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Abstract: Cloud, edge and Internet of Things (IoT) technologies have emerged to overcome the
challenges involved in sharing computational resources and information services. Within generic
cloud systems, two models have been identified as having widespread applicability: computation
clouds and data clouds. A data cloud is cloud computing that aims to manage, unify and operate
multiple data workloads. Many current applications generate datasets consisting of petabytes (PB) of
information. Managing large datasets is a complex issuel; in particular, datasets associated with many
applications can be distributed widely in geographical terms, particularly in IoT systems. Edge and
IoT systems are facing new challenges with increased complexity, making scalability an important
issue that will affect the performance of the system. Data replication services are widely accepted
techniques to improve availability and fault tolerance, and to improve the data access time. Current
replication services, however, often exhibit an increase in response time, reflecting the problems
associated with the ever-increasing size of databases. This paper proposes a prediction model to
predict replica locations using the files’ access profile, which feeds the neural networks with the
access and location behavior (file profile) to minimize the overhead of transferring large volumes of
data, which slows down the system and requires careful management. This new model has shown
high accuracy and low overheads. The result shows a significant improvement in total task execution
time using the proposed model for locating files by 16.34% and 30.45%; in addition, the results show
bandwidth improvement by 24.7% and 49.4% compared to the user profile prediction model and
replica service model without prediction, respectively. Consequently, the proposed algorithm can
improve data access speed, reduce data access latency and decrease bandwidth consumption.

Keywords: cloud; edge; IoT; data replication; clustering; neural networks

1. Introduction

The largest astronomical observatory generates databases of around 10 terabytes, and
such databases are increasing in size annually; such systems require a means of organizing,
handling and manipulating such high volumes of data [1,2]. In addition, this type of dataset
tends to be accessed by users in different locations who may create local replicas of the
data to reduce the latency involved in wide area data transfers and, thereby, improve their
application’s performance. To support this, model replica management systems, or data
replication mechanisms [2,3], have been developed to create, register and manage replicas.
By using such systems, data can be accessed from another site (reducing server load), and
recovery from system failures can be supported.

Within a cloud environment, files can have replicas stored at many cloud sites on
‘storage elements’. If one replica site is down, data can be accessed from another site,
and queries can be executed more efficiently since they can access local or nearby copies.
However, when several large databases are required, then systems based on this current
model are slow to respond to transfer requests [2,4]. In addition, there are high overheads in
the form of the increased cost associated with updates as each replica must be updated and
there is an (obvious) increase in data redundancy. It is easy to see how further performance
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issues will arise with the growth and usage of such very large databases using the current
replication strategies. It can be argued that central to cloud, edge and IoT systems is the
need to provide efficient access to resources in a scalable manner. As mentioned above, the
current approaches do not meet these requirements.

Lately, with today’s increase in the number of cloud services, smartphones and other
IoT devices with limited specifications that build the core elements of edge computing,
many organizations have to deal with limited resources. There are several cloud ser-
vices that are designed to facilitate and support cloud applications, e.g., replication ser-
vices. A replication service aims to select a data replica from those available to minimize
the application access time. However, current replication services are exhibiting an in-
crease in response time, reflecting the problems associated with the ever-increasing size of
databases [5,6]. The proposed File Prediction Replication Model (FPRM) system can access
the replica in a minimum response time for given tasks under execution. The performance
of the proposed system overcomes similar systems using full dynamic replication.

Both the proposed and current replication systems, Full Replica Management (RM) [1,2,7]
and Prediction Model (PM) [8,9], have been implemented using a simulation environment,
and it has been shown, for a range of experiments, that the proposed system can serve
an application’s data requirements in a lesser transfer time. Correspondingly, it can be
argued that the efficiency of the proposed system is higher than the existing system based
on current replica models. The proposed FPRM is treated as an optimization problem that
minimizes the sum of the data access costs and replica maintenance costs. Optimizations
are performed by restructuring workflows. The first optimization is to find out whether
there are any intermediate results available. The second technique is to cluster similar tasks
and map them to the same required files/replicas, saving the overhead of searching and
transferring large volumes of data that affect system performance. Mapping is performed
for the first task, and then all similar tasks are mapped similarly.

1.1. Motivation

Large data management and task scheduling within the cloud, IoT and edge environ-
ments are complex issues. Resources are distributed at different geographical locations and
owned by different organizations that have different usage policies, cost, access, availability
and load patterns. The owners and consumers of the resources have conflicting goals,
objectives, strategies and requirements; in addition, they aim to achieve high throughput,
and consumers aim to get a minimum cost within the specified time limits, also referred
to as deadlines. These systems are facing new challenges of task execution, and with the
increased complexity of IoT and edge systems, it is necessary to deal with these queries
using intelligent management of terabyte data transfer over wide area networks to cope
with current and future data sizes. The complexity means the size of the database is grow-
ing, and user queries could request several files/replicas stored at different sites, which
takes a long time to locate, and this delays the task’s execution. One of the most vital
subjects in IoT and edge computing is data replication and selection, which requires high
reliability and efficiency. With the increased number of users, resources and data in such
an environment, it is costly to maintain data reliability, performance and availability. A re-
liable, intelligent and dynamic file/replica selection technique is required. This research
was carried out keeping this target in mind, and it resulted in the development of a file’s
location prediction model.

1.2. Contributions

As the volume of data contributing to cloud, edge and IoT systems grows, so do the
problems associated with efficient and effective replica selection and allocation increase
in proportion. The work presented in this paper presents a novel approach that aims to
go some way toward finding a solution to solve this problem by developing an intelligent
dynamic prediction model based on neural networks. The run-time prediction model is
meant to generate file location predictions for incoming tasks using historical executions.
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It utilizes clustering to separate related tasks from the history and generates predictions
using a mean predictor. The proposed model collects and maintains a repository of replica
activity data in the form of execution logs stored in standard formats. The prediction model
was based on the fact that historical jobs are clustered on the basis of six parameters, which
have a minimum coefficient of variation calculated for their replica’s location and run
times. It presented an opportunity to use these clustered tasks to generate the prediction
of a replica’s location of an incoming task. When a new task arrives, the prediction for
the location of its required files/replicas is made using these logs instead of using the
replica catalog approach, which results in decreasing the queuing time and run time, as
shown in the results section. Queue time is a very important parameter since it has a strong
effect on the task execution time. Every time tasks are submitted, and results are returned,
the execution history data are updated, thereby ensuring that an accurate and up-to-date
view of replica activity is maintained. CloudSim simulator is used to test and evaluate the
performance of the proposed model. The experimental results illustrate that FPRM reaches
improved total execution time, bandwidth consumption and algorithm run time compared
with the referenced models.

The remainder of the paper is organized as follows: Section 2 presents background
reading and related work. To provide a deeper understanding of this area, Section 3
introduces references to the replica model without prediction and the replica model with
prediction using a user profile. Section 4 introduces the proposed replica model using a file
profile. Section 5 presents the simulation testbed and results. Finally, the paper concludes
with Section 6, focusing on the contribution along with future recommendations. The next
section discusses the related work and approaches of data replication.

2. Related Work

With the increasing number of users, resources and data, edge has emerged as a
promising solution for such complicated systems. Replication has been regarded as one
of the major optimization techniques for providing fast data access [10] to such seamless
and ubiquitous computing systems; however, studies of replication in edge computing
are still premature. The proposed model in [11] introduced a data replication technique to
optimize the consumption of resources in edge environments, which reduces the total time
for a search request or another procedure, and it shares structures in the device context for
analyzing workloads and storing data utilizing mathematical models. The proposed model
in [12] improves the high-level architecture performance using a replication method that
employs various synchronization approaches for rapid replications.

The replication approaches described in [13,14,16? ] are known to improve the average
processing time using the combined replication method with local and cluster storage
compared to the centralized replica management under the traditional edge computing
model. Many proposed systems were developed by scholars for various models, proving
the truthfulness of replicating data in different storage sites [14? ]. The authors in [? ]
proposed a comparative study of a multi-replica verification method using data integrity
checking of multi copies based on PDP and Merkle hash tree. The results show that
IDMPMR-PDP over-comes and is more economical compared to the MuR-DPA method.
The Cassandra dynamic snitch mechanism in [16] calculates a score for each node based on
the latency and severity information and uses this score for selecting the fastest node for
the routing read request. The proposed C3 model in [17] is a replica selection mechanism
in which each client calculates a score of individual servers to select the fastest server
for each read request and C3. The work of Liu et al. [13] aims to replicate a local copy
on the IoT devices and the local cluster rather than the centralized replica management
system; the proposed model replicates the data based on data high priority and real-time
performance. In [18], the authors proposed a replica selection model based on the response
time (DRS-RT); the proposed model calculates the file access tendency periodically, then
the DRS-RT returns to the user the node that has the highest service capability that has
the required file or replica. Sudalai et al. [19] proposed a multi-dimension parameters
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model that quantifies the importance of a replica by using the replica frequency number
of requests and the cost of the replica to predict the future usage of the replica in a data
grid environment.

Several techniques aim to reduce data processing at the network edge by offering
alternative cloud computing options, such as cloudlets, mobile edge computing and fog
computing [20]. The findings in [21] also exhibited that data replication is ideal for im-
proving data sharing, worldwide traffic and lowering response times, in addition to the
ability to perform on a disconnected server. Saranya et al. [21] proposed using simple and
random replication techniques for the Mobile Ad hoc Networks (MANET) to improve the
availability of data, which covers the related issues to the MANET, such as the availability
of resources, response time, power consumption and consistency management. The results
show that the random algorithm can achieve bandwidth consumption better than the
simple algorithm. The results have not shown the access response time of the proposed
algorithms, which is one of the most important factors in any replication system. Gill
and Singh [22] have proposed an algorithm to optimize the cost of replication based on
the concept of the knapsack problem; the algorithm is named the Dynamic Cost-aware
Re-replication and Re-balancing Strategy (DCR2S). The proposed system uses the “pay
as use” model, where the system charges the users for the services they use. It designed
to determine the relationship between the number of replicas, availability and the cost of
replication. DCR2S has three steps, (1) determining what and when to replicate the file by
the theory of temporal locality, (2) check availability requirement and (3) the replacement
of the new replica. The aim of this system is to have low replication costs to meet the user’s
subscription, regardless of the high response time and low consistency rate.

Junfeng et al. [23] proposed a replica selection algorithm based on a genetic algorithm
(GASA), aiming for replica selection optimization in cloud storage of massive data. The pro-
posed model maps the key steps of the genetic algorithm and replica selection criteria. Then,
a probability equation is used to obtain the optimal solution. The proposed model uses the
GASA algorithm as a self-adapting optimal probabilistic algorithm as GASA simulates a
biotic population evolutionary mechanism in the natural environment, such as mutation,
realization and overlapping, where it ultimately gains an optimal replica. Wakil et al. [24]
proposed a hybrid ant colony optimization (ACO) and genetic algorithm (GA) as an op-
timization strategy for replica selection in the IoT. The ACO is used to produce diversity,
while the GA is utilized to perform a comprehensive search over the search space. Neverthe-
less, the run was longer as the suggested model is based on hybrid character. The authors
in [1] suggested using neural networks and fuzzy logic in the upcoming studies, which
could take into consideration the performance of some novel meta-heuristic algorithms to
solve the replica selection issue in the IoT. In [25], the authors introduced a comprehensive
review of enabling computation offloading and task execution in vehicular networks. First,
the architectures of the task execution in computational paradigms in vehicular networks
were introduced. In addition, the key features between different computing paradigms
were investigated to distinguish similarities and dissimilarities in these paradigms.

In [26], an optimization scheme is proposed to construct a reconfigurable radio en-
vironmen; the proposed model optimizes beamforming weight vectors by applying up-
link–downlink duality and a singular value decomposition. Further, the proposed model
investigated the shifter’s iterative optimization using Taylor expansion and penalty func-
tion methods. The authors in [27] proposed a joint beamforming and power allocation for
satellite-terrestrial integrated networks for non-orthogonal multiple access (NOMA)-based
satellite terrestrial integrated network (STIN). The proposed model maximizes the sum
rate of the STIN by formulating a constrained optimization. In [28], the authors investi-
gated the multicast communication of a satellite and aerial-integrated network (SAIN) with
rate-splitting multiple access (RSMA). The aim of the proposed model is to achieve a fast
convergence rate and maximize the sum rate of all users under the constraints of the QoS
requirements of both ES and IoTDs by exploiting the SCA, the first-order Taylor expansion
and penalty function methods. The authors in [29] proposed a multitask learning method
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using geometry reasoning for scene depth and semantics. The proposed model performs
depth and camera pose estimation using semantic segmentation by reasoning the geometric
correspondences between the pixel semantic outputs and the semantic labels at multiscale
resolutions.

3. Reference Models
3.1. Reference I: Replica Management System without Prediction

RM is a widely accepted technique in distributed environments that manage data
selection and replication at different sites. The RM uses a local replica catalog [30] to process
the queries from users and resources and it is responsible for indexing files, which, in turn,
store the mapping between the Logical File Name (LFN) and Physical File Name (PFN).
When an LFN does not exist in the local replica catalog, which is called (regionalRC), then
the Replica Catalog (RC) will contact the Top Replica Catalog (TopregionalRC), which is
the root of all replica catalogs for a list of names that maps this LFN either in the local or
the remote site. The local or remote replica catalog is concerned with searching for files
or replicas within a site and is organized as a tree. The catalog is stored within databases
as metadata files; whenever a digital entity (i.e., creation of a replica) is performed by an
operation, the replica state information is maintained and stored (i.e., the physical file name
and location of the replica) in the metadata catalog. After that, a TopregionalRC is created
that acts as a central replica catalog, or the top replica catalog, in a tree of replica catalogs,
because the RCs are also attached with each other in the RC tree. For example, a scientific
experiment site generates a large volume of data that are stored in a data center. The data
center notifies the local RC about a list of available datasets in the center, which, in turn,
notifies the TopRegionalRC of the new datasets generated and stored in the data center.
When the user submits a task, his/her resources will request a file copy of the dataset;
the regionalRC will be checked first. If the dataset is stored locally, the PFN will be sent;
if not, the regionalRC will send a request to the TopRegionalRC and return a mapping
between LFN and PFN to the regionalRC, which, in turn, sends it to the user’s resources,
as shown in Figure 1.

Figure 1. Communication process flow between Top, Regional and Remote RC.

These approaches provide a simple matchmaking approach based on a file’s name
and take a long time to query a particular file [31–34]. Moreover, if the file’s name is not



Electronics 2022, 11, 2531 6 of 22

registered in the replica catalog, the task turnaround time will be doubled each time due to
the delay in locating the file from another replica catalog. The replica catalog works well
when the system is small. However, current cloud and edge storage systems are expected
to scale up, and database sizes are already at petabyte levels. In such environments, it is
easy to see that the overheads required to retrieve data are increasing and will continue
to grow.

Consequently, cloud and edge storage systems are facing new challenges of task
execution, and with the increased complexity of cloud storage systems, it is necessary to
deal with these queries using intelligent management of terabyte data transfer over wide
area networks to cope with current and future data sizes. The complexity means the size
of the database is growing, and user queries could request several files/replicas stored at
different sites, which take a long time to locate and this delays tasks execution, as explained
below. Consequently, the potentially large number of users/devices and resources in a
cloud and edge storage system means that a centralized algorithm may be ineffective.
For example, a scheduling algorithm that focuses only on maximizing task utilization,
disregarding costs associated with fetching remote data, is unlikely to be efficient [10,13],
as the effort required to retrieve relevant information has become significantly greater,
especially in large-scale databases.

3.2. Reference II: Replica Management System with Prediction

The proposed PM in [8,9] provides an efficient solution to access remote files that access
very large databases in a faster and more efficient way. The model assumes the following:

• There will be multiple users spread over different remote sites.
• These users will submit a number of tasks (jobs).
• These tasks (jobs) can require one or more files.
• The files can be located in local or remote resources.

Existing techniques for accessing files were considered, and the most frequently used
were included, e.g., replication techniques. The proposed system developed a prediction
model responsible for predicting a file’s location for incoming task queries in order to
minimize the total overhead of the task turnaround time. The proposed system provides a
replica selection facility as a high-level service. As the intention of the work is to provide a
series of high-level services, it is clear that a suitable base system had to be selected as the
source of the core services. This model will enable the system to predict the location of data
required by users. This prediction model will determine a file’s location either in the cache,
local or remote resources using a neural network that analyzes the user‘s past history.

It is noted that many users of parallel computers have a tendency to be repeatedly
doing the same work and using the same data. This creates an opportunity to develop the
proposed model to use task parameters, e.g., user id, file name, file location and resource
id, etc. These parameters are actually used to identify the file location of the new task from
execution logs. These execution logs can then be used to generate the prediction for the
new task. The parameter sets that are used to predict a file’s location are stored in the
history database after a task is completed. For a new task, this history database is searched,
and tasks with a similar parameter set are used to make predictions for the incoming
tasks. As the number of historical executions increases, it is expected that the accuracy of
predictions will also increase [19]. Based on the above specification, an Artificial Intelligent
(AI) technology was chosen to develop the proposed model.

4. FPRM Proposed Model

An AI technology was chosen to develop the proposed model. The next section
explains AI technologies and features.

4.1. AI Technologies

AI technologies have a long history of a wide range of technologies that have been
developed and used successfully in parallel and distributed systems, e.g., expert systems
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and neural networks. Expert systems are computer programs that can perform a task that
normally requires the abilities of a skilled human. These tasks are usually decision-making
tasks rather than physical activities, i.e., predicting (forecasting) weather conditions. Neural
networks are computer programs developed and trained to store, recognize and solve
combinatorial optimization problems by associatively retrieving patterns or database
entries, e.g., to filter noise from measurement data or to control imprecise problems [35].
As mentioned above, the proposed model is intended to predict file locations, and an NN
is suitable for large datasets to determine an accurate result as an NN can work with a
very large number of passes within datasets. This is a positive advantage as IoT and edge
computing environments deal with huge datasets, and the need for automated processing
becomes clear; therefore, accurate results can be achieved [36–38].

4.1.1. The Neural Networks

Neural networks learn from experience, just as the brain does by being exposed to
the information to identify patterns in data. There are a set of processing elements in the
neural networks called nodes, which are interconnected in a network similar to neurons
in the brain and can then be used in the pattern-identification process. This differentiates
NN from traditional computing programs that follow instructions in a predetermined
order [9,39]. Neural networks generally have at least three layers, referred to as input,
hidden and output [36]. The data enters the networks from the input layer, which is the
starting point. The hidden layer receives the data from the input layer for processing,
which acts as an intermediate unit. Then, a new signal is passed to the output layer.
The interconnection weights play a key role in processing information in neural networks.
Transferring data from layer to layer is measured by the relative strength expressed by
weights. These weights are repeatedly adjusted during the network’s learning process,
this adjustment process. There are two types of learning algorithms, unsupervised and
supervised algorithms, which are explained in the next section [39,40].

There are two phases of the construction of the components of a network, the learning
and recall operations. The weights are modified in the learning phase by passing input data
into the input layer to receive accurate results. Then, the training data are measured and
compared to check how close these data are to the predictions of the networks. The goal
is to produce trainable weights using the training set to design and train the network
where the desired output matches the network’s output [41]. The recall phase involves
presenting the desired response at the output layer. There are two basic categories of
learning algorithms for neural networks: supervised learning and unsupervised learning.
In supervised learning, the neural network calculates the output and compares this to the
actual output of the network to create an error signal. In unsupervised learning algorithms,
there is no desired output. As the aim of the proposed model is to predict the location of the
file/replica, therefore, the supervised learning algorithm was used in the proposed model.

4.1.2. The Neural Network Tool justNN

The neural networks tool justNN [42] is a development and prototyping tool used
to allow the training and testing of a perceptron multi-layer network. justNN has an
important advantage that allows parameters to be defined using numeric and textual data
and provides the output either in textual or numeric form, which fits with the proposed
model construction. Furthermore, CloudSim produces a text file that contains information
about users and files in the form of textual and numeric data. The text file is sent as XML
input data to the input layer, and the network produces similar XML output data, which is
used by the CloudSim.

A typical neural network development process follows five steps [36]:

• Data Gathering: acquisition and pre-processing of training data.
• Data Preparation: preparing the data for the neural network to transform data into a

form the network can use.
• Network Creation: this involves network architecture, i.e., multi-layer perception.
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• Network Training: this involves training the network with the relevant collected data.
• Network Testing: testing the network with unseen data derived from real simulation code.

The proposed model follows this pattern, and each of the steps are explained in the
following sections. To reduce the expected delays during accessing files/replicas in IoT
and edge environment, a possible approach would be to predict file (data) requirements
and pre-load (or pre-access) this data. The purpose of the proposed prediction model is
to predict the location of the file/replica. Ultimately, this will reduce the overheads for
a complete complicated search approach that would involve accessing the local, top or
remote replica catalogs. An important goal of the proposed prediction system is the ability
to support a dynamic environment, such as IoT and edge. In other words, the system must
be flexible, expandable and sustainable to meet the needs of a rapidly developing domain.
In many respects, the process used can be viewed as straightforward. A history data of files’
profiles can be determined based on task executions’ logs. Consequently, such a history can
be used to train an artificial neural network. Subsequently, when a user’s task is detected
in the queue, the system can predict file requirements and issue the required instructions to
pre-load the required file data.

The proposed model is designed to support a large number of requests and very
large databases (i.e., databases involving petabytes of storage). Consequently, the model’s
components must be designed in a manner that supports system enhancement, i.e., the
addition of more participants and physical servers. Such a structure is necessary to support
scalability, a fundamental requirement for large-scale systems. Furthermore, it can be
argued that such a flexible structure renders the system scalable, facilitating data and
information sharing. The proposed model will support the dynamic, widely accepted
view of the IoT and edge environment in which resources may join and leave the system,
allowing the system to be scaled up or down as requested and supporting a dynamic model
of interconnection.

4.2. Description of Proposed Algorithm

As mentioned above, while there are existing data access systems based on replication,
it has not been shown that they support scalability (i.e., have not been implemented or
tested on large-scale systems), and hence they may not be suitable for very large databases.
To overcome this weakness, the work in [8,9] has been extended, which creates a profile for
each file in the prediction model and feeds the prediction model with these data to predict
a file’s location instead of using the users’ historical data or the RM. The proposed FPRM
prediction model for cloud, edge and IoT systems will provide the data required by the
user’s task in a minimum response time. The proposed model will be used in combination
with the replica management system in the case of prediction failure or a new task that
requires file(s) that are not trained in the neural networks. Figure 2 shows the interaction
between the prediction model and the current model.

Multiple users/devices spread across different remote sites will submit a number of
tasks; these tasks require one or more files, and these files are located in local and remote
resources. The run-time prediction model is meant to generate run-time predictions for
incoming tasks using historical executions. It utilizes clustering to separate related tasks
from the history and generates predictions using a mean predictor. This service performs a
simple statistical analysis of the data being produced by historical executions and makes
predictions about the location of the file/replica for incoming tasks.

Existing replication techniques for accessing files or replicas were considered. The pro-
posed system can access the replica in a minimum response time. Furthermore, the subject
of replacement algorithms has been investigated in [43], and this approach is considered a
placement algorithm for the proposed model. The objective of the replacement policy is
to make the best use of available resources, including disk, memory space and network
bandwidth. A typical cloud, edge and IoT architecture in Figure 3 is divided into three lay-
ers. A lower layer composed of IoT devices, such as smart vehicles, traffic systems, sensors,
personal health care devices, etc., is used to assist in the construction of an upper layer of
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high-level edge layer, which consists of micro data centers. The upper layer is the cloud
layer, which consists of data centers and third-party cloud storage systems. The proposed
system provides a replica selection facility as a high-level service at both the cloud and
edge layers. As the intention of the work is to provide a series of high-level services (replica
and data consistency service), it is clear that a suitable base system had to be selected as the
source of the core services.

Figure 2. Replica prediction and selection process.

The proposed model creates profiles of replicas using the users’ regular replica access
activities; these data will be used by the prediction model as training data, which will be
used at the final stage to predict the location of the replica resulting in a dynamic system
reflecting real-life scenarios. There are six parameters used as training data for the NN
as follows:

• Name: the file name.
• Owner Name: the owner name of this file.
• Attribute Size: the size of this object (in bytes). This object size is not the actual file

size. Moreover, this size is used for transferring this object over a network.
• Size: the file size (in MBytes).
• Resource ID: the resource ID that stores this file.
• Creation Time: the file creation time (in milliseconds).
• Transaction Time: the last transaction time of this file (in seconds).

As an initial experiment, it was decided to provide a model reflecting local and global
communication data access requirements and to provide an experimental framework that
could be expanded over time to reflect greater complexity. Given that a reasonably high
level of stability was required, it was felt appropriate to select a simulation environment,
as this is a well-tried approach in experimental work involving cloud, edge and IoT
architectures. Based on the high-level overview of the proposed model described above
and its requirements, CloudSim [30] has been chosen as the experimental framework, and
the next section describes the system setup. In the next section, the initialization required
by the proposed model is outlined.



Electronics 2022, 11, 2531 10 of 22

Figure 3. FPRM in Cloud, Edge and IoT Architectures.

The RM and PM were implemented in the simulation environment and tested. The repli-
cation algorithm organizes the data into a master file and replica files. The algorithm also
permits users’ resources to replicate copies of data by moving popular data closer to po-
tential users. When a request for data is generated from a user’s task, a replica copy will
be accessed instead of accessing the origin copy [8,11]; this is referred to as the replication
model. Users/IoT devices have the potential to access a large number or some of the cloud
and edge resources and is able to submit tasks to edge resources and expect a response in a
reasonable time (minimum time). The proposed FPRM algorithm in this paper is suitable
for large-scale data-intensive problems, such as those that arise in physics experiments
and medical images that generate petabytes of scientific data. The results show that the
proposed approach reduced the total task execution time by 30.45% and 16.34% compared
to RM and PM, respectively., in addition to the bandwidth consumption, which shows
better improvement in the proposed model.

4.3. Edge-Side Replica Prediction and Selection

Due to the huge amount of data generated in IoT and edge environments and the
fact that the storage resources are distributed widely in geographical terms, the result
is large data traffic produced at both the IoT layer and the network’s edge layer, which
leads to an increase in time and resource consumption [44]. Using a replication system
in edge computing will overcome the constraints of bandwidth and resources of the
modem centralized cloud system [1]. Moreover, the replication technique in IoT has shown
performance improvement of storage sites through load balancing [10]. As such, the set
of distributed replication nodes must be selected to improve network performance; this
is achieved through the replica node discovery and selection process described below.
Lately, with today’s increase in the number of cloud services, smartphones with limited
specifications build the core elements of edge computing; therefore, many organizations
have to deal with limited resources. There are several cloud services that are designed
to facilitate and support cloud applications, e.g., replication services [2], IoT nodes are
becoming both service providers and subscribers simultaneously. Hence, a client of replica
nodes can advertise themselves as both service providers and subscribers.
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In the proposed model, the task execution history is a very useful tool in predicting
many aspects of resource performance, e.g., run time, queuing times and data transfer
delays. Thus, for clients to participate in the replication sharing process, a node must
advertise itself to a nearby cloudlet [1] while the service subscriber/provider provides
its own specs (e.g., processing power, available memory, etc.). Once the list of candidate
replication nodes is available, the replica node selection process is initiated. As shown
in the following algorithm for predicting the replica location, when a user/IoT device
submits a task that requires a file/replica, the prediction model will run first to predict the
file/replica’s location. If it is found, the location will be sent to the task schedule to execute
the file. If the prediction fails to predict the file location, then the task manager will search
and get the list of the available resources for a storage node that can provide the replica
from the replica selector. Then the Task Manager will send the replica location to the Task
Schedule to get the replica and execute the task.

During the process of predictions, the run time of new tasks on a candidate resource is
calculated faster in time. This early availability of probable run time facilitates the overall
task management. Previous research in the areas of predictions has found that predictions
can be made by using certain task parameters, e.g., user id, group id, executable and degree
of parallelism [8,9]. These parameters are actually used to identify similar file/replica’s
location to the new task from execution logs. The parameters that are used to find similar
tasks can also be referred to as features. These features form a set called the feature set.
After a task is completed, the feature set is stored in the history database along with other
execution parameters, i.e., memory used, processors used, total run time and wait time.
For a new task, this history database is searched, and files with a similar feature set are used
to make predictions of the replica’s location for the incoming tasks on certain resources.

The size of the history relates to the maximum number of records for a certain cluster
of tasks. Each cluster is based on six parameters, as described in a previous section. If for a
certain cluster, the size of the history is very high, i.e., beyond the maximum size (thirty
according to the central limit theorem), then the oldest record is deleted, as maintaining
a larger history size might result in outdated data that are no longer valid. On the other
hand, a smaller history might result in data that are not truly representative. The execution
run time estimate is a random process and requires a certain minimum number of trials
before a stable value is reached.

The History Manager is responsible for keeping the history data up to date. It is
interfaced with the Task Scheduler and history database. History updates are performed by
using the history management algorithm in Figure 4. The execution records are managed
and controlled by the History Manager. The finished task’s logs are stored in a database as
soon as they are received; these logs are managed by the history management algorithm.
After the new task has just been stored, a query is sent to the history database to check the
size of the cluster related to this task, the oldest member of this cluster will be deleted if the
size of the cluster is larger than the maximum history limit. Otherwise, no action will be
taken if the size of the cluster is equal to or less than the limit. The history management
algorithm is responsible for keeping the history logs up to date, and it works separately.
Therefore, for every successful execution, the older logs are removed, and the new logs are
stored. After the task is completed, the history management algorithm can be executed
offline. Consequently, its complexity is O(1). Subsequently, it is not contributing to the
overall delay as its speed is not very critical to the overall execution time. On the other
hand, the prediction algorithm contributes to the total delay in the execution time.

The degree of similarity is measured among old tasks, and the prediction of a file’s
location is based only on the most similar tasks. This phenomenon, in mathematical
language, is called data clustering. Data clustering forms the basis of the prediction model
and is presented in the coming sections, as shown in Figure 5.
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Figure 4. History management algorithm.

Figure 5. Replica location prediction algorithm.

4.4. Clustering

Data clustering is used to identify a structure in unlabeled datasets by organizing data
into homogeneous groups in such a way that between groups, the similarity is minimal, and
inside a certain group, the similarity is maximal [45,46]. Clustering is useful in many fields,
such as data mining, document retrieval, image segmentation and pattern classification.
Likewise, the term clustering is used in several research communities that have different
terminologies and assumptions for the components of the clustering process and the context
in which clustering is used [47]. In the replication management paradigm, clustering is
used to identify files of similar characteristics [47–50]. Clustering cannot be applied blindly
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on all attributes of workloads. In such cases of clustering, it is possible that attributes do
not form a good cluster with each other. For example, the scatter plots of parallel task sizes
and run times do not show clustering behavior. Clustering is applicable when workload
distributions are Modal; this is normally the case when a workload is coming from the same
user. As mentioned above, users tend to do the same work again and again and request
the same files; in such situations, it is possible to apply clustering to the workload and the
requested data coming from a single user, which is used to update the proposed file profile
and, consequently, will be used to predict its future behavior. To assess whether clustering
is applicable, it is validated. Simple validation is performed by evaluating the similarity
among the members of a certain cluster [49]. Clustering can only be applied when enough
historical information is available. For a user submitting new tasks that require a new file,
it is possible that enough historical data of the file is not available. In such cases, alternate
prediction strategies are required to be used. These alternate strategies are file supplied
predictions, random predictions or static predictions. Predictions can also be generated
by applying different clustering levels. A clustering level is defined as the number of
attributes being used for predictions. The proposed FPRM is based on six attributes, but in
the absence of enough data, clustering can be carried out by using fewer attributes. This
will decrease the accuracy but, as a first-time penalty, may be acceptable.

Clustering is a multi-step process; the first step is the pattern representation that
involves the recognition number of classes in a data sample, the number of available
patterns, type and scale of features available to the clustering algorithm. During this
process, patterns are reduced by removing less-useful patterns and/or merged to produce
the most useful classes of patterns. The next step is pattern proximity, which measures
the distance between a pair of patterns. A simple distance measure such as the Euclidean
distance can often be used to measure proximity. The grouping or clustering step involves
the merging of closer lying groups or further dividing into subgroups if the proximity is
higher within a group.

4.4.1. Mathematical Notations for Clustering

Below are the most important terms and notations used for clustering [51].

• A feature vector X is a single data item used by the clustering algorithms. It is a d
dimensional vector consisting of d measurements: X = (x1, x2, x3, . . . xd). In the case
of workloads, these measurements can represent values of different parameters.

• The scalar components xi of a feature vector X are called individual features or
attributes, e.g., file id, resource id and creation time. Dimension d is the length of
a feature vector and represents the total number of features making up the feature
vector space.

• A pattern set is denoted by Ψ = X1, X2, X, . . . Xn. The ith pattern vector of this pattern
set Ψ is denoted by Xi = x(i,1), x(i,2), x(i,3), . . . x(i,d). It can be seen that the pattern set
to be clustered can be shown as an n×d matrix.

• The files can be located in local or remote resources.
• A distance measure is a special metric calculated for a feature space and is used

to quantify the similarity of different patterns. It will be explained in detail in the
coming sections.

4.4.2. Feature Selection

A pattern can represent different physical objects found in a real-life situation. As has
been mentioned earlier, patterns are represented by multidimensional vectors. Each di-
mension of these vectors represents a feature in a real-life scenario. These features can be
either quantitative or qualitative. For example, if file id and resource id are two features,
then these can be represented by a vector X (Test22, 225). Where Test22 is the qualitative
measurement for the executable and 225 is the quantitative measurement of resource id [51].

It is very important that only the most descriptive and discriminatory features in
the input set are selected and used for subsequent cluster analysis. A feature selection
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technique identifies a subset of existing features for cluster analysis. It might involve a
trial and error process where various subsets of features are selected, and then the output
is evaluated using certain validity criteria. An example of features in the context of task
submission is the attributes of a task. Examples of these attributes are storage id, file
id, submission time, run time, memory required, processors required, time required, file
creation time, file owner, etc. Six parameters were selected to be used for clustering after
performing a validity criteria test, which is also referred to as a similarity analysis. It
was found that similarity was maximal when clustering was performed using all these
parameters. The six parameters, as mentioned previously, are name, owner name, attribute
size, file size, resource id, creation time and transaction time.

4.4.3. Similarity Measure

Similarity is an extremely important part of the definition of a cluster. A measure
of the similarity between two patterns drawn from the same feature space is essential to
all clustering procedures. Since many different types of features are used, the similarity
measure between them must be chosen very carefully. It is common practice to calculate
the dissimilarity between two patterns by using a distance measure defined on the feature
space. A very common metric is the Euclidean Distance (ED) [51,52]. ED is a distance
between two points X(x1, x2, x3, . . . xn) and Y(y1, y2, y3, . . . yn), in Euclidean n-space, and is
defined in the Equation (1).

ED =

√
n

∑
i=1

xi − yi (1)

ED is commonly used to evaluate the proximity of objects in two or three-dimensional
space. The drawback in using ED directly is that the largest scaled feature will dominate
the results; this can be avoided by using normalization or other weighting techniques.
When the average distance is measured with respect to the mean point of n data points,
this is called Standard Deviation (SD). In probability and statistics, the SD is a measure of
the dispersion between a set of values. SD is defined below in Equation (2).

SD =

√
1
n

n

∑
i=1

(xi − x)2 (2)

Where the mean for n data points (x1, x2, x3, . . . xn) is shown in Equation (3).

X =
1
n

n

∑
i=1

xi (3)

Mean and SD are dimensional quantities. SD, such as the ED, measures the spread
in data and hence can also be used to measure similarity or dissimilarity. The greater the
spread means less similarity and vice versa. The SD can be converted to a dimensionless
metric by dividing it by the mean. This will result in another statistical measure called the
Coefficient of Variation (CV). The CV is another statistical measure of dispersion in data, and
its mathematical representation is shown in Equation (4).

CV =
SD
X

(4)

The CV is useful because the SD of data must always be understood in the context
of the mean of the data. The CV is a dimensionless number that makes comparison easier
among the values with different units. The CV is also called a normalized measure of
dispersion; this makes the CV a very useful statistical parameter to measure dispersion
among clustered tasks. The resulting set of nodes that are willing to perform replication
while satisfying the minimum QoS level requirements will be denoted as set n. While
applied to workload data, this technique of clustering separates related tasks that require
the same data. Once related tasks are found, the next step is to make replica location
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predictions using these tasks. Since all tasks in the selected cluster are related to the new
task, it is expected that the new task will also have a replica location similar to the clustered
tasks. If the replica location of the tasks in a cluster is the same, then it is very easy to
assume that the new task will also require the same replica(s), but it is observed that
normally it is not the case. The replica location varies from time to time.

This situation requires a different strategy to determine the replica location. One
possible strategy is to calculate the mean of clustered tasks named as a mean predictor.
Other possibilities are last observation, median, mode, low pass filter, k-nearest neigh-
bors, weighted average and regression analysis. The mean predictor has been used by
different researchers and has proved to be reasonably accurate [53–55]. Different types of
predictors: a mean, a linear regression, an inverse regression and a logarithmic regression,
were evaluated by these authors; their work also found that the mean is the single best
predictor. Regression-based predictors were also considered before choosing a mean pre-
dictor. Predictions generated by regression predictors are not stable and also have a higher
computational overhead.

The benefit of a mean predictor is that it is easy to calculate and has very little overhead;
hence it was decided to use a mean predictor for this model. One of the initial targets of the
proposed model is to minimize prediction overhead. With complex prediction strategies,
the risk is that the computational overhead would increase with little gain in the predic-
tion accuracy if any. A mean predictor was successful in providing reasonably accurate
predictions at low computational overhead. Generated predictions can be utilized directly
or can be used to calculate the expected node to provide a replica within a certain level of
confidence. Sometimes, in critical applications, the user/IoT device is more interested in
the replica’s location than in just a prediction. Keeping this in mind, the evaluation of the
prediction model was carried out for both predictions using file profile parameters and a
replica management system.

The maximum run time can be calculated by assuming that run times within a cluster
follow a normal distribution. A normal distribution describes data that are clustered around
a mean. Equation (5) describes the maximum run time limit at a certain confidence interval.
This confidence interval is dependent on the value of “n”. Predictions will be generated
by calculating the mean execution time for these clusters of tasks. Clusters will be defined
on the basis of the six parameters. The CV value will be used to calculate the maximum
run time for a certain confidence interval using Equation (5). Calculations were performed
for 90% and 95% confidence intervals. CV has already been used in previous work to
gain an understanding of the distribution of task run times. In [56], CV was calculated for
the task admission control scheme based on a random task filtering policy. The authors
in [57] carried out a more elaborate CV analysis of tasks providing results on the basis of
seven parameters. The work in this paper suggested that the value of CV is lower when
clustering is performed using six parameters. Comparisons have shown that the value of
CV is indeed lower when clustering is carried out using all six parameters at a time, as
shown in Equation (5).

TPRT = TMRT + n × CV × X (5)

where,

CV ∗ X = StandardDeviation
TPRT = Prediction Run Time
TMRT = Mean Run Time
CV = Coefficient of Variation
n = Real number

As has been shown above, the CV provides a quantitative measure of dispersion for
a certain cluster of tasks. In simple words, if for a certain group of previous executions,
the CV is less for the run time of tasks, then predictions made using that cluster of tasks
will show lower variation, i.e., higher similarity. In other words, the CV is a measure of the
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goodness or quality of predictions. Therefore, we can say effectively that small values of
CV will result in better predictions; on the other hand, higher values of CV for a certain
cluster will result in less reliable predictions. It is clear that if clusters of tasks are identified
with small values of CV, then predictions will show higher accuracy. Also, predictions are
most likely to have small variations. Experiments were performed with different workload
data, and it was found that the value of CV is minimal when clusters are defined using the
six parameters mentioned. Figure 4 shows the normal distribution curves drawn showing
the probability density function on the y-axis and the value of the mean on the x-axis for
different values of SD. All five series drawn in Figure 4 are further explained in Table 1.
It can be seen from Table 1 and Figure 6 that for high values of CV, the bell curve is wide,
showing a higher spread in the data, and for lower values of CV, the bell curve is narrow.

Figure 6. Normal distribution curves drawn for different values of CV.

Table 1. Value of Mean, Standard Deviation and Coefficient of Variation (CV) for different series.

Series Mean Standard Deviation Coefficient of Variation (CV)

Series1 24 2 0.08
Series2 24 4 0.16
Series3 24 8 0.32
Series4 24 16 0.64
Series5 24 32 1.28

It suggests that a lower value of CV will result in a high probability of results lying
within close vicinity to each other, which confirms the above assumption that the lower
values of CV will result in better predictions since there is little spread in the data. The data
presented in Table 1 and Figure 6 were generated by using Equation (6).

Data = (Random.nextGaussian()× SD) + Mean (6)

where Random.nextGaussian() generates normally distributed random variables with
mean 0.0 and SD 1.0 [58]. Therefore, in short, for every new task that requires certain
files, a set of previously completed tasks (clusters) will be identified that belong to the same
cluster as the new task.
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5. Simulation Testbed and Results
5.1. Simulation Testbed

The modeled testbed contains 30 storage resources spread across distributed locations
connected via high-capacity network links; the number of resources is expanded up to fifty
resources as explained in the system workload in a large-scale environment. The first set of
experiments started with 30 storage resources as a base test bed. All distributed resources
were simulated as clusters, and each cluster is associated with processing elements (PEs) or
single CPU nodes with a batch task management system. The PEs capabilities are defined
in terms of Million Instructions Per Second (MIPS). The total disk capacity available at each
site will form the storage at the resources. The network between the resources was modeled
as a set of routers and links. The databases were defined as several files distributed across
the resources. A number of files were defined with an average file size up to terabytes.
A total of 100 users/IoT devices will be simulated in the first experiment on the first test
bench; after that, the number will be increased up to 500 users, where each resource is
assigned a certain number of users. A user will submit task(s) that requires one or more
files to be executed (predetermined files). The next section provides a high-level overview
of the relationship between users, resources and files. When a new replica is created for
the first time, then a file profile will be created. File profiles identify the file name and
the user’s local system (speed, storage volume, networks used and their speed, transaction
time, etc.). This profile will also retain a record of services/resources used by this client.
Each database/file needs a description of file type, size, storage media, network connection,
speed, location, etc. The file interface presents an environment in which users will be able
to access standard file maintenance operations, such as creating, deleting, copying and
editing files, in addition to performing file/database queries. Each user/IoT device has an
agent that acts for the user and watches for changes in the system, e.g., (new data resources,
new services and updates the file profile accordingly); the cloud information services and
the replica service plays this important role.

The below factors were taken into consideration to create a realistic
simulation environment:

• The storage system: The storage system has been implemented to simulate the behav-
ior of typical hardware storage. A simple interface that can be used to simulate storage
and the retrieval of any amount of data. Accessing files in a SAN at run-time incurs
additional delays for task unit execution; this is due to the additional latency that is
incurred in transferring the data files through the data center’s internal network.

• Cloudlet: The Cloudlet (cloud task) is represented in CloudSim as a package that
holds all the execution details and information of the task (i.e., the size of input and
output files, the task owner id and task length expressed in Millions Instruction (MI)).
The time required to transfer input and output files between user/IoT and remote
resources, then return the results to the owner, is the most important factor that helps
to determine the execution time.

• Cloud Resource: The cloud resource has been simulated as a resource with properties
as explained below:

– PEs (Processing Elements) have been implemented that objects with a MIPS (Mil-
lion Instructions Per Second) rating, which represents the CPU speed. The PEs
were assembled together to create a machine.

– Objects of the machine were grouped to form a cloud resource.
– CloudSim PEList: The CloudSim PEList maintained a list of PEs that make up

a machine.

As mentioned above, the simulation environment setup consists of 100 users (i.e.,
service subscribers), in which each user submits up to 10 tasks; each task requests 1 to
5 files, and each file is in the range of 2.5–20 GB. We assumed the presence of 30 storage
sites. A detailed summary of the network configurations is outlined in Table 2.
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Table 2. Simulation Environment Configurations.

Experiments Parameters Values/Ranges

Number of users 100–500
Number of tasks per user 2–10
Total tasks 1000–10,000
Number of files accessed per task 5
Total files 2500
Size of single file 2.5–20 GB
Total size of files 50,000 GB
Number of sites 30
Available storage of each site 100 GB–1 TB
Task delay 2500 ms
Bandwidth 100–1000 MB

In present and future distributed applications, the number of users and resources
continues to increase. Consequently, the number of tasks and file requests will keep
increasing, and the network traffic will be very heavy. Therefore, in the following section,
the performance of the proposed model, PM and RM will be compared when the number
of users, tasks and network traffic is increased substantially.

5.2. Simulation Results

This section provides a concise description of the experimental results, their inter-
pretation, as well as the experimental conclusions that can be drawn. In an ideal world,
the simulation configuration should be close to reality. In a typical real-world cloud envi-
ronment, tasks are submitted to the resource broker by the users, and the resource broker
then finds the best site to run the task. Typically, the tasks under execution will require
one or more files, as mentioned in the previous sections. It is the responsibility of the
replica manager to locate the required files for these tasks. The current replication system
PM, RM and the proposed FPRM have been implemented by expanding the number of
users, resources and files to provide greater complexity. The performance of the current
and proposed system was evaluated in five different scenarios by varying the number of
tasks submitted by the user/IoT device. The system’s performance was evaluated in each
scenario for 1000 up to 10,000 tasks. The same number of users, resources, files and tasks
were implemented for both the current and proposed systems. Figure 7 shows the sample
row results for the FPRM, PM and RM models, respectively.

The results of the simulation show that the Task Turnaround Time (TTT) for the pro-
posed FPRM system is less than the TTT of PM and RM by 16.34% and 30.45%, respectively,
as an average for all scenarios, as shown in Table 3 and Figure 7. The results show better per-
formance than the PM due to more parameters and information related to the file/replica
used in the prediction model instead of the user profile.

Figure 7. Number of tasks versus response time for , FPRM, PM and RM.
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Table 3. Simulation results of TTT in different scenarios.

# of Tasks FPRM/sec PM/sec RM/sec

1000 8900 9500 12,540
3000 18,865 21,608 25,243
5000 30,988 40,512 50,020
8000 55,796 69,214 85,600
10,000 110,796 130,214 150,600

The network bandwidth affects the task execution time, in addition, to file transfer
time as it defines the exchanging of data between resources (both downlink and uplink).
Therefore, bandwidth is an important factor, and it was tested in different scenarios by
varying the bandwidth from 150 to 1000 MB. The result shows an average improvement
of the proposed FPRM by 24.7% and 49.4% compared to the PM and RM, respectively;
the proposed model outperforms these models in all scenarios, especially with narrow
bandwidth; even with larger bandwidth, the proposed model still provided significant
performance, as shown below in Figure 8.

Figure 8. Bandwidth consumption for FPRM, PM and RM.

The proposed prediction model will provide run-time predictions, which provide
estimates of the processing time. Tasks are executed in four stages, which start with the task
submission, waiting in the batch queue (waiting for required files/replicas), run time and
end with the result’s retrieval. The task will spend some time in the queue until all required
files/replicas are ready for execution. Given that there are delays during the start of each
stage of execution, the resource management system must also spend some time preparing
tasks for execution. An example of one such delay is prediction time (algorithm running
time) of the replica manager to find the location of the required replicas. Queuing time is a
very important parameter because it has a strong effect on the total turnaround time, as
shown in Table 3. To evaluate the proposed algorithm run time, the below experiment was
carried out. The results presented in Table 4 show that the proposed algorithm outperforms
the PRM and RM models, which affects the TTT.

Table 4. Simulation results of the proposed algorithm’s run time in different scenarios.

# of Tasks FPRM/Milsec PM/Milsec RM/Milsec

1000 33,000 59,000 98,000
3000 105,000 189,000 312,000
5000 190,000 375,000 965,000
8000 318,000 796,000 1,628,000
10,000 420,000 940,000 2,230,000
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6. Conclusions and Future Work

This paper proposed a prediction model responsible for predicting the location of files
to overcome the shortcoming of the increasing number of users and devices in edge and
IoT systems, which, in turn, increases the number of tasks. The proposed approach uses
a neural networks tool to predict a file’s location accurately based on the characteristics
taken from CloudSim using a data clustering technique. If the complete task query is
fulfilled by the prediction model, then no further processing search will take place, and
the result is handed over immediately to the replica management service. If the location
of files is not available in the prediction model, the remaining query will then be handed
over to the complete search approach. The result shows a decrease in the TTT using the
FPRM by 16.34% and 30.45%. In addition, the proposed model outperforms the PM and the
RM in bandwidth consumption by 24.7% and 49.4%. In future work, more experimental
evaluations will be carried out to evaluate the impact of the file’s size on the response time,
in addition to the number of replicated files on the storage space utilization.
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