of curves in the last positions beyond 47 km. 

The curves displayed in Figure 1 are plotted with a logarithmic vertical axis, as is 
customary for this type of curves: this raises the point for if they should be provided to 
the FSV algorithm in a linear or log-compressed scale, the latter implying a dB represen-
tation. If in principle there is no reason to propend for one or another representation, we 
will see in the following a different behavior of the sensitivity coefficients. 

6.1.1. Different Curves (45.0 and 45.5 km) with Linear and Logarithmic Scales 
Two curves are selected with significant differences (as is visible in Figure 1, mostly 

a difference in amplitude, but also of resonance positions at a higher frequency) and 
providing data to FSV as they are, without logarithmic pre-processing. The tests consist 
of a preliminary check that analytically calculated ADMi and FDMi and those resulting 
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from the average of the MCM simulation output correspond (a sanity check is made to 
spot out biasing of the MCM output), as shown in Figure 2. 

 
(a) 

 
(b) 

Figure 2. Z(45.0 km) and Z(45.5 km) input data in linear scale: (a) ADMi and (b) FDMi plots as 
provided by analytical calculation (blue) and by means of MCM output (brown); blue and brown 
curves are overlapped with underlying brown curve visible at the edges of the blue one. The rela-
tive error remains below 0.15% in all cases, demonstrating the reliability of MCM simulations and 
lack of biasing. 

As shown in Figure 2, ADMi and FDMi capture the differences mainly between 10 
and 15 kHz, and 16 and 20 kHz. In the first interval, ADMi and FDMi take higher values 
for a matter of scale, as explained below for logarithmic compression. 

The relative error is calculated as the difference between the analytical FSV calcula-
tion and the mean of the MCM output normalized by their half sum. 

For this first set of data, a thorough check is performed for the influence of the loga-
rithmic compression of data, for which ADMi and FDMi are provided below in Figure 3, 
and also for the logarithmic case. The logarithmic compression has enhanced the differ-
ences between the curves occurring at lower amplitude, namely between 16 and 20 kHz, 
and now prevailing over those occurring between 10 and 15 kHz. It is evident, however, 
that the ADMi and FDMi values are smaller when logarithmic compression is used (see 
Figure 3), simply because the absolute value of the input data is smaller. 
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(a) 

 
(b) 

Figure 3. Z(45.0 km) and Z(45.5 km) input data in logarithmic scale: (a) ADMi and (b) FDMi plots as 
provided by analytical calculation (blue) and means of MCM output (brown); blue and brown 
curves are overlapped with underlying brown curve visible at the edges of the blue one. The rela-
tive error remains below 0.15% in all cases, demonstrating the reliability of MCM simulations and 
lack of biasing. 

It may be concluded thus that logarithmic compression has helped form a more 
balanced assessment of curve similarity and diversity. 

Sensitivity, as resulting from analytical calculations (the implementation of 
first-order terms of Section 4) and MCM simulations (as the standard deviation of the 
output), is shown in Figures 4 and 5. 
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(a) 

 
(b) 

Figure 4. Z(45.0 km) and Z(45.5 km) input data in linear scale: (a) ADMi and (b) FDMi sensitivity 
curves, comparing analytical calculation (blue) and normalized standard deviation of MCM output 
(brown). The analytically calculated coefficients have been amplified by a factor of 100 for a matter 
of visibility. 

As already observed, for the linear case, both the ADMi and FDMi quantities, and 
their sensitivity coefficients as well, have maximum values where the data is at the 
highest peak, at around 12 kHz. This confirms that all such quantities are not normalized, 
and suffer scale problems. By comparing Figure 4 (where the blue curve is amplified by a 
factor 100) and Figure 5, it is evident that providing data in the linear or logarithmic scale 
has a dramatic influence on the behavior of sensitivity: in this latter case, with logarith-
mic compression, the analytic and MCM curves are closer. This means that the problem 
with the logarithmic scale is formulated in a way that favors the analytic calculation of 
the sensitivity coefficients, and that in general, the sensitivity is lower, as confirmed by 
the MCM results, which are smaller by a factor of 4–5 and more uniform. 
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(a) 

 
(b) 

Figure 5. Z(45.0 km) and Z(45.5 km) input data in logarithmic scale: (a) ADMi and (b) FDMi sensi-
tivity curves, comparing analytical first-order derivative calculation (blue) and normalized stand-
ard deviation of MCM output (brown). 

MCM output was checked for normality in a compact way, aiming at spotting out 
inconsistencies of sensitivity value distributions over the entire data vectors, where the 
output deviates from the expected normal distribution. To this aim, the skewness sk and 
kurtosis ku are plotted for ADMi and FDMi sensitivity (the latter being brought around 0 
by subtracting the expected value of 3 for a Gaussian distribution). The results are shown 
in Figures 6 and 7. 
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Figure 6. Z(45.0 km) and Z(45.5 km) input data in linear scale: skewness in dark color and kurtosis 
(offset around 0) in light color for ADMi (orange and yellow) and FDMi (blue and light blue). 

 
Figure 7. Z(45.0 km) and Z(45.5 km) input data in logarithmic scale: skewness in dark color and 
kurtosis (offset around 0) in light color for ADMi (orange sk and yellow ku) and FDMi (blue sk and 
light blue ku). 

It may be said that sk is limited to very small values, and thus, the output distribu-
tion is symmetric; in addition, except for a few points, ku also indicates normality. 

Last, having observed that the sensitivity coefficients SADMi and SFDMi are influenced 
by the local magnitude of the data, the normalization of such coefficients is investigated 
in Section 6.3. 

Another case is now verified, where the two curves are very similar, so that ADMi 
and FDMi should be smaller, in order to confirm at which extent sensitivity coefficients 
suffer from scale problems. 

6.1.2. Similar Curves (47.5 and 48.0 km) with Linear and Logarithmic Scales 
Two impedance curves are taken that are very close to each other, thus showing 

values of ADM and FDM that are at least 4–5 times smaller than those of the previous 
section (Section 6.1.1.), referring instead to more different impedance curves. ADMi and 
FDMi amplitudes for analytical and MCM calculations are shown in Figure 8. Figure 9 
reports the ADMi and FDMi sensitivity curves. Figure 10 shows sk and ku for ADMi and 
FDMi calculated on the new alike impedance curves. 
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(a) 

 
(b) 

Figure 8. Z(47.5 km) and Z(48.0 km) input data in logarithmic scale: (a) ADMi and (b) FDMi plots as 
provided by analytical calculation (blue) and mean of MCM output (brown); blue and brown 
curves are overlapped with underlying brown curve visible at the edges of the blue one. The rela-
tive error has increased to a fraction of % or a few % at some points, where the ADMi or FDMi 
values are the lowest; on average, correspondence between analytical and MCM curves is quite 
good. 

 
(a) 
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(b) 

Figure 9. Z(47.5 km) and Z(48.0 km) input data in logarithmic scale: (a) ADMi and (b) FDMi sensi-
tivity curves, comparing analytical first-order derivative calculation (blue) and normalized stand-
ard deviation of MCM output (brown). 

 
Figure 10. Z(47.5 km) and Z(48.0 km) input data in logarithmic scale: skewness in dark color and 
kurtosis (offset around 0) in light color for ADMi (orange sk and yellow ku) and FDMi (blue sk and 
light blue ku). 

ADMi and FDMi are in general smaller and more evenly distributed, indicating that 
there are no specific remarkable major errors between the two curves at 47.5 and 48.0 km, 
but that the difference is spread over the frequency range. 

The error between the respective ADMi and FDMi estimates (as from direct FSV 
method application and as a mean of the MCM output) is in general very low, except for 
a few short intervals amounting to a fraction of %, and in one case, to more than 2%. 
There is no particular reason for this, except that all these intervals with larg-
er-than-average errors occur for extremely small values of ADMi and FDMi, namely am-
plifying unavoidable small differences. 

The sk and ku curves of Figure 10 confirm that more similar curves have a larger 
amount of outliers (larger kurtosis) that correspond to the smallest ADMi and FDMi val-
ues (see Figure 9, slightly before 10 kHz, at about 13 kHz and 15 kHz, and then at 20 
kHz); however, the scenario is more complex than this, as some medium-value intervals 
of ADMi and FDMi are also characterized by large kurtosis, as for the samples at around 
17 kHz. 
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6.2. Test Case 2: Scattering Parameters 
S11 curves are characterized by broad humps and deep downward peaks (see Figure 

11). The two curves refer to a very similar configuration so that they have only one in-
terval in the middle of the frequency axis, where they differ; other small differences are 
hardly visible. The curves, contrarily to those of railway impedance, proceed from nega-
tive values to zero with a smaller overall variation; they are also characterized by some 
deep dips. 

 
Figure 11. S11 input data curves 1A and 1B in logarithmic scale (dB) of test case 2. 

ADMi and FDMi amplitudes for analytical and MCM calculations are shown in Fig-
ure 12, accompanied by an estimate of the relative amplitude error. 

 
(a) 
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(b) 

Figure 12. S11 input data in logarithmic scale: (a) ADMi and (b) FDMi plots as provided by analyti-
cal FSV calculation (blue) and mean of MCM output (brown); blue and brown curves are over-
lapped with underlying brown curve visible at the edges of the blue one. 

Observing the reported error (between the direct FSV method application and the 
mean of the MCM output) there are points with much larger errors; again, these are all in 
correspondence with very low curve values and small unavoidable differences between 
the two curves. 

Regarding the behaviors of the ADMi and FDMi curves, they are positioned in a 
range of values well below unity (due to the logarithmic scale and the similarity of the 
two selected curves). The two curves are selected so that they have a localized smaller 
difference in amplitude along the upward slope between 1.2 and 1.5 GHz, and a larger 
one of between about 3.2 and 4 GHz; then, they feature a difference of amplitude in the 
two downward peaks at 3 and 5.5 GHz. In addition, the downward peaks are very steep. 

As a result, ADMi detects well the three intervals with differences in amplitude, 
although smaller values could have been expected for the first interval between 1.2 and 
1.5 GHz; the ADMi resulting amplitude is instead similar if it is compared to the interval 
of between 3.2 and 4 GHz. The reason for this is that the larger amplitude difference in 
the latter is compensated for by a smaller local amplitude in the sense of absolute value, 
although we know that a −5 dB value is in reality physically larger than a −15 dB one. This 
confirms the scale problems of the FSV internal indexes. 

Figure 13 reports the ADMi and FDMi sensitivity curves for the S11 scattering pa-
rameters case, and Figure 14 shows sk and ku for ADMi and FDMi. 

In the case of scattering parameters with a more limited dynamic range, the sensi-
tivity coefficients that are calculated analytically and that are determined by MCM more 
or less correspond, showing that the compression of the dynamic range of input data is 
beneficial. Violations of the normality assumption for the probability distribution of 
MCM output are several, although limited, clearly corresponding to frequency intervals 
where the compared data are very similar and where ADMi and FDMi have the lowest 
values. 
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(a) 

 
(b) 

Figure 13. S11 input data in logarithmic scale: (a) ADMi and (b) FDMi sensitivity curves, comparing 
analytical first-order derivative calculation (blue) and normalized standard deviation of MCM 
output (brown). 

 
Figure 14. S11 input data in logarithmic scale: skewness in dark color and kurtosis (offset around 0) 
in light color for ADMi (orange sk and yellow ku) and FDMi (blue sk and light blue ku). 
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6.3. Normalization of MCM Calculated Sensitivity 
Two facts emerge from the results obtained so far: 

• The analytically calculated sensitivity using first-order derivatives is always smaller 
(or much smaller) than the MCM result, proving that the problem is not suitable for 
the propagation of uncertainty by means of derivatives; 

• Comparing linearly and logarithmically scaled data, the differences indicate a sec-
ond issue for the determination of FSV sensitivity, that of a possible dependency on 
data format. 
The reason for the unsuitability of the analytical approach is for sure that the ADMi 

and FDMi functions are highly non-linear, as demonstrated by the form of the first-order 
derivatives themselves (where the sign functions are visible and frequent stepwise 
changes occur). This is caused at least by the use of absolute value operators in the for-
mulation of ADMi and FDMi. 

It is also observed that attempting to increase the order of the calculated derivatives 
to improve the approximation is unsuccessful, as further derivation of Sγ and Sθ provides 
a second-order derivative with terms of similar magnitude with the addition of a 1/(2N)2 
term: only the latter has reduced magnitude, showing that higher-order terms of the 
Taylor expansion are non vanishing, and that convergence is troublesome. 

It is remembered only that the FSV method was first conceived in the field of elec-
tromagnetic compatibility, where the data are almost always provided in dB scale, lead-
ing us to think that the dB representation is possibly favored. 

Comparing the sensitivity values obtained with the scattering parameters (small 
negative values approaching zero) and railway line impedance values (large values 
ranging approximately between 10 and several thousands), it is evident that sensitivity 
depends on the scale of the provided data, and is different for different portions of each 
data curve. In an attempt to generalize the MCM calculated sensitivity, a sort of normal-
ization was investigated, to decide the amount of sensitivity that one could expect, irre-
spective of the data magnitude and their range of variation (dynamic scale). 

An attempt has been made to normalize SADMi and SFDMi, so as to have a better be-
havior where their value is scaled by the data magnitude. Since the data have a large 
dynamic range and a few points may reach very small or large values, causing issues of 
weird amplification or the attenuation of sensitivity coefficients after division, a local 
smoothing of the data was used instead. Smoothing is achieved by applying a median 
filter mf(mi,r) with a range r, which for the reported results was chosen as r = 11. 
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The result is shown below in Figure 15 for the data of test case 1 (railway imped-
ance), represented both in linear and logarithmic scale. It is observed that the normalized 
coefficients 

iADMS~  and 
iFDMS~  are unitless. 

The normalized sensitivity curves do not have a more uniform profile than the sen-
sitivity coefficients curves alone, nor was this the main objective. What the 

iADMS~  and 

iFDMS~  achieve is weighting sensitivity with respect to data sample intensity, and this is 
relevant, as it is possible to assume that data errors depend on scale, with a larger un-
certainty at lower values, but smaller error values. In other words, the normalized sensi-
tivity coefficients spot out areas of small data values with large sensitivity, and at the 
same time, reduce the influence of large data values. 

For completeness, the normalized coefficients are also calculated for test case 2 (S11 
scattering parameters), showing a moderate range of values, as commented before (see 
Figure 16). In this case (and similarly for Figure 15b above), although the quantities are in 
dB, the normalization is intended as a ratio, operated to scale with respect to the numeric 
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values, so that the resulting normalized sensitivity coefficient is unitless and in linear 
scale. 

 
(a) 

 
(b) 

Figure 15. Normalized sensitivity coefficients for Z(45.0 km) and Z(45.5 km) with input data pro-
vided in (a) linear and (b) logarithmic scale: SADMi is shown in light brown and SFDMi in light blue. 

 
Figure 16. Normalized sensitivity coefficients for S11 curves in logarithmic scale: SADMi is shown in 
light brown and SFDMi in light blue. 
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We may comment that the SFDMi coefficient suffers from edge effects, increasing al-
ways towards the first and last samples of the data vector, as a consequence of the way in 
which FDMi is calculated (with the local derivative taking some samples). 

Although the sensitivity values SADMi and SFDMi have been observed in the range of 
0.1 to 5 for all data vectors, when normalized by the median filter estimate of the local 
data amplitude, the resulting 

iADMS~  and 
iFDMS~  values lie between approximately a few 

units (or 10) and some hundreds of units. 

7. Conclusions 
FSV is a relevant algorithm for the validation of simulation results, and in general, to 

assess the similarity between the simulation and/or experimental data. It belongs to a 
family of algorithms to spot out similarity, beyond a simple comparison between arrays 
of values, evaluating broader characteristics such as slope, number of peaks, and so on. 
FSV has proven to be effective in several engineering fields, focusing on electromag-
netism and electromagnetic compatibility. 

This work has addressed the characterization of FSV sensitivity, as is recommended 
for any instrument (measuring tool), with the task of providing a similarity assessment of 
the said simulation and/or experimental data. The commonly adopted approach is that of 
determining sensitivity coefficients by first-order derivatives (in case some assumptions 
regarding Taylor approximation and curve behavior hold), and more generally, by 
Monte Carlo method (MCM) simulations. 

We have demonstrated that, due to the nature of the FSV indexes (ADMi and FDMi), 
the straightforward calculation of first-order derivatives leads to inaccurate, and some-
times inconsistent, results. The first-order derivative results are always much lower if 
compared to MCM (up to two orders of magnitude) and they highly depend on the type 
of data and whether they are linearly or logarithmically projected. Logarithmic com-
pression (or another scale, compression mapping) should be used in order to have a bet-
ter distribution of sensitivity of ADMi and FDMi; this ensures more similarity between 
the sensitivity coefficients resulting from first-order derivatives, and the dispersion of 
MCM output (differences are reduced to a factor of 1 to 5, on average), showing that FSV 
non-linearity is reduced. MCM always delivers consistent results and has been consid-
ered as the reference to evaluate FSV sensitivity and uncertainty. MCM is an approach 
endorsed by GUM, and should be preferred for a quantitative analysis of uncertainty 
propagation in FSV expressions (and in general, for complex systems and algorithms). 

By calculating the skewness and kurtosis of the MCM sample set, indexes are 
demonstrated to have symmetric, nearly normal distributions; in some cases, a few sam-
ples, or narrow intervals, deviate from normality and exhibit a more relevant number of 
outliers, with kurtosis being several times larger than Gaussian kurtosis (equal to 3). This 
occurs when the ADMi and FDMi values are extremely small (the compared curves are 
quite similar locally) and the spread of values beyond normality (long tails) is in line with 
the observed underestimation of the Excellent interval [9,20]. This supports a derivation 
of uncertainty and confidence of interval based on a confirmed Gaussian assumption. 

The derivation of uncertainty information by MCM is problem specific, although 
general sensitivity figures were derived, showing multiplicative values starting from a 
few % to some units, namely indicating that the amplification of data noise (or uncer-
tainty) occurs only at some intervals. To obviate scale problems, normalization of the 
sensitivity coefficients was carried out using a smoothed version of the original data: the 
objective was to provide a more fair representation of sensitivity, as its strong depend-
ency on the local ADMi and FDMi values was consistently observed. The resulting nor-
malized sensitivity ranges approximately between about 10 and 100, with narrow 
downward peaks (irrelevant) and some larger values, especially at the beginning and end 
of data vectors (the edge effect, caused by the FDMi calculation method). 

The effectiveness of FSV as a gauging tool or instrument must be evaluated by 
means of the propagation of uncertainty and evaluation of sensitivity to noisy data and 
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data uncertainty. However, no better validation metrics are known, from the point of 
view of accuracy and limited sensitivity to data. 

Further developments and studies are in the direction of evaluating the overall un-
certainty of the grade and spread of FSV output with methods that are more suitable for 
studying histograms and clustering variability, as well as some of the FSV variants that 
have more recently been proposed. 

Author Contributions: The contribution of the two authors toward conceptualization, methodol-
ogy, software, experimental validation, and writing is the same. All authors have read and agreed 
to the published version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflicts of interest. 

References 
1. Liu, W.; Chen, J.; El-Sherief, H. Probabilistic bounds for L1 uncertainty model validation. Automatica 2007, 43, 1064–1071. 

https://doi.org/10.1016/j.automatica.2006.11.022. 
2. Lindholm, F.A.; Director, S.W.; Bowler, D.L. Assessing model adequacy and selecting model complexity in integrated-circuit 

simulation. IEEE J. Solid-State Circuits 1971, 6, 213−222. https://doi.org/10.1109/JSSC.1971.1050170. 
3. Ciazynski, D.; Duchateau, J.-L. Validation of the CEA Electrical Network Model for the ITER Coils. IEEE Trans. Appl. Supercond. 

2001, 1, 1530–1533. https://doi.org/10.1109/77.920067. 
4. Ganesh, S.; Perilla, A.; Torres, J.R.; Palensky, P.; van der Meijden, M. Validation of EMT Digital Twin Models for Dynamic 

Voltage Performance Assessment of 66 kV Offshore Transmission Network. Appl. Sci. 2021, 11, 244. 
https://doi.org/10.3390/app11010244. 

5. Sargent, R.G. Verification and validation of simulation models. In Proceedings of the 1998 Winter Simulation Conference, 
Washington, DC, USA, 12–16 December 1998; pp. 121–130. https://doi.org/10.5555/293172.293216. 

6. Kondaiah, V.Y.; Saravanan, B. Short-Term Load Forecasting with a Novel Wavelet-Based Ensemble Method. Energies 2022, 15, 
5299. https://doi.org/10.3390/en15145299. 

7. Marsic, V.; Amietszajew, T.; Gardner, C.; Igic, P.; Faramehr, S.; Fleming, J. Impact of Li-Ion Battery on System’s Overall Im-
pedance and Received Signal Strength for Power Line Communication (PLC). Sensors 2022, 22, 2634. 
https://doi.org/10.3390/s22072634. 

8. Kadem, K.; Benyoubi, F.; Bensetti, M.; Le Bihan, Y.; Labouré, E.; Debbou, M. An Efficient Method for Dimensioning Magnetic 
Shielding for an Induction Electric Vehicle Charging System. Prog. Electromagn. Res. 2021, 170, 153−167. 
https://doi.org/10.2528/PIER21031903. 

9. Bongiorno, J.; Mariscotti, A. Robust estimates for validation performance indexes of electric network models. Int. Rev. Electr. 
Eng. 2015, 10, 607–615. https://doi.org/10.15866/iree.v10i5.7277. 

10. IEEE Std.1597.1; IEEE Standard for Validation of Computational Electromagnetics Computer Modeling and Simulations. IEEE: 
Piscataway, NJ, USA, 2008. 

11. Hankins, G.J.; Lewis, D.M. Validating the FSV Method Using Reverberation Chamber Measurements. In Proceedings of the 
IEEE International Symposium on Electrom Computing, Fort Lauderdale, FL, USA, 25−30 July 2010. 
https://doi.org/10.1109/ISEMC.2010.5711370. 

12. Bhobe, A.; Sochoux, P. Comparison of measured and computed near and far fields of a Heatsink using the Feature Selective 
Validation (FSV) method. In Proceedings of the IEEE International Symposium on Electromagnetic Compatibility, Fort 
Lauderdale, FL, USA, 25−30 July 2010. https://doi.org/10.1109/ISEMC.2010.5711369. 

13. Bongiorno, J.; Mariscotti, A. Experimental validation of the electric network model of the Italian 2x25 kV 50 Hz railway. In 
Proceedings of the 20th Imeko TC4 International Symposium, Benevento, Italy, 15–17 September 2014. 

14. Huang, H.; Boyer, A.; Dhia, S.B. Electronic counterfeit detection based on the measurement of electromagnetic fingerprint. 
Microelectron. Reliab. 2015, 55, 2050−2054. https://doi.org/10.1016/j.microrel.2015.07.008. 

15. Wang, G.; Xiao, H.; Xiao, L.; Zhang, Z.; Xu, Z. Electromechanical Transient Modeling and Control Strategy of Decentralized 
Hybrid HVDC Systems. Energies 2019, 12, 2856. https://doi.org/10.3390/en12152856. 

16. Jauregui, R.; Aragon, M.; Silva, F. The Role of Uncertainty in the Feature Selective Validation (FSV) Method. IEEE Trans. Elec-
tromagn. Compat. 2013, 55, 217−220. https://doi.org/10.1109/TEMC.2012.2227262. 

17. Di Febo, D.; De Paulis, F.; Orlandi, A.; Zhang, G.; Sasse, H.; Duffy, A.P.; Wang, L.; Archambeault, B. Investigating Confidence 
Histograms and Classification in FSV: Part I. Fuzzy FSV. IEEE Trans. Electromagn. Compat. 2013, 55, 917−924. 
https://doi.org/10.1109/TEMC.2013.2240460. 



Electronics 2022, 11, 2532 25 of 25 
 

 

18. BIPM. Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement; JCGM: 100; BIPM: Sevres, France, 
2008. 

19. Bongiorno, J.; Mariscotti, A. Variability and Consistency of Feature Selective Validation (FSV) Method Implementation. IEEE 
Trans. Electromagn. Compat. 2016, 59, 1474−1481. https://doi.org/10.1109/TEMC.2016.2615285. 

20. Bongiorno, J.; Mariscotti, A. Statistical Distributions of Validation Performance Indexes for Experimental Data UncertaintyIn 
Proceedings of the IEEE Melecon, Limassol, Cyprus, 18−20 April 2016. https://doi.org/10.1109/MELCON.2016.7495360. 

21. Knockaert, J.; Catrysse, J.; Belmans, R. Comparison and validation of EMC measurements by FSV and IELF. In Proceedings of 
the IEEE International Symposium on Electromagnetic Compatibility, Austin, TX, USA, 17−21 August 2009; pp. 248−253. 

22. Orlandi, A.; Duffy, A.P.; Archambeault, B.; Antonini, G.; Coleby, D.E.; Connor, S. Feature selective validation (FSV) for valida-
tion of computational electromagnetics (CEM). Part II—Assessment of FSV performance. IEEE Trans. Electromagn. Compat. 2006, 
48, 460−467. https://doi.org/10.1109/TEMC.2006.879360. 

23. BIPM. Evaluation of Measurement Data—Supplement 1 to the “Guide to the Expression of Uncertainty in Measurement”—Propagation of 
Distributions Using a Monte Carlo Method; JCGM 101; BIPM: Sevres, France, 2008 

24. Herrador, M.A.; Asuero, A.G.; Gonzalez, A.G. Estimation of the uncertainty of indirect measurements from the propagation of 
distributions by using the Monte-Carlo method: An overview. Chemom. Intell. Lab. Syst. 2005, 79, 115−122. 
https://doi.org/10.1016/j.chemolab.2005.04.010. 

25. Herrador, M.A.; Gonzalez, A.G. Evaluation of measurement uncertainty in analytical assays by means of Monte-Carlo simula-
tion. Talanta 2004, 64, 415−422. https://doi.org/10.1016/j.talanta.2004.03.011. 

26. Janssen, H. Monte-Carlo based uncertainty analysis: Sampling efficiency and sampling convergence. Reliab. Eng. Syst. Saf. 2013, 
109, 123−132. https://doi.org/10.1016/j.ress.2012.08.003. 

27. Li, X.; Li, Y.; Liu, L.; Wang, W.; Li, Y.; Cao, Y. Latin Hypercube Sampling Method for Location Selection of Multi-Infeed HVDC 
System Terminal. Energies 2020, 13, 1646. https://doi.org/10.3390/en13071646. 

28. Ferrari, P.; Mariscotti, A.; Pozzobon, P. Reference curves of the pantograph impedance in DC railway systems. In Proceedings of 
the IEEE Intern. Conf. on Circuits and Systems, Geneve, Switzerland, 28−31 May 2000. 
https://doi.org/10.1109/ISCAS.2000.857155. 

29. Ogasawara, S.; Ayano, H.; Akagi, H. Measurement and reduction of EMI radiated by a PWM inverter-fed AC motor drive sys-
tem. IEEE Trans. Ind. Appl. 1997, 33, 1019−1026. https://doi.org/10.1109/28.605744. 

30. Mariscotti, A. Measurement Procedures and Uncertainty Evaluation for Electromagnetic Radiated Emissions from Large Power 
Electrical Machinery. IEEE Trans. Instrum. Meas. 2007, 56, 2452−2463. https://doi.org/10.1109/TIM.2007.908351. 

31. Jo, H.; Han, K.J. Estimation of radiation patterns from the stator winding of AC motors using array model. In Proceedings of the 
IEEE International Symposium on Electromagnetic Compatibility (EMC), Ottawa, ON, Canada, 25−29 July 2016. 
https://doi.org/10.1109/ISEMC.2016.7571764. 

 


