
����������
�������

Citation: Lee, Y.K.; Jeong, J.; Kang, D.

An Effective Orchestration for

Fingerprint Presentation Attack

Detection. Electronics 2022, 11, 2515.

https://doi.org/10.3390/

electronics11162515

Academic Editor: Krzysztof

Szczypiorski

Received: 11 July 2022

Accepted: 9 August 2022

Published: 11 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

An Effective Orchestration for Fingerprint Presentation
Attack Detection
Youn Kyu Lee 1 , Jongwook Jeong 1 and Dongwoo Kang 2,*

1 Department of Computer Engineering, Hongik University, Seoul 04066, Korea
2 Department of Electronic and Electrical Engineering, Hongik University, Seoul 04066, Korea
* Correspondence: dkang@hongik.ac.kr

Abstract: Fingerprint presentation attack detection has become significant due to a wide-spread usage
of fingerprint authentication systems. Well-replicated fingerprints easily spoof the authentication sys-
tems because their captured images do not differ from those of genuine fingerprints in general. While
a number of techniques have focused on fingerprint presentation attack detection, they suffer from
inaccuracy in determining the liveness of fingerprints and performance degradation on unknown
types of fingerprints. To address existing limitations, we present a robust fingerprint presentation
attack detection method that orchestrates different types of neural networks by incorporating a
triangular normalization method. Our method has been evaluated on a public benchmark compris-
ing 13,000 images with five different fake materials. The evaluation exhibited our method’s higher
accuracy in determining the liveness of fingerprints as well as better generalization performance on
different types of fingerprints compared to existing techniques.

Keywords: fingerprint anti-spoofing; presentation attack detection; fingerprint authentication

1. Introduction

Fingerprint authentication has been widely used in mobile devices, mobile payment
systems, and gate access control [1,2]. With the adoption of fingerprint authentication
systems, the importance of fingerprint presentation attack detection (PAD) has grown
significantly. Recent reports indicate that fake fingerprints crafted from a variety of ma-
terials, including paper, silicone, gelatin, wood glue, and play-doh, can readily deceive
existing mobile authentication systems [3]. This is due to the fact that well-replicated fake
fingerprints appear to be genuine ones when capturing their images via image sensors.
Some types of fake fingerprints are even easy to generate. For example, via YouTube,
end-users are able to access a variety of instructions for crafting fake fingerprints using
easy-to-buy ingredients (e.g., play-doh and wood glue). Considering the widespread us-
age of fingerprint authentication systems, it is required to develop a robust method for
fingerprint PAD.

A large volume of research has focused on fingerprint PAD. Prior methods have mainly
leveraged image feature descriptors extracted from target fingerprints, such as brightness,
contrast, frequency, or local binary patterns [4–11]. Convolutional neural networks (CNN)
have also become popular in fingerprint PAD [12–16]. CNN comprises convolution layers
which convolve an input image by general matrix multiplication. When enough data are
available, CNN typically outperforms approaches based on feature descriptors in terms
of image classification [14]. However, since those methods typically examine fingerprints
from a singular perspective, they provide low detection accuracy and performance degra-
dation on unknown types of fingerprints. Recent methods are attempting to fuse different
methods by analyzing multiple feature descriptors and incorporating multiple CNN mod-
els [5,17–19]. However, their fusion performance is still limited in terms of accuracy and
generalization performance on unknown types of fingerprints. Therefore, it is required to
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develop a robust fusion method for fingerprint PAD, which addresses the limitations of
existing methods.

To overcome the aforementioned challenges, we designed a new fusion technique
that effectively orchestrates CNN and feature-based neural network (FNN). Our method
processes an input fingerprint image via two different types of network models: CNN
and FNN. After inferencing via each network, the result scores are associated using our
score-level orchestration mechanism, and the liveness of the input image is determined.
Our technique is distinguished from prior works because it effectively orchestrates multiple
PAD methods by incorporating a triangular normalization, which improves detection
accuracy and generalization performance. In addition, we designed a set of effective
network architectures, each of which is capable of processing in a reasonable amount of
time and provides improved detection performance.

This research makes the following contributions: (1) We proposed a novel method that
effectively orchestrates different PAD methods for analyzing the liveness of fingerprints.
(2) We propose a novel score-level fusion mechanism that successfully associates multiple
neural network models for PAD. (3) We developed efficient network architectures, each
of which improves fingerprint PAD performance in terms of accuracy and generalization.
(4) We developed a prototype tool that actually implements the proposed method. (5) We
performed extensive evaluations involving real-world datasets and prior methods, and we
systematically analyzed the results.

The rest of this paper is structured as follows. Section 2 provides a discussion of
related work, which motivate our research. Section 3 details our approach and Section 4
presents the evaluations of our method. Section 5 discusses the significance of our method
and threats to the validity of our study. Section 6 concludes this paper and presents future
research directions.

2. Related Work

Fingerprint PAD methods are basically categorized into two types: hardware-based
and software-based methods [20]. The hardware-based methods employ extra sensors
for obtaining supplementary information, such as blood pressure, blood flow, pulse, or
odor. Meanwhile, the software-based methods utilize image features extracted from the
captured image of fingerprints, such as ridge continuity, strength, or intensity. In general,
the software-based methods are more popular because they are relatively cheaper, faster,
and more flexible to employ. The software-based methods basically do not require extra
sensors for additional information other than the fingerprint image. Our work has mainly
focused on software-based analysis for fingerprint PAD. There exists a large amount of
work on software-based approaches for fingerprint PAD. In this section, we introduce the
selected existing methods for software-based fingerprint PAD: feature-based, CNN-based,
and fusion approaches.

2.1. Feature-Based Approach

Analyzing image feature descriptors can be divided into holistic-based, which analyzes
an entire image, and local-based, which analyzes local patches of a target image and
combines them into a feature vector. According to the evaluation on public benchmarks [21],
in general, the accuracy of PAD by using holistic features is lower than that by using local
features [5,8]. In typical methods using feature descriptors, the extracted features are
essentially processed via classifiers (e.g., adaboost, support vector machine, and neural
network) in order to infer a classification result.

The methods using holistic features are based on the observation of quality differences
between live and fake fingerprints. Schuckers et al. utilized the texture coarseness to
highlight the differences between live and fake fingerprints [4]. Coli et al. introduced a
power spectrum-based method that analyzes the frequencies of fingerprint images by using
the Fourier Transform [6]. They presented that live fingerprints show higher frequencies
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than fake ones. Marasco et al. compared the temporal differences between successively
captured fingerprints based on the changes of intensity and texture statistics [7].

Local features are based on the statistics of the local pattern variations, such as Lo-
cal Binary Pattern (LBP) [22], Weber Local Descriptor (WLD), Local Phase Quantization
(LPQ) [23], and Scale-Invariant Feature Transform (SIFT) [11]. Recently, multiple features
have been combined in order to compensate for each other in extracting characteristics
of fingerprints. Local Contras Phase Descriptor (LCPD) is a joint distribution of WLD
and LPQ [5]. Gragnaniello et al. implemented the feature combinations, such as WLD
and LPQ [9]. Ghiani et al. reported that a combination of LPQ and LBP showed better
accuracy in liveness detection compared to using a single feature [10]. Husseis et al. pro-
posed a novel mechanism that utilizes the dynamic texture of fingerprints as a basis for
discrimination [24]. Their approach mainly focused on fingerprint dynamic features in
spatio-temporal and spectral domains rather than static fingerprint patterns. In addition
to the aforementioned techniques, various types of image pre-processing techniques (e.g.,
contrast normalization, frequency filtering, and region of interest extraction) have been
proposed without notable success [14].

2.2. CNN-Based Approach

Convolutional neural network (CNN) is a class of deep neural networks. CNN has
been most commonly used in image classification, face detection, object detection, malware
detection, intrusion detection, as well as liveness detection [12,25–28]. The recent success of
CNN in the field of image classification has led researchers to utilize deep neural network
architectures for fingerprint PAD [13].

CNN-based fingerprint analysis methods can also be divided into holistic-based [14,29,30],
which uses entire images, and local-based, which divides an image into small patches before
inferencing via CNN [31,32]. Nogueira et al. and Marasco et al. used general-purpose CNN
architectures, VGG-19 [14,29] and GoogLeNet [30], respectively, in identifying fake fingerprints.
Nogueira et al. showed that pre-trained CNNs yield better results in fingerprint PAD without
particular architecture design or hyper-parameter selection [14]. D. Menotti et al. introduced
a new CNN architecture, Spoofnet, which uses optimized hyper-parameters and weights
obtained by a back-propagation algorithm [15]. Xu et al. presented a new CNN architecture
for spoofing attacks by incorporating a long short-term memory (LSTM) layer over the fully
connected layers [33]. However, existing CNN-based methods are still limited in terms of
identification accuracy and generalization performance.

2.3. Fusion Approach

To overcome the aforementioned limitations, hybrid techniques [13,17–19,34–40] com-
bining multiple methods have been studied. For the hybrid techniques, fusion can be
implemented at different levels: sensor-level, decision-level, feature-level, and score-level.

For sensor-level fusion [36], images obtained from multiple sensors are fused to
determine its liveness. Sajjad et al. introduced a hybrid technique that authenticates via
fingerprints, palm and vein prints, and detects spoofing via CNN models [13]. However,
multi-sensor data may cause compatibility issues and require a high processing time
for fusion. For decision-level fusion [37], decisions passed from multiple modules are
combined to determine the liveness. However, decision-level fusion is highly dependent
on each module’s performance because decision information is too abstract to fine-tune
detection performance. Feature-level fusion [38] provides relatively detailed information
of fingerprints, which is based on transformation of features [38], shapes of features [39] or
encoded features [40]. However, feature-level fusion requires additional transformation
functions and ranking information for feature sets [25,26]. Furthermore, once each module
is trained, it is challenging to fine-tune its detection performance, because it may require
additional training iterations.

Score-level fusion [18,41] combines the liveness scores obtained from multiple modules
and determines the liveness based on the fused score. Score-level fusion is popular because
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the liveness scores are easy to fuse, and it enables additional accuracy improvement
by fine-tuning score-level weights in a common scale. A number of score-level fusion
techniques have been studied based on arithmetic operations (i.e., addition, subtraction,
maximum, minimum, or median) [18,19]. Chugh et al. proposed a CNN-based approach
utilizing centered and aligned patches extracted around fingerprint minutiae [42]. Their
approach derives a final decision by averaging the spoof scores over the individual patch
outputs of the CNN model. Nogueira et al. reported that combining CNN with random
weights and LBP, which is multi-scale variant [34], achieves good results in fingerprint
PAD benchmarks [29]. However, existing techniques are too simple to fine-tune the relative
importance of each module. Moreover, they have not primarily considered maximizing
the performance of individual modules. Therefore, a robust score-level fusion method is
required to overcome the limitations of the existing methods.

3. Proposed Method

We propose a new method for fingerprint PAD by effectively orchestrating different
network models. Our method is based on static image analysis, which inspects the texture
information of the input images. As shown in Figure 1, our method basically combines
two types of neural network models: convolutional neural network (CNN) and feature-
based neural network (FNN). Each model is trained independently after processing a given
training dataset into a trainable form. For an input fingerprint, each trained model processes
it and outputs its liveness score, respectively. Then the liveness scores are orchestrated
by using a pre-defined equation which is based on the triangular normalization method.
With the output of score-level fusion, our method determines the liveness of the input
fingerprint. The details of our method are explained in the following subsections.

Figure 1. An overview of proposed method.

3.1. Data Augmentation

Considering the fact that fingerprint datasets for training may be taken in limited
conditions, it is required to reasonably extend the dataset in order to train our network
models to be robust to various conditions. Thus, it is required to examine various conditions
of images, such as orientation, location, and scale [43]. In this research, we primarily
consider two conditions: orientation and location, because other types of conditions (e.g.,
noise, scale, and intensity) are basically covered by the feature descriptors our method
uses. Our method performs data augmentation on the training dataset as follows. Given a
dataset, each image is rotated by 90◦ increments in the range of 0◦ to 360◦. A single image
is then augmented with three rotated images, and each rotated image is randomly cropped
to a pre-defined size. The positions of the crops are randomly determined by applying a
two-dimensional normal distribution in the segmented fingerprint area. Consequently, a
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single image generates three rotated images, and a set of cropped images is generated from
each rotated image. By considering different rotations and crops, the augmented dataset
enables our network models to learn different orientations of the same fingerprints and
the characteristics of fingerprint patches at various locations. Existing studies have shown
that it is effective to utilize different features obtained from different input images [44].
Hence, to maximize the PAD performance of our method, each network was trained using
different random crops.

3.2. CNN-Based Model

Given a set of images, CNN-based methods automatically extract discrimination
features and train a network model [16]. In fingerprint PAD, CNN-based methods generally
outperform FNN-based methods in terms of accuracy [10]. As shown in Figure 1, our
CNN-based model employs two different types of CNNs: CNN#1 and CNN#2. In our
prior study, various combinations of FNNs and CNNs were evaluated to identify the most
optimal combination for our fusion mechanism. Overall, it was observed that the fusion
of one FNN and two different CNNs provided superior performance compared to other
combinations, such as the fusion of one FNN and one CNN. This implies that different
CNNs can complement each other by analyzing different features. We also evaluated
combinations of more than two CNNs, but their detection performance did not improve
significantly, while their inference time increased dramatically. Hence, to obtain the optimal
PAD performance, we designed our method to fuse one FNN and two CNNs.

As shown in Figure 2a, CNN#1 architecture consists of four convolution layers fol-
lowed by a dense layer. The core layers comprising CNN#1 are as follows: (1) A convolution
layer extracts image patterns in the input image by convolving a filter (3 × 3) over the
pixels of the input image. For convolution 1, 2, and 3, the number of convolution filters
is 32, 64, and 128, respectively; (2) A pooling layer subsamples the small blocks (2 × 2)
extracted from the following convolution layers; (3) A dense layer connects all neurons in
the previous layers to every single neuron; (4) As activation functions, a rectified linear unit
(RELU) layer follows the convolution layers, and a Softmax layer follows the dense layer for
final classification. For CNN#1, the number of parameters is 106,048. Meanwhile, as shown
in Figure 2b, the CNN#2 architecture consists of nine residual blocks followed by a dense
layer. A residual block is formed by combining several convolution layers into a single
block, as illustrated in Figure 2b. It enables effective weight optimization by including a
shortcut for adding an identity matrix to consecutive convolution layers. The core layers
comprising CNN#2 are as follows: convolution layer, pooling layer, batch normalization
layer, dense layer, RELU layer, and Softmax layer. The number of convolution filters for all
convolution layers is 64. For CNN#2, the number of parameters is 672,032.

Extending network layers or adopting additional types of architectures may improve
PAD accuracy. However, according to our evaluation (see Section 4), our CNN architectures
showed better performance compared to existing types of CNN architectures in PAD. We
also compared our CNN architectures with other ones comprising different numbers of
layers. Like FNN, those architectures required much longer inferencing time, while their
improvement in PAD accuracy was relatively negligible. Hence, considering both detection
performance and processing time, we determined our CNN architectures.

Since each CNN-based method inspects the overall texture of an input image, it
essentially analyzes different characteristics of fingerprint images than the FNN-based
method. This implies that our orchestration of different network models can compensate
for each other’s limitations in PAD.
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Figure 2. The proposed architecture of CNN#1 (a), CNN#2 (b), and FNN (c).

3.3. Feature-Based Model

As shown in Figure 1, our feature-based model basically employs two image feature
descriptors: local binary pattern (LBP) and local phase quantization (LPQ) [22,23]. Although
various combinations of feature descriptors have been studied, as mentioned in Section 2,
a combination of LBP and LPQ outperforms others in terms of PAD accuracy [10]. LBP is
a gray-scale texture descriptor that characterizes the local spatial structure of the image
texture. LBP is widely used due to its computational simplicity and robustness against
gray-scale changes. Based on a central pixel in the image, a pattern code is calculated by
comparing it with its neighbors.

LBP(P, R) =
p−1

∑
p=0

f (gp − gc)2p, f (x) =

{
1, x ≥ 0
0, x < 0

(1)

where gc and gp denote the intensity of central and neighbors, respectively. P is the total
number of neighboring pixels at a radius of R.

To address sensitivity in blurred images, we incorporated LPQ which basically uses lo-
cal phase information of the local Fourier transform. LPQ is popular due to its blur-invariant
attribute. By observing the signs of the real and imaginary parts of each component, phase
information can be counted using a simple scalar quantization:

LPQ(x) =
p=8

∑
p=1

qi(x)2p−1 (2)

where qi is the i-th component of

G(x) = [Real(F(x)), Imaginary(F(x))] (3)

given by

qi =

{
1, G(x)i ≥ 0
0, otherwise

(4)

LBP is robust to global intensity changes, while LPQ is known to be insensitive to
blurred images with noise. These characteristics are important for fingerprint analysis,
since the intensity and blur issues are prevalent when capturing fingerprints via sensors. In
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particular, when capturing fingerprints via optical sensors, one of the popular fingerprint
sensors, intensity changes caused by external light may affect the quality of the captured
image. Moreover, end-users tend to rub their finger during capturing, which may generate
blurred fingerprint images. Our method minimizes these problems by incorporating
selected feature descriptors, LBP and LPQ.

Given the augmented dataset, a feature extraction module first extracts the image
features from each crop. Specifically, two types of features (i.e., LBP and LPQ, respectively)
are extracted and then concatenated into a single vector type in order to generate a feature
vector. With the set of feature vectors extracted from the given dataset, a feature-based neural
network (FNN) is trained. Our FNN is in the form of a simple architecture comprising three
dense layers and one activation layer (i.e., Sigmoid), as shown in Figure 2c. For FNN, the
number of parameters is 14,977. Note that extension of layers or parameters may improve
liveness detection performance, but also requires higher inferencing time. In our prior
study, we evaluated different sizes of dense layers (e.g., 64 × 64, 128 × 128 and 256 × 256).
The extended network architectures require much longer inferencing time, while their
improvement in PAD accuracy is relatively insignificant. Hence, considering both detection
performance and processing time, we determined the current architecture of FNN.

3.4. A Score-Level Fusion for PAD

Our method basically implements a score-level fusion of liveness scores exported from
different network models. Compared to the other types of fusion methods (i.e., feature-level
and decision-level), the score-level fusion provides better performance in a relatively easy
way [45]. To effectively fuse the scores obtained by each model, we adapted a triangular
normalization method (t-norm), which enables inducing a larger distribution between two
different classes, such as live and fake scores [46].

T-norm method is a kind of binary function which generalizes intersection operations
of fuzzy sets in the mathematical fuzzy community [47]. T-norm methods satisfy associative,
commutative, and monotonic properties. These properties enable fusion of multiple sources,
which is suitable for our proposed architecture. To guarantee a solid fusion, the liveness
scores are normalized to the domain [0,1]. In our method, the normalization is calculated
as follows:

s′ = (s−min(s))/(max(s)−min(s)) (5)

where s′ stands for the normalized score and s represents the original liveness score.
While different types of t-norm functions are available for score-level fusion (i.e.,

min, max, sum, and weighted-sum) [15], Sugeno-Weber (SW) t-norm [48] enables a larger
distribution distance between two different classes (i.e., live and fake scores) compared to
other functions [46]. This enables a clearer separation between live and fake fingerprints.
The fusion score by S′SW is calculated as follows:

S′SW = max
(

0,
x + y− 1 + pxy

1 + p

)
, (−1 ≤ p ≤ +∞) (6)

In SW t-norm, since p spans the space of t-norms, SW is increasing and continuous
with respect to p. Therefore, the selection of an appropriate parameter p is required to
satisfy its functionality, which can be determined empirically. For example, based on the
PAD performance on the training dataset, p that provides the most optimal performance
can be selected [15,46,49]. Finally, S′SW is calculated based on the scores inferred from the
FNN and CNN models.

3.5. Liveness Determination

After a score-level fusion, the fused score S′SW is compared with a threshold TH, which
determines the class of each cropped image as live if S′SW > TH, otherwise fake. Given
a set of classes for the crops, a voting strategy can be used to determine the class of the
entire image. For example, if the number of fake crops is greater than that of live crops, the
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fingerprint is classified as fake, otherwise live. Another approach involves averaging the
fused scores of different crops and comparing them to TH.

4. Evaluation

This section presents the experimental evaluation of our proposed method. We verified
the accuracy and reliability of our method by simulating and comparing it with existing meth-
ods. We have implemented the prototype of our method as a stand-alone Python application.
The prototype implementation of our solution can be trained with a set of fingerprint images
and processes a fingerprint image as an input. We used our prototype for our experimental
evaluations. Our evaluation basically addressed the following research questions:

• RQ1. How well does our orchestration method perform compared to existing fusion
methods? (in terms of accuracy and generalization performance)

• RQ2. How well does our method perform compared to existing PAD methods? (in
terms of accuracy and generalization performance)

• RQ3. How well does our CNN and FNN architecture perform compared to others?
(in terms of accuracy and processing time)

• RQ4. How well does our data augmentation improve overall performance? (in terms
of accuracy and generalization performance)

4.1. Experimental Setup

We have implemented the prototype of our method as a stand-alone Python application
which combines approximately 2000 newly written SLOC with Keras framework [50], a high-
level API for implementing deep learning models. Two independent modules (i.e., FNN and
CNN) have been separately implemented and combined. We have also implemented a feature
extraction module as a stand-alone C++ application that imports a set of fingerprint images as
input in image format and exports a set of feature descriptors in a pre-defined XML format.
For training and testing datasets, we used a public benchmark, LivDet2019 [21]. We evaluated
three datasets captured by different sensors: Green Bit, Digital Persona, and Orcanthus. Each
dataset originally contained 4444, 4278, and 4243 images, respectively, which comprised both
training and testing datasets. The prototype was empirically evaluated in terms of its accuracy,
generalization performance, and processing time. Note that all experiments were performed
on a Tesla 283 V100 GPU with 32 GB of memory. Adam was employed as an optimizer, with a
learning rate of 0.01. We trained all deep learning models for a maximum of 30 epochs with a
batch size of 128.

Fake fingerprints for training in LivDet2019 datasets were made of different materials
(wood glue, ecoflex, body double, latex, and gelatine), and 250–400 images were captured
for each material [21]. All training datasets were augmented by 3-way rotations (90◦, 180◦,
and 270◦) and each rotated image was randomly cropped to four patches (200 × 200 pixel).
Note that, in our method, each network (CNN#1, CNN#2, and FNN) was trained using
different random crops. As a result, Green Bit dataset contained 12,000 live and 14,400 fake
image patches, Digital Persona dataset contained 12,000 live and 12,000 fake image patches, and
Orcanthus dataset contained 12,000 live and 14,400 fake image patches (see Table 1). Likewise,
fake fingerprints for testing were made of different materials (mix1, mix2, and liquid ecoflex),
and ∼400 images were captured for each material. In total, for Green Bit dataset, 26,400 and
2244 image patches were used in training and testing, respectively. For Digital Persona dataset,
24,000 and 2243 image patches were used in training and testing, respectively. For Orcanthus
dataset, 26,400 and 2078 image patches were used in training and testing, respectively. In our
evaluation, we used the following equations for performance measurement: Ferr f ake = (The
Number of Fake Acceptance/Total Number of Fake), Ferrlive = (The Number of False Live
Acceptance/Total Number of Live), ACC = (Ferr f ake + Ferrlive)/2. For accurate evaluation,
we measured a total of three times for each experiment and calculated the mean values of them.
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Table 1. The dataset structure for evaluation.

Dataset
Train (Original) Train (Augmented) Test

Live Fake Live Fake Live Fake

Green Bit 1000 1200 12,000 14,400 1020 1224

Digital Persona 1000 1000 12,000 12,000 1019 1224

Orcanthus 1000 1200 12,000 14,400 990 1088

4.2. Experimental Result
4.2.1. Results for RQ1

To evaluate the performance of our orchestration method and compare it against
existing fusion methods, we used three benchmark datasets, Green Bit, Digital Persona, and
Orcanthus. Experimental results are shown in Table 2: (1) When testing on Green Bitdataset
via FNN, CNN#1, and CNN#2, the accuracy (ACC) was 98.91% and 99.39%, and 99.38%,
respectively. For FNN, the rate of misclassified fake fingerprints (Ferr f ake) was 1.41% and
the rate of misclassified live fingerprints (Ferrlive) was 0.77%. For CNN#1, Ferr f ake was
0.93% and Ferrlive was 0.30%. For CNN#2, Ferr f ake was 0.93% and Ferrlive was 0.31%. (2)
When testing on Digital Personadataset via FNN, CNN#1, and CNN#2, ACC was 93.08%
and 94.99%, and 95.93%, respectively. For FNN, Ferr f ake was 8.32% and Ferrlive was
5.53%. For CNN#1, Ferr f ake was 6.61% and Ferrlive was 3.41%. For CNN#2, Ferr f ake was
4.61% and Ferrlive was 3.53%. (3) When testing on Orcanthusdataset via FNN, CNN#1, and
CNN#2, ACC was 97.23% and 98.16%, and 97.74%, respectively. For FNN, Ferr f ake was
0.75% and Ferrlive was 4.80%. For CNN#1, Ferr f ake was 0.48% and Ferrlive was 3.21%.
For CNN#2, Ferr f ake was 0.54% and Ferrlive was 3.99%.

As shown in Table 2, we performed score-level fusions by using nine different methods:
Max, Min, Sum, Median, Weighted-Sum, Logistic Linear Regression (LLR) SVM, Ensemble
Learning-Hard Voting (EL-HV), Ensemble Learning-AdaBoost (EL-AB), and our method.
For all methods, the score threshold for liveness was set to 0.5. For SVM, the radial basis
function was used as the basic kernel function, and the scores were normalized in the range
of 0–1 by min-max normalization. For ensemble learning, two representative methods,
Hard Voting and AdaBoost, were selected. To implement AdaBoost, FNN, CNN#1, and
CNN#2 were defined as weak classifiers, respectively, and each classifier weight parameter
was determined by applying AdaBoost algorithm to the training dataset. Note that, for
each method, a grid-based search was employed to determine the optimal parameters
which provided the highest ACC. Likewise, for our method, p was set to 100,000, which
were reasonably determined based on the ACC of each model obtained from the training
dataset. Consequently, as shown in Table 2, it was observed that the selected parameters
provided the optimal detection performance at the current settings.

The results show that Max, Min, Sum, Median, Weighted-Sum, LLR, SVM, EL-HV, and
EL-AB have similar ACC (95.24–97.57%), while our method has the highest ACC (98.05%). This
implies that our method, which is based on Sugeno-Weber, induces better accuracy in finger-
print PAD compared to other score-level fusion methods as well as individual neural networks
(FNN: 96.40%, CNN#1: 97.51%, and CNN#2: 97.68%). Moreover, as shown in Figure 3, our
method provided the lowest ACC difference between three different datasets (i.e., Green Bit, Digi-
tal Persona, and Orcanthus), compared to other methods. The mean ACC difference of our method
is 2.92%, while our FNN = 4.99%, our CNN#1 = 3.78%, our CNN#2 = 3.78%, Max = 4.71%,
Min = 4.29%, Sum = 3.92%, Median = 3.63%, Weighted-Sum = 3.77%, LLR = 4.05%, SVM = 3.83%,
EL-HV = 2.94%, and EL-AB = 3.16%. Considering the fact that three datasets comprise different
types of fingerprints, fake materials, and sensors, our method provides relatively consistent
performance on different types of fingerprints while improving generalization performance.
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Table 2. The performance comparison between fusion methods.

Green Bit Digital Persona Orchantus
Method

Ferrlive Ferrfake ACC Ferrlive Ferrfake ACC Ferrlive Ferrfake ACC
Overall

Our FNN 0.77 1.41 98.91 5.53 8.32 93.08 4.80 0.75 97.23 96.40
Our CNN#1 0.30 0.93 99.39 3.41 6.61 94.99 3.21 0.48 98.16 97.51
Our CNN#2 0.31 0.93 99.38 3.53 4.61 95.93 3.99 0.54 97.74 97.68

Max 0.65 1.11 99.12 5.11 7.66 93.62 4.31 0.65 97.52 96.75

Min 0.64 1.01 99.18 4.94 7.01 94.03 4.42 0.66 97.46 96.89

Sum 0.44 1.01 99.28 4.93 6.21 94.43 4.52 0.65 97.42 97.04

Median 0.49 1.01 99.25 4.36 6.22 94.71 4.48 0.65 97.44 97.13

W-Sum 0.27 0.94 99.40 4.35 6.01 94.82 3.92 0.53 97.78 97.33

LLR 0.65 1.59 98.88 4.73 7.91 93.68 4.46 1.18 97.18 96.58

SVM 0.62 3.43 97.98 6.45 7.99 92.78 4.37 5.71 94.96 95.24

EL-HV 0.39 1.17 99.22 3.24 5.94 95.41 3.76 0.64 97.80 97.48

EL-AB 0.58 0.62 99.40 3.46 5.88 95.33 3.42 0.62 97.98 97.57
Our Method 0.36 0.83 99.41 3.42 4.36 96.11 2.23 0.48 98.65 98.05

Figure 3. Fusion methods: The mean ACC differences between datasets.

4.2.2. Results for RQ2

To evaluate the performance of our proposed method, we compared it with the
performance of the existing PAD methods, especially the top-four-performance methods
reported in the LivDet2019 report [21]. We used the same metrics and benchmark datasets
as Section 4.2.1. As shown in Table 3, most of the methods tend to be similar in terms of
ACC. The overall ACC of all methods on Green Bit and Orcanthus datasets are over 97%,
while the overall ACC on Digital Persona dataset are mostly lower than 90%. Specifically,
most of the methods show an ACC of ∼99% on Green Bitdataset, but the ACC on Digital
Personadataset is largely reduced due to its difficult classification. However, above all,
our method shows the highest ACC for all datasets compared to the existing methods. In
particular, the sensor-specific ACC of our method (Green Bit: 99.41%, Digital Persona: 96.11%,
Orcanthus: 98.65%) is higher than the best sensor-specific ACC of the existing methods
(Green Bit: 99.20%, Digital Persona: 93.63%, Orcanthus: 97.45%). These results indicate that
our method led to better PAD accuracy for each dataset compared to existing methods.

Moreover, as shown in Figure 4, our method provided the lowest ACC difference between
three different datasets (i.e., Green Bit, Digital Persona, and Orcanthus), compared to existing
methods. The mean ACC difference of our method is 2.92%, while PADUnkFv = 3.82%,



Electronics 2022, 11, 2515 11 of 15

JLW_LivDet = 9.47%, ZJUT_Det_A = 9.58%, and ZJUT_Det_S = 9.52%. Compared to existing
PAD methods, our method provides relatively consistent performance on different types of
fingerprints while improving generalization performance.

Table 3. The performance comparison between existing PAD methods.

Green Bit Digital Persona Orchantus
Method

Ferrlive Ferrfake ACC Ferrlive Ferrfake ACC Ferrlive Ferrfake ACC
Overall

PADUnkFv 3.24 1.55 97.68 4.8 7.67 93.63 3.64 2.02 97.21 96.17

JLW_LivDet 0.39 1.14 99.2 7.75 13.96 88.86 4.75 0.55 97.45 95.17

ZJUT_Det_A 0.39 1.14 99.2 7.75 14.15 88.77 4.65 0.55 97.5 95.16

ZJUT_Det_S 0.39 1.14 99.2 7.75 14.06 88.81 4.75 0.55 97.45 95.15
Our Method 0.36 0.83 99.41 3.42 4.36 96.11 2.23 0.48 98.65 98.05

Figure 4. PAD methods: The mean ACC differences between datasets.

4.2.3. Results for RQ3

To evaluate the performance of our proposed network architectures, we additionally
implemented representative types of existing CNN architectures: VGG-16, VGG-19, ResNet,
Slim-ResNet, and FNN architectures: LBP + SVM (support vector machine), LPQ + SVM,
LBP + LPQ + SVM, LBP + NN (neural network), LPQ + NN, which have been proven to
be effective in PAD [10,14,29]. We used the same benchmark datasets as Section 4.2.1. The
processing time was calculated by averaging the inferencing time for 100 randomly selected
test images (200 × 200 pixel). The results are shown in Tables 4 and 5.

Overall, as shown in Table 4, our proposed FNN shows similar or slightly better accu-
racies (96.40%) to the other types of FNN architectures (LBP + SVM: 94.43%, LPQ + SVM:
93.34%, LBP + LPQ + SVM: 93.75%, LBP + NN: 96.29%, LPQ + NN: 96.16%) for all datasets.
On the other hand, as shown in Table 5, regarding the processing time, our FNN requires
the longest processing time (12 ms) compared to other architectures (8–11 ms). However,
the time difference (1–4 ms) is negligible because the threshold at which the end-user
detects a slowdown in mobile app response is 100–200 ms [51]. Considering that both
LBP and LPQ are being analyzed to improve accuracy, the results demonstrate that our
proposed FNN architecture shows a balanced performance in PAD compared to other
architecture types.

In addition, as shown in Table 4, the existing CNN architectures (ResNet-34: 97.53%,
Slim-ResNet: 97.33%, VGG-16: 97.24%, VGG-19: 97.61%) show similar or slightly inferior
accuracies compared to our proposed architectures (our CNN#1: 97.51%, our CNN#2:
97.68%) for all datasets. However, as shown in Table 5, there exists a big difference in
processing time. The existing CNN architectures show their processing time of 81–151 ms
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in overall, whereas our CNN#1 and CNN#2 shows 24 and 49 ms, respectively. Considering
that the processing time differs significantly by at least two times, the results indicate that
our proposed CNN architectures show the most balanced performance in PAD.

Table 4. The performance comparison between different architectures: accuracy.

Green Bit Digital Persona Orchantus
Architecture

Ferrlive Ferrfake ACC Ferrlive Ferrfake ACC Ferrlive Ferrfake ACC
Overall

LBP+SVM 2.24 2.07 97.85 6.74 16.25 88.51 5.11 1.03 96.93 94.43

LPQ+SVM 5.11 1.45 96.72 7.22 18.03 87.38 6.93 1.25 95.91 93.34

LBP+LPQ+SVM 5.09 1.38 96.77 7.09 16.25 88.33 6.65 1.04 96.16 93.75

LBP+NN 0.67 1.63 98.85 5.61 8.12 93.14 5.24 1.02 96.87 96.29

LPQ+NN 0.88 1.29 98.92 5.53 9.44 92.52 4.93 0.99 97.04 96.16
Our FNN 0.77 1.41 98.91 5.53 8.32 93.08 4.80 0.75 97.23 96.40
ResNet-34 0.42 1.25 99.17 3.91 4.57 95.76 3.93 0.73 97.67 97.53

Slim-ResNet 0.59 1.25 99.08 4.16 5.11 95.37 4.05 0.89 97.53 97.33

VGG-16 0.51 1.2 99.15 5.77 4.38 94.93 4.15 0.53 97.66 97.24

VGG-19 0.39 1.11 99.25 4.03 4.31 95.83 4 0.53 97.74 97.61
Our CNN#1 0.30 0.93 99.39 3.41 6.61 94.99 3.21 0.48 98.16 97.51
Our CNN#2 0.31 0.93 99.38 3.53 4.61 95.93 3.99 0.54 97.74 97.68

Table 5. The performance comparison of different architectures: processing time.

FNN
Architecture

Processing
Time

CNN
Architecture

Processing
Time

LBP+SVM 8 ms ResNet-34 151 ms
LPQ+SVM 8 ms Slim-ResNet 92 ms

LBP+LPQ+SVM 9 ms VGG-16 81 ms
LBP+NN 11 ms VGG-19 105 ms
LPQ+NN 11 ms Our CNN#1 24 ms
Our FNN 12 ms Our CNN#2 49 ms

4.2.4. Results for RQ4

To evaluate the effectiveness of our data augmentation approach, we measured the
ACC of our method trained with augmented and non-augmented datasets, respectively.
As shown in Table 6, when testing each trained model on all datasets (Green Bit, Digital
Persona, and Orcanthus), the ACC of the model trained by augmented dataset was 99.41%,
96.11%, and 98.65%, respectively. The ACC of the model trained with the non-augmented
dataset, on the other hand, was 94.38%, 82.99%, and 92.34%, respectively, which was lower
than the augmented ones. The results demonstrate that our augmented method directly
affected the improvement in PAD performance. Furthermore, the mean ACC difference
among datasets was 2.92% (augmented) and 10.37% (non-augmented), respectively. This
implies that our augmented dataset enables relatively consistent PAD performance across
different types of fingerprints compared to the non-augmented dataset.

Table 6. The performance comparison between augmented and non-augmented dataset.

Type
Green Bit Digital Persona Orchantus

Difference
ACC ACC ACC

Augmented 99.41 96.11 98.65 2.92

Non-Augmented 94.38 82.99 92.34 10.37

5. Discussion

In this research, we proposed a novel method that effectively orchestrates different
PAD models for analyzing the liveness of fingerprints. Our method can aid engineers in
developing fingerprint recognition systems that are robust against presentation attacks.
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Moreover, this research provides a new mechanism for effectively associating multiple PAD
models at the score-level, which can improve existing PAD systems. For example, consider-
ing that it is challenging to achieve acceptable accuracy and generalization performance
with a single model, our method of effectively associating multiple models can successfully
improve the existing single-model PAD systems. In addition, this research established a
baseline for future studies on score-level fusion-based PAD by providing a comprehensive
analysis of the proposed architectures and methodology.

For comprehensive comparisons with existing approaches, we used the LivDet2019
dataset, which is publicly available. To address any resulting bias, we did not alter the
dataset’s characteristics or composition ratio. However, considering the development of
new sensor types and materials, it is required to evaluate generalization performance on
extensive datasets. Hence, in our future research, we plan to build an extended data set and
perform large-scale analyses on it. Additionally, despite integrating multiple models, our
method essentially completes inference in an acceptable amount of time, as shown in the
evaluation results. However, the PAD performance of our method may be limited in terms
of inference time and memory when implemented on a real-time embedded system or a
mobile device. Hence, to ensure its on-device performance, we plan to investigate model
optimization and quantization for our method.

6. Conclusions

In this paper, we proposed a new score-level orchestration method for fingerprint
PAD. We designed distinguished CNN and FNN architectures, each of which is effective
for fingerprint PAD. Our method improves detection accuracy and generalization perfor-
mance in PAD by effectively orchestrating the proposed CNNs and FNN. Our method
processes the image crops extracted from an input fingerprint via CNN and FNN models,
and identifies their liveness based on a score-level determination algorithm which is based
on the Sugeno-Weber t-norm. Our evaluation results on the public benchmark showed that
our method completely outperforms existing PAD methods as well as traditional fusion
methods (i.e., Min, Max, Sum, Median, and Weighted-Sum) in terms of both accuracy and
generalization performance. Moreover, considering both accuracy and processing time,
our proposed CNN and FNN architectures demonstrated the most balanced performance
in fingerprint PAD compared to other types of architectures. Furthermore, our augmenta-
tion approach not only improved fingerprint PAD accuracy but also provided relatively
consistent performance on different types of fingerprints.

Future work will involve further experiments on extended datasets while extending
the material types of fake fingerprints, types of sensors, environments, and corner cases. In
particular, LivDet2021 adopted an additional test set consisting of semi-consensual replicas
obtained via ScreenSpoof technology [52]. Since this method uses latent fingerprints left
on the screen without the user’s consent, it can be a good benchmark to improve the PAD
performance of our proposed method. Additionally, we plan to apply our proposed method to
the recognition of faces, iris, and palm prints in order to develop a robust biometric framework.
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