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Abstract: The natural scene statistic is destroyed by the artificial portion in the screen content images
(SCIs) and is also impractical for obtaining an accurate statistical model due to the variable composition
of the artificial and natural parts in SCIs. To resolve this problem, this paper presents a dual-anchor
metric learning (DAML) method that is inspired by metric learning to obtain discriminative statistical
features and further identify complex distortions, as well as predict SCI image quality. First, two
Gaussian mixed models with prior data are constructed as the target anchors of the statistical model
from natural and artificial image databases, which can effectively enhance the metrical discrimination
of the mapping relation between the feature representation and quality degradation by conditional
probability analysis. Then, the distances of the high-order statistics are softly aggregated to conduct
metric learning between the local features and clusters of each target statistical model. Through
empirical analysis and experimental verification, only variance differences are used as quality-aware
features to benefit the balance of complexity and effectiveness. Finally, the mapping model between
the target distances and subjective quality can be obtained by support vector regression. To validate the
performance of DAML, multiple experiments are carried out on three public databases: SIQAD, SCD,
and SCID. Meanwhile, PLCC, SRCC, and the RMSE are then employed to compute the correlation
between subjective and objective ratings, which can estimate the prediction of accuracy, monotonicity,
and consistency, respectively. The PLCC and RMSE of the method achieved 0.9136 and 0.7993. The
results confirm the good performance of the proposed method.

Keywords: blind image quality assessment; screen content image; metric learning; Gaussian
mixture model

1. Introduction

The screen content image (SCI) is an important medium for human–computer interac-
tion that can offer people a high standard of comfort and high-quality visual experiences.
Thus, SCIs are extensively used in remote desktops, cloud computing, video games, multi-
screen interaction, and other fields [1–4]. However, a great deal of noise will inevitably
be involved in the process of image acquirement, transmission, and storage, which can
lead to SCI image quality degradation and decrease people’s visual experience [5–7]. Thus,
a reliable estimation of SCIs plays a critical role in the optimization of processing systems
as guidance. Currently, image quality assessment (IQA) methods can be classified into
three categories: full-reference (FR), reduced-reference (RR), and no-reference or blind (NR),
based on the existence of reference image information. However, because the reference
version of authentically distorted images is not available in most cases, constructing an
effective blind image quality assessment (BIQA) method for SCIs has important research
significance and practical application value.

1.1. Related Work

Many BIQA methods have progressed markedly in recent decades when analyzing
natural images. However, these methods are not suitable for SCIs, as demonstrated in
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existing studies. The main reason is that the inherent characteristics of SCIs are quite
different from those of natural images [8,9]. More specifically, SCIs are arbitrarily composed
of natural and artificial parts via splicing or overlapping. The natural part is similar to
natural images, containing rich and complex brightness and color distribution, but the
artificial part is generally just the opposite. Therefore, the perception preferences exhibit a
marked difference from the natural images. For this problem, some prior studies have been
carried out in this field from different perspectives and can be roughly categorized into
feature-inspired methods and neural network-based methods. The former methods, as the
name implies, construct quality-aware features in the grayscale domain by fully considering
the perceptual properties of SCIs for a certain aspect and then learning the mapping model
between the obtained features and subjective quality to predict the distorted image quality.
Gu et al. constructed 13 and 4 types of perceptual features to characterize image quality
by analyzing the degradation mechanisms of structure, brightness, and so on [10,11].
Min et al. extracted and integrated the multiscale corner and edge features of SCIs [12].
Lu et al. extracted the orientation and structure features based on the orientation selectivity
mechanism [13]. Fang et al. incorporated statistical brightness and texture features inspired
by the human visual system [14]. Zheng et al. used the variance of the local standard
deviation as a local feature and the hybrid region-based property as a global feature [15].
Fang et al. resorted to photometric invariant chromatic descriptors and local ternary pattern
operators to measure the statistical features of the color and texture of SCIs, respectively [16].
Considering the redundancy of the spatial domain, some efforts have been devoted to
representing these artificial feature vectors with more compact representations via sparse
representation. Yang et al. characterized the local texture property of SCIs with the
oriented gradient histogram and then represented these texture features using sparse
coding [17]. Zhou et al. constructed the local and global dictionaries to achieve a fused
quality representation for distorted SCIs [18]. Shao extracted quality-aware features by
conducting local and global sparse representations for the corresponding regions [19].
Wu et al. leveraged sparse representation to extract the local structural feature and the
global brightness feature [20]. Bai et al. learned content-specific codebooks to generate
effective micro features [9] and further combined the macro features based on the Bernoulli
law of large numbers for quality prediction [21]. In brief, these artificial features in the
spatial or sparse domain can intuitively describe the content variations within each SCI,
such as brightness, texture, and shape, and demonstrate moderate performance in legacy
benchmark databases. However, limited by visual mechanisms and subjective knowledge,
these features only focus on specific distortion types and cannot be authentically effective
in revealing the essence of real-world distortions for SCIs.

Differing from feature-inspired methods, neural network-based methods make full
use of end-to-end characteristics to capture the high-level features of SCIs, which can
more efficiently characterize advanced semantic information by imitating human visual
perception. Chen et al. designed a naturalization module composed of an upsampling
layer and a convolutional layer for the quality prediction of SCIs [22]. Jiang et al. pro-
posed a novel quadratic optimized model to optimize a deep convolutional neural net-
work for SCIs [23]. Yue et al. designed a convolutional neural network for SCIs with
the entire image instead of image patches as inputs [24]. Jiang et al. modified the con-
volutional neural network by treating image patches differently according to their con-
tents [25]. Yang et al. proposed a multitask distortion-learning network by combining
the distortion types and degree as prior knowledge to predict SCI quality [26]. Then,
Yang et al. designed an AdaBoosting backpropagation neural network by integrating
the contour and edge information with L-moment distribution estimation [27]. These
high-level features are more adaptable to complex and specific tasks but lack intuition
and interpretability due to the neural network’s characteristics. Moreover, because their
performance often depends on the design of the network structure and the scale of the
database, it is typically difficult to obtain an optimal model with good stability. Such
models are also typically prone to underfitting or overfitting the results. In conclusion,
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current methods primarily focus on the feature extraction and neural network structure and
do not attempt to describe the statistical characteristics of SCIs because the artificial part
of SCIs destroys the natural scene statistics (NSS) features [28], which are widely used for
BIQA of natural images and achieve very good effectiveness [29,30]. Bai et al. designed a
lognormal pooling scheme to enhance the effectiveness of feature aggregation by analyzing
the particularity of the statistical distribution of sparse codes [21]. Chen et al. introduced
the correlation penalization between different feature dimensions, leading to features with
lower ranks and higher diversity [31]. Yang et al. extracted the quality-aware features from
the textual region and pictorial region [32]. Thus, finding a reliable statistical model which
can be adopted to efficiently discriminate the intrinsic quality variations is still a marked
challenge that must be overcome.

1.2. Contributions

To fill these gaps in knowledge, the dual-anchor metric learning (DAML) method is
designed to evaluate the quality of distorted SCIs more accurately in this study. Considering
that the NSS can easily be destroyed by the artificial portions of an SCI, it is difficult and
impractical to obtain an accurate statistical model of SCIs. Inspired by metric learning,
we do not deliberately seek an accurate statistical model of SCIs but rather construct a
distance function to measure the similarity or difference degree with the available models
and then apply the distance to identify the complex mixtures of distortions of SCIs. First,
two available statistical models with prior data are constructed as the target anchors of
the statistical model from two uncorrelated pristine databases. Then, the differences in
the second-order statistics are softly aggregated between the local features and clusters
of each target statistical model. Finally, the differences are used to predict the distorted
image quality via support vector regression. Compared with other studies reported in the
literature, the main contributions of this paper are summarized as follows:

• Metric learning is used to characterize the statistical features of SCIs, providing new
thoughts and direction for the establishment of statistical feature models of complex
scenes. Considering the variable composition of SCIs, statistical features cannot be
accurately represented with a single statistical model but can be more reliably char-
acterized by the measured distance with some available statistical models inspired
by metric learning. In this paper, the dual-anchor and variance differences can con-
tribute to the multi-aspect analysis of complex mixtures of SCI distortions, avoiding
the dependence on some specific distortion types, and experimental results with three
public SCI databases confirm the effectiveness of the proposed method.

• The performance of metric learning is directly determined by the anchor point and
metrics function. Most existing studies focused on generating a single statistical model
with only one dataset, based on the assumption that each distortion follows a uniform
distribution. However, this strategy fails to describe the statistical characteristics
of SCIs due to the intricate content, variable composition, and composite mixtures
of multiple distortions. Thus, we resort to a dual-anchor statistical model as the
anchor point for SCIs in this study. First, two Gaussian mixed models (GMMs)
with different characteristics are generated by representative datasets with unrelated
images, and then both are used as the positive and negative anchor points. Specifically,
the GMM is used as the statistical model of the anchor points for more informative
scene representation, because the GMM is a linear combination of multiple Gaussian
distribution functions and fully incorporates prior knowledge, which is theoretically
suitable for the description of complex scene distributions. Meanwhile, the measured
distances of high-order statistics are used as a metric function for efficient distance
calculation, and only the variance differences are used as the quality-aware features
in this study to balance complexity and effectiveness via empirical analysis and
experimental verification.
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• Both color and brightness information are combined via tensor decomposition to avoid
information loss and optimize the structure of feature extraction. As mentioned above,
existing methods primarily focus on feature generation in the grayscale domain and
generally ignore color information. For tensor decomposition, the brightness and
color information are fused perfectly in the principal component without missing
the primary texture details. With that in mind, this component is employed as the
carrier to train models and extract features in this paper, as well as acquire certain
positive effects.

The remainder of this paper is organized as follows. In Section 2, the motivation
and methodology of the proposed method are described in detail. Section 3 shows the
experimental results and compares the performances with the state-of-the-art methods.
Finally, Section 4 concludes the paper.

2. Materials and Methods

Considering that the artificial portion of SCIs destroys the NSS feature of natural
scenes, we construct a dual-anchor metrics function to measure the high-order statistical
differences with the existing statistical models inspired by metric learning and then apply
them to identify the complex mixtures of distortions of SCIs. The flowchart of the proposed
BIQA method is shown in Figure 1. Obviously, the proposed method involves two stages:
offline model training and online quality prediction, which will elaborate the motivation
and methodology of the anchor point and metrics function, respectively.

Figure 1. Flowchart of the proposed DAML method for SCIs.

Specifically, the training stage involves anchor location and model learning, which
are implemented offline with two collected pristine image datasets and will end once the
two target GMMs have been trained. For the test SCI, only the testing stage is involved,
and the quality prediction consists of two steps: feature generation and quality regression.
Among them, feature generation softly aggregates the high-order statistical differences
between the clusters of local features and the generated dual-anchor statistical models.
Then, quality regression is performed via support vector regression (SVR) based on the
combined statistical differences.

2.1. Offline Model Training

For metric learning, the distance function can be expressed as a set of points with the
following relations: the sample points are similar or dissimilar anchors, and the metric
function is optimal for distance calculation [33]. Thus, the performance of the distance
function is directly determined by both the anchor point and metrics function. In this
subsection, the influence of anchor points on the model reliability will be described in detail
through two steps: anchor location and model learning.
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2.1.1. Anchor Location

The core of metric learning is to predict the probability of subjective qualities for each
image by calculating the similarity or difference between the learned statistical models.
Thus, the models must be sensitive to the position in the feature space, and choosing an
appropriate anchor can effectively improve the discrimination and expressiveness of the
features, making it easier for the models to identify the degree of image distortion. For
example, the statistical model of NSS features has been demonstrated to be stable and
mature for natural images, and it has been mapped to predict the visual quality scores with
efficient performance. However, for SCIs, artificial components, such as computer graphics
and document contents, destroy these statistical features of natural scenes. To date, it is
still impractical to obtain an accurate statistical model due to the variable composition of
the artificial and natural parts in SCIs.

Assuming that two distortions of SCIs follow the distribution, as shown in Figure 2
with different colors and numbers, obviously, the metric accuracy of the distribution for
each distortion is different when the distortion is projected on different axes. Taking the
distribution of (1) in purple as an example, the performance of the statistical difference is
markedly better when it is projected onto the vertical axis than when it is projected onto the
horizontal axis. However, the opposite is true for the distribution of (2) in orange. These
results indicate that using only a single anchor for the metric method is not sufficient to
represent the specific characteristics of SCIs due to their intricate content, variable com-
position, and composite mixtures of multiple distortions. Thus, a more efficient method
should be designed to convey authentically distorted image quality. As shown in Figure 2,
a naive idea is to design some independent anchors and further employ the mutual con-
straints between these anchors to make the quality mapping of metric learning more robust.
Obviously, the number of anchor points directly affects the robustness and complexity
of the method. Thus, because SCIs are arbitrarily composed of artificial and natural por-
tions, their image quality will be reduced with increasing noise intensity and types. The
natural and artificial portions exhibit different statistical features from each other that are
unrelated. Hence, two representative subsets, with the collected pristine natural images
and artificial images shown in Figure 3, were built to characterize the extreme content
characteristics of SCIs in two opposite directions and were then used to train the unrelated
statistical models. Subsequently, both models were used as the positive and negative anchor
points. The experimental results in Section 3 can verify the superiority of this dual-anchor
statistical model.

Figure 2. Simplified distortion diagram of different distributions for SCIs.
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Figure 3. Some examples of the collected pristine images for model learning: (a) natural images and
(b) artificial images.

The natural image dataset had a total of 90 images collected from TID [34] and
LIVE [35] public datasets, and the artificial image dataset had a total of 100 document
content images, where all pictures were obtained by manual screenshots. Considering the
pristine natural image dataset as an example, the raw image was preprocessed first with
tensor decomposition and other feature enhancement techniques, and then the constructed
feature vector was used for subsequent model training. The specific process is described
as follows.

First, tensor decomposition was employed to mitigate the fact that the color property
had not been considered in the previous studies on BIQA of SCIs. As a form of higher-
order principal component analysis, Tucker tensor decomposition can decompose a tensor
χ ∈ RI1×I2×···IN into a core tensor ς ∈ RJ1×J2×···JN multiplied (or transformed) by a group of
matrices along each mode [36]. Specifically, a data cube of the RGB image can be converted
into a three-order tensor as follows:

χ ≈ ς×1 Y(1) ×2 Y(2) ×3 Y(3) (1)

where χ ∈ RI1× I2×I3 ; I1, I2, and I3 are the sizes of the red, green, and blue channels of
the raw image, respectively, and Y(1), Y(2), and Y(3) are the factor matrices with the same
sizes of each channel, which are typically orthogonal. As mentioned in our previous
study [21], we can draw the following conclusions. Y(1), as the principal component,
basically preserves the texture details and brightness range. Meanwhile, the brightness
property and color information are seamlessly combined. Thus, the principal component is
adopted as the carrier of subsequent model training.

For the principal component, the raw patches, which are n × n in the grayscale
domain, are all normalized with a divisive normalization transform to imitate the early
nonlinear processing in the human visual system, reduce data redundancy, and maintain
data consistency [37,38]:

p̂(i, j) =
p(i, j)− α

β + γ
(2)

where p(i, j) and p̂(i, j) are the raw and normalized patches of the principal component
Y(1), respectively, (i, j) are the indices over the entire image, α and β are the local mean and
standard deviation of each patch, respectively, and γ is a constant to prevent instability,
which is set equal to 10 by the experience in this paper.

Aside from this, the whitening process is used in this paper to eliminate the linear
correlations of each patch [39]. Finally, the global feature vector is constructed with these
normalized image patches p̂(i, j) to implement the subsequent model training.
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2.1.2. Model Learning

After the anchor location mentioned above, how to construct two appropriate statisti-
cal models from two pristine databases, which are used as the target dual-anchor statistical
models, must be determined. Selecting a model type is still a particular challenge for anchor
points for each database.

As reported in the literature [40], Xu et al. presented a BIQA method for natural
images based on high-order statistics aggregation (HOSA) with a small codebook, which
calculated the differences of high-order statistics between the local features and corre-
sponding clusters as the quality-aware image representation. In essence, this method is
a simplified distance metric learning with a statistical model. Specifically, the codebook
is equivalent to constructing a statistical model as an anchor point, and these statistics
differences (i.e., mean, variance, and skewness) correspond to the distance measures of
different orders. Each distortion pattern is characterized by a different kind of cluster, and
this relative relationship varies with the distortion level. Therefore, the HOSA can measure
the quality of the natural images more effectively.

However, the HOSA limit factors are more obvious for synthetic SCIs, one of which is
the generality problem of the statistical model. For SCIs, the NSS feature of natural images
is destroyed by the artificial portion, and no particularly reliable statistical model has been
found to date due to the combined diversity of SCIs. If HOSA is directly transplanted
to SCIs with only a single model (i.e., one anchor point), it does not exhibit effective
performance compared with natural images, considering the varied and unpredictable
distribution for the SCIs, as shown in Figure 2. Additionally, the statistical model of HOSA
is constructed with a small codebook that contains only 100 codewords, which is relatively
simple and suitable for natural scenes. However, the universality and robustness of this
model seem to be marginally insufficient to reveal the statistical characteristics of SCIs
due to the intricate content, variable composition, and composite mixtures of multiple
distortions. Currently, the Gaussian mixed model (GMM) has been widely used to solve
the situation where the data in the same set contain multiple different distributions, and it
has achieved remarkable successes in many image processing tasks [41]. Compared with
the limited codewords, the typical character is that the GMM is a linear combination of
multiple Gaussian distribution functions which can theoretically fit any type of distribution
by setting the cluster property. Therefore, the GMM was adopted as the target model to
enhance the universality and robustness in this paper.

Meanwhile, HOSA lacks the effective guide provided by a priori information. For
ill-conditioned problems, the core paradigm is to introduce a priori information to achieve
the goal of discovering hidden and meaningful knowledge from limited data [42]. Hence,
the a priori information must be applied reasonably to overcome shortages of limited
feature information in the BIQA domain of SCIs and thus enhance the generalization
and sensitivity of feature representation for SCIs. Two available GMMs with priors are
constructed as the final statistical models in this paper, and the model learning process is
illustrated as follows.

For the natural image dataset, we considered these normalized image patches p̂(i, j) as local
features and chose the VLFeat open-source library to implement GMM training [43]. For each
image, N normalized patches are extracted such that X = [ p̂1, p̂2, . . . , p̂N ] ∈ RD(D = n× n),
where each column corresponds to one patch. Therefore, the constructed GMM for X can be
described as PN(X

∣∣ρ, µ, σ2 ), and

PN(X) = ∑K
k=1 ρkφ(X

∣∣∣µk, σ2
k ) (3)

φ(X) =
1√
2πσ

exp[− (X− µ)2

2σ2 ] (4)

where PN is the cumulative distribution function generated with the natural image dataset,
ρ, µ, and σ2 are the prior, mean, and covariance of each feature in the GMM, respectively,
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ρk ≥ 0, ∑K
k=1 ρk = 1, and φ(X) is the probability density function. In addition, K clusters

of the GMM were constructed to capture various distortion characteristics. Similarly, the
probability density function generated with the artificial image dataset is expressed as PA.
Note that this process is performed offline, and both GMMs (PN and PA) can be applied
directly as the target dual-anchor statistical model for feature learning of the test image
without subsequent updates.

2.2. Online Quality Prediction

With the constructed GMMs (PN and PA), the quality of testing SCIs could be predicted
online with the following two steps: feature generation and quality regression. For feature
generation, because the metric method will directly affect the accuracy of the quality predic-
tion for each distortion beside the anchor points, the variance difference was selected as the
target metric method through theoretical and empirical analysis in this study, considering
the characteristics of the SCIs. Subsequently, SVR was performed to calculate the final
quality score based on the combined statistical differences.

2.2.1. Feature Generation

In this subsection, we follow the line of HOSA to aggregate the statistical distances
between the local features and clusters of the target dual-anchor statistical models (i.e., the
two GMMs). Meanwhile, to tackle HOSA’s deficiency for SCIs, the a priori information
of dual-anchor GMMs was extra extracted and used in feature generation, and only the
second-order statistical differences were calculated as the quality-aware features to benefit
the balance of complexity and effectiveness.

Here, the target dual-anchor statistical model consists of two GMMs (PN and PA), and
both GMMs are used in a similar process. For each single local feature P̂i of the test SCI,
r nearest clusters rNN (xi) are selected by Euclidean distance. Soft assignment with kernel
similarity weights attempts to alleviate the problems of uncertainty and plausibility in the
clustering selection of the GMM without introducing large quantization error. In this paper,
r is set to five based on the author’s experience.

Then, different order statistical distances were calculated with each prior as follows
to further measure the degradation degree of the distorted image. The residual between
the soft weighted mean, variance, skewness, and kurtosis of local features are assigned to
cluster k and those of cluster k in the constructed GMM PN (or PA):

Md
k =

(
µ̂d

k − µd
k

)
ρd

k =
(
∑i:k∈rNN(xi)

ωikxd
i − µd

k

)
ρd

k (5)

where µ̂d
k and µd

k are the means of the dth dimension in cluster k for the local features and
the target GMM PN (or PA), respectively, ρd

k is the prior of each feature in the GMM, the
superscript d denotes the dth dimension of a vector, and ωik denotes the Gaussian kernel
similarity weight between local feature xi and cluster k. The sum of the weights for each
cluster is one. We also have

Vd
k =

(
σ̂2d

k − σ2d
k

)
ρd

k =

 ∑
i:k∈rNN(xi)

ωik(xd
i − µ̂d

k)
2 − σ2d

k

ρd
k (6)

Sd
k =

(
γ̂d

k − γd
k

)
ρd

k =

 ∑
i:k∈rNN(xi)

[
ωik(xd

i − µ̂d
k)

3

(σ̂2d
k)

3
2

]− γd
k

ρd
k (7)

Kd
k =

(
κ̂d

k − κd
k

)
ρd

k =

 ∑
i:k∈rNN(xi)

[
ωik(xd

i − µ̂d
i )

4

(σ̂2d
k)

2 ]− κd
k

ρd
k (8)
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where (σ̂2)
d
k and (σ2)

d
k are the variances of the dth dimension in cluster k for the local

features and the target GMM PN (or PA), respectively. Similarly, γ̂d
k and γd

k are the skewness
of the dth dimension, and κ̂d

k and κd
k are the kurtosis of the dth dimension.

Each statistical distance with different orders can characterize diverse image features.
However, only the second-order statistical distances (i.e., variance differences) are employed
to predict image quality in this study for the following reasons. For natural images, HOSA,
which considers the mean, variance, and skewness, has demonstrated highly competitive
performance with high-frequency information such as texture and details. Compared
with natural images, SCIs generally have rich, complex artificial parts and fewer, simpler
brightness or color variations and structures. In image processing, the variance, which can
characterize the texture and edge properties of scenes, has been widely investigated and
exhibits excellent comprehensive performance [40]. Considering that the image statistics
aggregation method can describe the approximate location of an image’s local features in
each cluster, and each distortion pattern is characterized by a different kind of cluster, the
image quality will be more dramatically varied as the strength of the relative relationship
increases. To avoid excessive complexity, it is intuitively obvious that the variance is an
effective indicator of statistical characteristics for SCIs with larger artificial portions. The
experimental results in the next section further validate the analysis compared with some
combinations of different orders.

More specifically, we denote the second-order statistical difference with GMMs PN
and PA as vN

k and vA
k , respectively. Then, both second-order statistical differences are

concatenated to a single long quality-aware feature: fk = [vN
k
>, vA

k
>], k = 1, 2, . . . , K.

Furthermore, there are some similar contents in SCIs and similar quality scores in subjective
opinion scores, and these similarities increase image feature similarity, severely decrease
the contribution of other important dimensions, and reduce overall feature effectiveness.
Hence, elementwise signed power normalization was adopted on the aggregated features
to alleviate the corruption caused by these similarities [44]. Specifically, each second-order
local feature f̂ can be described as follows:

f̂ = sign( f )| f |λ = [v̂N ′, v̂A ′] (9)

where λ is the parameter to control the inhibition degree on the frequent components,
which was set to 0.2 in this study. Finally, the entire quality-aware features, which are used
for quality regression, can be denoted by

F̂ = [ f̂1, f̂2, . . . , f̂K] = [V̂N , V̂A] ∈ RD×K×2 (10)

where V̂N , V̂A are the normalized second-order subfeatures with the GMMs PN
and PA, respectively.

2.2.2. Quality Regression

After feature generation, SVR was employed to learn a mapping function from nor-
malized features to subjective quality scores for training SCIs [45]. Then, the quality score
of the test SCI can be predicted with the pretrained regression model in the testing stage.
Here, SVR with a radial basis function kernel was adopted by using the LIBSVM package
with the default parameters [46].

In this study, the patch size D was set to 7 × 7, and the cluster number K was set to
100 based on the authors’ experience so that the quality-aware representation provided a
vector of the dimensionality D × K = 4900 features (i.e., V̂) and D × K × 2 = 9800 (which
is F̂) in total for each test SCI. The practical effect of each feature vector will be illuminated
in detail in the next section.
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2.3. Experimental Protocol

In this section, thorough experiments are conducted to demonstrate the effectiveness
of the proposed method with three public SCI databases: the screen content image quality
assessment database (SIQAD) [8], screen content database (SCD) [47], and screen content
image database (SCID) [48]. A brief introduction of these datasets is shown in Table 1.

Table 1. Brief introduction of three public SCI databases.

Database
Image Number Distortion

Reference Distorted Type Level Notes

SIQAD 20 980 7 7
Gaussian noise (GN), Gaussian blur (GB), motion blur (MB),

contrast change (CC), JPEG, JPEG 2000 (J2K) and
layer segmentation-based coding (LSC)

SCD 24 492 2 / Screen content compression (SCC) and
High-Efficiency Video Coding (HEVC)

SCID 40 1800 9 5 GN, GB, MB, CC, JPEG, J2K, color saturation change (CSC),
SCC, and color quantization with dithering (CQD)

Specifically, in digital images, GN mainly originates from poor lighting or sensor noise
during acquisition, GB is an image blur filter that uses a normal distribution to calculate
the transformation of each pixel, MB is the apparent blurring of dragging traces caused by
fast-moving objects, CC easily causes brightness and saturation distortion, J2K represents
distortion caused by JPEG and JPEG2000 encoding, and HEVC also has distortion problems
in encoding. The “type” and “level” in the table indicate the distortion category and
distortion level, respectively.

Meanwhile, Pearson’s linear correlation coefficient (PLCC), Spearman’s rank order
correlation coefficient (SRCC), and the root mean squared error (RMSE) are then employed
to compute the correlation between the subjective and objective ratings, which can estimate
the prediction of the accuracy, monotonicity, and consistency, respectively. Higher values
for the SRCC and PLCC and a lower value for the RMSE are expected for an advanced
quality prediction metric. In addition, a five-parameter nonlinear logistic function was
employed to nonlinearly regress the quality ratings into a common range as follows [49]:

f (x) = β1[
1
2
− 1

1 + eβ2(x−β3)
] + β4x + β5 (11)

where βi, i ∈ {1, . . . , 5} are the parameters to be fitted and x and f (x) denote the raw
predicted score and corresponding mapped scores, respectively.

Additionally, each database was randomly divided into training and testing subsets
1000 times, with 80% as the training dataset and the remainder as the testing dataset, and
the median result was adopted as the final performance.

3. Results
3.1. Performance Comparison on the Overall Database

Here, we compare the proposed DAML with the following state-of-the-art FR-IQA
and NR-IQA methods. Specifically, the FR methods include five classic methods built for
natural images (PSNR, SSIM [50], FSIM [51], VSI [52] and VIF [53]) and five top methods
built for SCIs (SVQI [54], SQE [55], EFGD [56], SRCNN [57], and QODCNN [23]). The NR
methods include 10 feature-inspired methods (SIQE [11], OSM [13], NRLT [14], HRFF [15],
PQSC [16], TFSR [17], LGFL [18], CLGF [20], CSC [9], and MTD [21]), and 5 neural network-
based methods (PICNN [22], IGMCNN [24], SIQA-DF [25], MtDl [26], and ABPNN [27]).
Note that the results were cited from the literature except with the classic methods for
fairness, and “/” indicates that a value is not available in the following tables.
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Table 2 shows the experimental results of the FR methods on the SIQAD, SCD, and
SCID, where the top three results in each case are highlighted in boldface. From this table,
we can make the following observations. First, the classic FR methods for natural images
could nnot be directly transferred to SCIs because they do not consider the peculiar percep-
tual properties of SCIs. Second, for the top FR-IQA methods for SCIs, their performance
was markedly improved because the targeted features or network structures were con-
structed for some specific distortions in SCI databases, and the original reference could also
provide more accurate and reliable feature information. However, the limiting factors were
also strong for these methods, because it was difficult or not possible to obtain the reference
in most cases. In contrast, we resorted to metric learning to extract the discriminative
statistical features of SCIs and achieve comparable results with these top FR methods
for SCIs.

Table 2. Experimental results of the proposed and other FR-IQA methods on SIQAD, SCD, and SCID.

Method
SIQAD SCD SCID

PLCC SRCC RMSE PLCC SRCC RMSE PLCC SRCC RMSE

PSNR 0.5869 0.5608 11.5859 0.861 0.8589 1.1273 0.7622 0.7512 9.1682
SSIM 0.5912 0.5836 11.5450 0.8696 0.8683 1.0953 0.7343 0.7146 9.6133
FSIM 0.5746 0.5652 11.6120 0.9019 0.9039 0.9585 0.7719 0.7550 9.0040
VSI 0.5403 0.5199 11.9380 0.8715 0.8719 1.0879 0.7550 0.7530 9.3470
VIF 0.8198 0.8065 8.1969 0.9028 0.9043 0.9542 0.8200 0.7969 8.1069

SVQI 0.8911 0.8836 6.4965 0.9158 0.9194 0.8909 0.8604 0.8386 7.2178
SQE 0.9040 0.8940 6.1150 0.9290 0.9310 0.8210 0.9150 0.9140 5.7610

EFGD 0.8993 0.8901 6.2595 / / / 0.8846 0.8774 6.6044
SR-CNN 0.9160 0.9080 5.6830 / / / 0.9390 0.9400 4.8300

QODCNN 0.9142 0.9066 5.8015 / / / 0.8820 0.8760 /

Proposed 0.9135 0.9023 5.8088 0.9316 0.9265 0.7993 0.8737 0.8576 6.8673

Table 3 shows the experimental results of the NR methods on the SIQAD, SCD, and
SCID, in which the results were primarily concentrated in the SIQAD and SCID in terms
of test images and distortion types. From this table, we can see that most feature-inspired
NR-IQA methods exhibited worse performance than that of the FR-IQA methods above,
such as SIQE, OSM, NRLT, HRFF, TRSR, LGFL, and CLGF. In addition, the gap with the two
excellent algorithms of PQSC and MTD was not obvious. The algorithm proposed in this
paper was very close to the data of the CSC and MTD in the SIQAD and SCID databases,
respectively, and the indicators in the SCD database were even better. The main reason for
this is that, limited by the research progress of visual perception and the attention preference
of designers, these manual features show excessive subjectivity and independence from
each other, which makes it difficult to accurately characterize and measure the intrinsic
quality variations of SCIs if there is a lack of reference information. Due to the diversity of
the SCI content, it was necessary to explore a more unified and complete theoretical system
to reduce the loss of important information and serious subjective preferences for partial
distortion types. For neural network-based methods, such as SIQA-DF and MtDl, they
showed comparable performance to these FR methods because these high-level features are
more adaptable to complex and specific tasks but lack intuition and interpretability, and this
can easily lead to overfitting due to the neural network characteristics. In addition, Table 3
shows that the proposed method can effectively describe the distribution characteristics
of the SCIs by constructing a distance function to measure the similarity or difference
degree with two available uncorrelated statistical models. Finally, the proposed method
achieved excellent performance in the PLCC compared with the feature-inspired methods
and obtained competitive performance that was comparable to that of the neural network-
based methods.
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Table 3. Experimental results of the proposed and other NR-IQA methods on SIQAD, SCD,
and SCID.

Method
SIQAD SCD SCID

PLCC SRCC RMSE PLCC SRCC RMSE PLCC SRCC RMSE

SIQE 0.7906 0.7625 8.7650 0.7168 0.7012 1.547 0.6343 0.6009 10.9483
OSM 0.8306 0.8007 7.9331 0.7068 0.6804 1.5301 / / /
NRLT 0.8442 0.8202 7.5957 0.9227 0.9156 0.8091 0.8377 0.8178 7.7265
HRFF 0.8520 0.8320 7.4150 / / / / / /
PQSC 0.9164 0.9069 5.708 0.9362 0.9299 0.7746 0.9179 0.9147 5.4793
TFSR 0.8618 0.8354 7.4910 / / / 0.8017 0.7840 8.8041
LGFL 0.8280 0.7880 / / / / / / /
CLGF 0.8331 0.8107 7.9172 / / / 0.6978 0.6870 10.1439
CSC 0.9109 0.8976 5.8930 0.9182 0.9080 0.8721 0.8531 0.8377 7.3930
MTD 0.9162 0.9090 5.7111 0.9196 0.9123 0.8654 0.8811 0.8730 6.7031

PICNN 0.8960 0.8970 6.7900 / / / 0.8270 0.822 8.0130
IGMCNN 0.8834 0.8634 6.3971 / / / 0.8710 0.8663 6.4123
SIQA-DF 0.9000 0.8880 6.2422 / / / 0.8514 0.8507 7.0687

MtDl 0.9281 0.9214 5.611 / / / 0.9248 0.9233 5.4200
ABPNN 0.8529 0.8336 7.2817 / / / 0.7147 0.6920 10.3988

Proposed 0.9135 0.9023 5.8088 0.9316 0.9265 0.7993 0.8737 0.8576 6.8673

3.2. Performance Comparison of the Individual Distortion Type

To verify the performance of the individual distortion type, we investigated the
model performances with the proposed DAML and other state-of-the-art methods on
three SCI databases. Specifically, Tables 4–6 show the experimental results of PLCC,
SRCC, and the RMSE, respectively, and the top three metrics are highlighted in boldface.
Note that the variances were calculated to describe the fluctuation magnitude for each
distortion type, and a lower value indicates better prediction consistencies. From these
tables, it is obvious that most existing methods showed obvious preferences for specific
distortion types, particularly for TFSR, LGFL, and CLGF. For example, CLGF handled the
GB distortion with a PLCC of 0.9082, but its PLCC was only 0.5575 for the LSC distortion.
Similarly, LGFL handled the GB distortion with an SRCC of 0.8940, but its SRCC was only
0.4870 for the CC distortion. The primary reason for this result is that these quality-aware
features, which are extracted by existing methods, are subjective, independent, and limited
by visual mechanisms and subjective knowledge. Thus, they merely reflect the quality
degradation characteristics of some parts and cannot authentically and effectively describe
the essence of real-world distortions for SCIs. In contrast, the proposed method combines
metric learning and probability distribution to construct the discriminative statistics feature,
identify complex distortions, and predict SCI image quality from a global perspective.
Thus, the proposed method exhibited better generalization performance across different
distortion types, producing variances that were orders of magnitude lower than those of
other methods, as shown in Tables 4–6. In particular, it can be clearly seen that the proposed
model was more sensitive to handling most distortion types (i.e., GN, CC, JPEG, J2K, and
LSC) and exhibited good competitiveness with other types (i.e., GB and MB).

Additionally, Figure 4 presents similar results on the SCD and SCID for different dis-
tortion types. Thus, these results suggest that the proposed MADL can more precisely and
steadily describe various degenerations from the perspective of statistical characteristics
and distributions for SCIs and can further verify the effectiveness and robustness of the
proposed method. The data and results are shown in Tables 4–6, where SIQAD was a
commonly used data set and we listed the detailed evaluation data. SCD is the dataset that
mainly tests coding distortion, so the data given are relatively small, while for SCID, the
dataset is relatively large. The “/” in the table indicates that the article did not test it in
detail, and there was no relevant code to reproduce and calculate the relevant indicators.
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Figure 4. Experimental results of different distortion types for the proposed method. (a) PLCC and
SRCC values on SCID. (b) RMSE values on SCID. (c) PLCC, SRCC, and RMSE values on SCD.

Table 4. PLCC results of different distortion types for the proposed and other methods on SIQAD.

PLCC GN GB MB CC JPEG J2K LSC Variance

SIQE 0.8779 0.9138 0.7836 0.6856 0.7244 0.7339 0.7332 7.30 × 10−3

OSM / / / / / / /
NRLT 0.9131 0.8949 0.8993 0.8131 0.7932 0.6848 0.7228 8.17 × 10−3

HRFF 0.9020 0.8900 0.8740 0.8260 0.7630 0.7540 0.7700 4.08 × 10−3

PQSC 0.9200 0.9300 0.9100 0.8200 0.8500 0.8900 0.8500 1.75 × 10−3

TFSR 0.9291 0.9367 0.9243 0.6563 0.8334 0.8347 0.8069 9.84 × 10−3

LGFL 0.9030 0.9110 0.8370 0.6600 0.7620 0.6680 0.6830 1.20 × 10−2

CLGF 0.8577 0.9082 0.8609 0.7440 0.6598 0.7463 0.5575 1.55 × 10−2

CSC 0.9317 0.9148 0.8846 0.9229 0.9036 0.9143 0.9294 2.67 × 10−4

MTD 0.9390 0.9156 0.8844 0.9231 0.914 0.8949 0.9192 3.28 × 10−4

PICNN 0.9100 0.9190 0.8890 0.8260 0.8290 0.8520 0.8360 1.56 × 10−3

IGMCNN / / / / / / / /
SIQA-DF 0.9120 0.9240 0.8900 0.8440 0.8290 0.8280 0.8580 1.56 × 10−3

MtDl / / / / / / / /
ABPNN 0.9139 0.9225 0.8948 0.7772 0.8014 0.7984 0.7907 4.14 × 10−3

Proposed 0.9400 0.9131 0.8946 0.9219 0.9176 0.9119 0.9328 2.21 × 10−4

Table 5. SRCC results of different distortion types for the proposed and other methods on SIQAD.

SRCC GN GB MB CC JPEG J2K LSC Variance

SIQE 0.8517 0.9174 0.8347 0.6874 0.7438 0.7241 0.7337 7.00 × 10−3

OSM / / / / / / / /
NRLT 0.8966 0.8812 0.8919 0.7072 0.7698 0.6761 0.6978 9.80 × 10−3

HRFF 0.8720 0.8630 0.8500 0.687 0.7180 0.7440 0.7400 5.94 × 10−3

PQSC 0.9000 0.9200 0.8900 0.7 0.8300 0.8800 0.8300 5.53 × 10−3

TFSR 0.9144 0.9311 0.9148 0.6498 0.8377 0.8354 0.7948 9.61 × 10−3

LGFL 0.8790 0.8940 0.8320 0.487 0.7440 0.6450 0.6660 2.16 × 10−2

CLGF 0.8478 0.9152 0.8694 0.5716 0.6778 0.7681 0.5842 1.93 × 10−2

CSC 0.9143 0.8971 0.8708 0.9075 0.8848 0.8911 0.9064 2.27 × 10−4

MTD 0.9201 0.8993 0.8703 0.9102 0.8966 0.8593 0.8867 4.61 × 10−4

PICNN 0.9020 0.9160 0.8800 0.6990 0.8230 0.8340 0.8720 5.36 × 10−3

IGMCNN / / / / / / / /
SIQA-DF 0.9010 0.9100 0.8800 0.7280 0.8120 0.8160 0.8580 4.06 × 10−3

MtDl / / / / / / / /
ABPNN 0.9102 0.9223 0.8867 0.7471 0.7768 0.7783 0.7585 5.92 × 10−3

Proposed 0.9212 0.8944 0.8834 0.9102 0.8993 0.8851 0.9061 1.87 × 10−4
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Table 6. RMSE results of different distortion types for the proposed and other methods on SIQAD.

RMSE GN GB MB CC JPEG J2K LSC Variance

SIQE 8.1416 6.4239 8.0783 9.1565 6.4778 7.6727 6.3160 1.1861
OSM / / / / / / / /
NRLT 6.3113 6.9171 6.4524 7.8433 5.872 6.5441 5.7864 0.4858
HRFF 6.2670 6.7380 6.4660 6.8740 5.8620 6.5010 5.4730 0.2442
PQSC / / / / / / /

TFSR 5.3105 5.2141 5.5266 10.5005 5.2541 5.6377 5.6217 3.7067
LGFL / / / / / / / /
CLGF / / / / / / / /
CSC 5.3292 5.3767 6.0794 5.0375 5.5912 5.4480 5.2539 0.1074
MTD 5.0506 5.2992 6.1017 5.0238 5.3266 5.9826 5.5994 0.1837

PICNN 6.2010 5.8700 5.7720 7.0120 5.4700 5.9920 4.6730 0.5049
IGMCNN / / / / / / / /
SIQA-DF 6.1150 5.7680 5.7910 6.7470 5.3840 5.8120 4.4620 0.4870

MtDl / / / / / / / /
ABPNN 5.9745 5.7319 6.7144 8.0684 6.8006 6.5538 5.4556 0.7584

Proposed 4.9987 5.3785 5.8043 4.9994 5.1861 5.4307 5.1030 0.0841

3.3. Cross-Database Validation

In this subsection, cross-database validation is conducted to verify the generalizability
of the proposed DAML. Because SIQAD and SCID were the representative and largest
databases, respectively, and both of them contained six distortion types (GN, GB, MB,
CC, JPEG, and J2K), both databases were adopted as the training and testing databases,
respectively. Similar to the practice of Mittal et al. [39] and Ye et al. [58], the DAML was
trained on one database with these six distortion types, and the other was used to test the
performance of the trained model. Meanwhile, the median performance is reported in this
paper. Note that entire samples of both databases were adopted for model training and
testing, which could reduce dependence on the scale of the database and further verify the
generalizability of the proposed method [21].

Table 7 shows the cross-database results for each type of distortion, in which (a) means
that the model was trained with SIQAD and tested with SCID, and (b) means the oppo-
site. From this table, we can obtain the following observations. First, both cross-database
performances were similar to each other, which indicates that the proposed model had
the advantages of high generalization ability, regardless of database size and complexity.
Second, the cross-database performance was marginally worse than the in-database per-
formance, which is also a common problem for existing methods. The primary reason for
this result is that different fusion rules that are caused by variable image compositions
and distortion intensities of the SCI can generate complex degradation mechanisms and
statistical properties for each SCI database and further result in performance degradation
for each method. Third, the cross-database performance decreased for the proposed model
but still achieved satisfactory performance and stability for most distortion types, achiev-
ing competitive performance compared with the FR methods in Table 2 and outstanding
performance compared with most of the feature-inspired NR methods in Table 3. Note that
the performance on the J2K type was lower than those of other distortion types because it
belonged to the complex composite compression distortion.

In addition, the proposed cross-database performance was marginally worse than
the neural network-based methods listed in Table 3 but was still worthy of affirmation
considering its interpretability. Thus, the cross-database results demonstrate that the
proposed method achieved good prediction accuracy, powerful stability, and generalization.
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Table 7. Cross validation results of the proposed DAML with six types of distortion on SIQAD
and SCID.

Distortion
(a) Training with SIQAD (b) Training with SCID

PLCC SRCC RMSE PLCC SRCC RMSE

GN 0.9300 0.9109 4.6213 0.8921 0.8843 6.7399
GB 0.9277 0.9088 4.4339 0.8551 0.8544 6.9978
MB 0.9059 0.8886 5.1253 0.8232 0.8317 7.6019
CC 0.8794 0.8605 5.8277 0.8236 0.8377 7.5378

JPEG 0.8359 0.8226 6.3599 0.8405 0.8365 7.2293
J2K 0.7148 0.6977 7.4051 0.7631 0.7546 7.2196

Overall 0.8541 0.8583 6.1862 0.8395 0.8438 7.4497

3.4. Ablation Study

To further verify the effectiveness of the proposed DAML, comparative experiments
were conducted on three SCI databases. More specifically, these factors primarily include
the anchor type, K value, and feature type. Among them, the anchor type and K value are
defined based on the anchor location and model learning during offline model training,
respectively, and the feature type is defined during feature generation of online quality
prediction. In this study, the sensitivity of each factor is discussed with different set-
tings, and then comparative experiments are performed to validate the influence of the
parameter setting.

For metric learning, the type and number of anchor points are the most important
factors to be considered first. Because the deficiency of a single anchor point was illustrated
in detail in Section 2.1, it will not be repeated in this study, and the two anchors were set as
the defaults in this study. Considering the anchor type, a naive idea is that two unrelated
image types are used as the positive and negative anchor points to characterize some
extreme content characteristics of SCIs in two opposite directions. Intuitively, there are
two appropriate anchor types in terms of distortion intensity and content composition for
SCIs. For distortion intensity, the reference images and distortion images can be adopted
as the targeted anchors, which can directly describe the condition of quality distortion.
For content composition, natural images and document images are suitable choices to
directly describe the characteristics of the content composition in SCIs. Table 8 shows the
comparison of the prediction performances with different anchor types. Performances
were markedly improved with both anchor types, which effectively clarified the feasibility
of the dual-anchor strategy. Meanwhile, the performance of the content composition
was marginally better than that of the distortion intensity. The primary reason for this
result is that distortion intensities exist for both natural images and SCIs, but the most
distinctive aspect of SCIs lies in the arbitrary composition and random combination of
different contents compared with natural images.

Table 8. Prediction performance with different anchor types.

Anchor Type
SIQAD SCD SCID

PLCC SRCC RMSE PLCC SRCC RMSE PLCC SRCC RMSE

Reference + Distortion 0.9023 0.8901 6.1512 0.9287 0.9223 0.8193 0.8647 0.8503 7.1126
Natural + Artificial 0.9135 0.9023 5.8088 0.9316 0.9265 0.7993 0.8737 0.8576 6.8673

With the anchor type of the content composition, model learning has become another
bottleneck of performance improvement for metric learning. Considering the characteristics
of the content composition, the GMM was adopted as the target model in this study because
it could solve the situation containing multiple different distributions in the same set.
However, for the GMM, the value of K, which denotes the number of clusters, directly
influenced the trade-off of performance and complexity. In this study, Table 9 shows the
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comparison of the prediction performances with different values of K. Obviously, there
were only marginally different performances for each K value, and thus we set K equal to
100 as the default according to the actual results in Table 9.

Table 9. Prediction performance with different values of K.

K
SIQAD SCD SCID

PLCC SRCC RMSE PLCC SRCC RMSE PLCC SRCC RMSE

50 0.9108 0.8979 5.8894 0.9282 0.922 0.8186 0.8657 0.8496 7.0651
100 0.9135 0.9023 5.8088 0.9316 0.9265 0.7993 0.8737 0.8576 6.8673
150 0.9103 0.8995 5.9006 0.934 0.9309 0.7868 0.8733 0.8572 6.8921

For online quality prediction, the selection of the feature type is a critical step for
feature generation and directly affects the efficiency of quality regression. In this study,
we constructed the experiments with different feature type combinations on three SCI
databases and compared the results with HOSA on the SIQAD, which are shown in
Tables 10 and 11, respectively. Note that the feature types used in this study include the first-
order (mean), second-order (variance), third-order (skewness), and fourth-order (kurtosis)
statistics, as well as the combinations of each other. In the two tables, “M.”, “V.”, “S.”,
and “K.” denote the abbreviations for the mean, variance, skewness, and kurtosis statistics,
respectively. Table 11 shows that all feature types had certain effects on image degradation,
but the sensitivity of each type was different. Particularly after the optimization of the
dual-anchor strategy, the performance of a single feature type (i.e., variance) was better than
that of the feature combination, which could effectively enhance the efficiency of quality
regression. Meanwhile, compared with HOSA built for natural images, the proposed
method achieved better improvement on the SIQAD due to some of the following reasons:
(1) the dual-anchor strategy makes quality mapping of metric learning more robust for
varied content and the distortion of SCIs; (2) the GMM model can theoretically fit any
type of distribution, which is particularly suitable for solving the situation of containing
multiple different distributions in SCIs; and (3) the introduction of a priori information can
further discover hidden and meaning knowledge from limited data.

Table 10. Experimental results of prediction performance with different feature types.

Feature Type
SIQAD SCD SCID

PLCC SRCC RMSE PLCC SRCC RMSE PLCC SRCC RMSE

Mean 0.8961 0.8814 6.3428 0.9262 0.9220 0.8309 0.8586 0.8419 7.2503
Variance 0.9135 0.9023 5.8088 0.9316 0.9265 0.7993 0.8737 0.8576 6.8673
Skewness 0.8901 0.8774 6.5002 0.9048 0.9012 0.9385 0.8368 0.8189 7.7403
Kurtosis 0.8689 0.8529 7.0789 0.9227 0.9168 0.8544 0.7943 0.7746 8.5951
M. + V. 0.8978 0.8864 6.2922 0.9241 0.9209 0.8429 0.8526 0.8384 7.3896

M. + V. + S. 0.8783 0.8657 6.8292 0.9040 0.9111 0.9396 0.8175 0.8046 8.1537
M. + V. + S. + K. 0.8774 0.8655 6.8522 0.9030 0.9116 0.9485 0.8150 0.7995 8.1756

Table 11. Comparison of prediction performances with HOSA on SIQAD.

Feature Type
HOSA Proposed

PLCC SRCC RMSE PLCC SRCC RMSE

Mean / 0.8137 / 0.8961 0.8814 6.3428
Variance / 0.8340 / 0.9135 0.9023 5.8088
Skewness / 0.8159 / 0.8901 0.8774 6.5002

M. + V. / 0.8343 / 0.8978 0.8864 6.2922
M. + V. + S. 0.8636 0.8484 6.9594 0.8783 0.8657 6.8292
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4. Conclusions

This paper presented a dual-anchor metric learning method for blind image quality
assessment for screen content images (SCIs). Inspired by metric learning, the statistical
distance between the local features and clusters of the target dual-anchor model were
resorted to represent the statistics feature and then predict the distorted image quality of
SCIs. The target dual-anchor statistical model consisted of two Gaussian mixed models
generated from unrelated pristine databases to avoid dependence on specific distortion
types. The high-order statistical differences were further optimized and enhanced the
effectiveness of quality-aware feature extraction. On three public SCI databases, the ex-
perimental results verified the superior prediction accuracy and generalizability of the
proposed method for individual distortion types compared with the state-of-the-art blind
image quality assessment methods of SCIs.
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