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Abstract: With the increasing trend in the energy demand, power networks are transitioning from
conventional generation systems to renewable energy sources (RESs). The energy is harvested from
these RESs and fed to grid-connected inverters (GCIs), as the output power of major sources (e.g.,
solar and fuel cell) is mainly DC. However, owing to the lower output voltage of renewable RESs,
power converters play a vital role in two-stage power systems for enhancing its lower value to
a higher value. The basic requirement for the GCI is to maintain the constant output voltage for
which it is essential to have a constant input voltage. Therefore, high gain and efficient power boost
converters are required for a robust and reliable two-stage power system. This paper investigates
the performance of an efficient model of a high step-up switched Z-source DC-DC converter (HS-
SZSC) for grid-connected 3-phase H-bridge inverter applications. The proposed design achieves
high voltage gain and eliminates the problems of circuit complexity by utilizing a smaller number of
components, which makes it cost effective and highly efficient. The working principle is discussed
in detail. To validate the proposed model, the performance of the conventional Z-source converter
(ZSC) and proposed HS-SZSC employed with GCI is analyzed and compared for both normal and
transient states through MATLAB simulations. The HS-SZSC with an open- and closed-loop system
is tested at different loads (AC), representing varying power factor conditions, and results verify the
suitability of the proposed design for grid-connected inverters. Lastly, another model is presented to
resolve the issue of grid islanding in GCIs.

Keywords: renewable energy sources; DC-DC converter; high boost factor; 3-phase inverter;
HS-SZSC

1. Introduction

In the recent past, climate change has become a major concern, as conventional power
generation sources, such as diesel, gas, coal, etc., have polluted the environment, leading
to undesirable and drastic climate fluctuations [1]. Moreover, higher costs and increased
carbon emissions have worsened the situation. Currently, the major challenge is to match
the growing energy need while least affecting the atmosphere. To overcome this situation,
renewable energy sources (RESs) are proven to be the best alternative, owing to their
lower cost and non-polluting nature [2,3]. Generally, the energy is harvested from these
sources and fed to grid-connected inverters (GCIs). Since the output voltage of RESs is low
and varying in nature, power electronic converters are required to stabilize and enhance
the voltage at the same time. In two-stage power systems, as shown in Figure 1, power
converters play an important role to interface RESs with GCIs.
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Figure 1. The block diagram of the two-stage power conversion system. 

Therefore, for better performance in a two-stage power conversion system, the con-
verter must carry the advantages of reduced weight, less cost, semiconductor stress, etc. 
[4–6]. There are two types of converters, named non-isolated and isolated. The isolated 
converters [7–9] achieve the higher voltage gains by changing the turn ratio of the trans-
former; however, non-isolated converters control the duty cycle for achieving higher volt-
age gains, which affect the system performance and reduce the conversion efficiency. Nu-
merous techniques have been reported in the literature to obtain a higher boost ratio and 
enhance the conversion efficiency. To illustrate, the converter in [10–16] utilizes a switched 
capacitor technique to attain higher gains at a reduced duty cycle. However, due to the 
switched capacitor, the pulsating current is produced at the input side, which results in 
poor load regulation. In [17], an extensive review of switch capacitor topologies as a part 
of voltage equalizer (VE) topologies is performed for the aim of performing maximum 
power tracking; however, switched capacitor converters are independent of duty cycle 
(D) and cannot perform the maximum power tracking for the individual model. The con-
verter design in [18,19] involves an additional switch capacitor stage for improving the 
boost ratio, though it makes the circuit complex and bulky. To enhance the boost ability 
of DC-DC converters, a voltage lift technique combined with a coupled inductor is applied 
in [20]; nevertheless, the higher cost is a major concern for this topology. A coupled in-
ductor-based topology employed with voltage multiplier cells is presented in [21–24] 
where higher input current is a drawback. The DC-DC boost converter topologies, such 
as the Cuk converter, Superlift Luo converter, and Sepic converter [5,6,25], are employed 
in two-stage power conversion systems for renewable energy applications. However, the 
lower value of the boost factor limits their performance. 

Apart from this, the Z-source network topology as shown in Figure 2 is the promising 
one among other topologies for renewable energy applications [26]. The Z-source network 
comprises two capacitors and two inductors connected in an X shape, which can solve the 
problems of limited boost factor and shoot through in conventional DC-DC converters to 
some extent. Numerous techniques have been employed with the Z-source network for 
improving the efficiency and voltage gain [27–34]. However, the major drawbacks associ-
ated with the Z-source converter are the higher starting current, limited voltage gain, 
higher voltage stress on components, discrete input, etc., which reduce its performance in 
real-world applications [35–37]. 

Figure 1. The block diagram of the two-stage power conversion system.

Therefore, for better performance in a two-stage power conversion system, the con-
verter must carry the advantages of reduced weight, less cost, semiconductor stress, etc. [4–6].
There are two types of converters, named non-isolated and isolated. The isolated convert-
ers [7–9] achieve the higher voltage gains by changing the turn ratio of the transformer;
however, non-isolated converters control the duty cycle for achieving higher voltage gains,
which affect the system performance and reduce the conversion efficiency. Numerous
techniques have been reported in the literature to obtain a higher boost ratio and enhance
the conversion efficiency. To illustrate, the converter in [10–16] utilizes a switched capacitor
technique to attain higher gains at a reduced duty cycle. However, due to the switched
capacitor, the pulsating current is produced at the input side, which results in poor load
regulation. In [17], an extensive review of switch capacitor topologies as a part of volt-
age equalizer (VE) topologies is performed for the aim of performing maximum power
tracking; however, switched capacitor converters are independent of duty cycle (D) and
cannot perform the maximum power tracking for the individual model. The converter
design in [18,19] involves an additional switch capacitor stage for improving the boost ratio,
though it makes the circuit complex and bulky. To enhance the boost ability of DC-DC
converters, a voltage lift technique combined with a coupled inductor is applied in [20];
nevertheless, the higher cost is a major concern for this topology. A coupled inductor-based
topology employed with voltage multiplier cells is presented in [21–24] where higher input
current is a drawback. The DC-DC boost converter topologies, such as the Cuk converter,
Superlift Luo converter, and Sepic converter [5,6,25], are employed in two-stage power
conversion systems for renewable energy applications. However, the lower value of the
boost factor limits their performance.

Apart from this, the Z-source network topology as shown in Figure 2 is the promising
one among other topologies for renewable energy applications [26]. The Z-source network
comprises two capacitors and two inductors connected in an X shape, which can solve
the problems of limited boost factor and shoot through in conventional DC-DC converters
to some extent. Numerous techniques have been employed with the Z-source network
for improving the efficiency and voltage gain [27–34]. However, the major drawbacks
associated with the Z-source converter are the higher starting current, limited voltage gain,
higher voltage stress on components, discrete input, etc., which reduce its performance in
real-world applications [35–37].
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It is a well-known fact that the design of the DC-DC converter holds vital importance
for the two-stage power conversion system. The better the performance of the converter,
the higher the efficiency of the inverter. Several converters, such as cuk [5], superlift [6],
Sepic [25], etc., are presented in the literature; however, several factors, such as lower boost
factor, higher part count, etc., limit their performance. Thus, a new converter topology is
required to overcome these issues.

The HS-SZSC topology is presented in [38]. The details of mathematical modeling,
power loss and efficiency calculations, component designing, etc., for the HS-SZSC are
discussed. Additionally, the theoretical analysis is verified through simulation and exper-
imental results. From [38], it is worth noting that the proposed design exhibits several
advantages, e.g., higher boost factor and reduced components that make it suitable for
interfacing the RESs with the AC grid. Thus, in this paper, the performance of a Z-source
converter topology termed as the high step-up switched Z-source converter (HS-SZSC) [38]
is investigated for the grid-connected 3-phase H-bridge inverter application. In addition,
the performance of HS-SZSC and conventional Z-source converter (ZSC) interfaced with
3-phase H-bridge inverter is analyzed and compared for normal and transient conditions
to validate the effectiveness of the proposed model. Additionally, the HS-SZSC is tested for
open- and closed-loops systems. Finally, one model is presented to resolve the islanding
issue in grid-connected inverters (GCIs).

The remainder of this paper is organized in such a way that Section 2 explains the
circuit configuration and working principle for the proposed circuit. The calculation of
the gain factor is given in Section 3. Section 4 explains the operation of a 3-phase inverter
interfaced with the switched converter. Section 5 compares the gain of the HS-SZSC with
converters employed with GCIs. The simulation results are described in detail in Section 6.
Finally, conclusions are drawn in Section 7.

2. Configuration and Operating Principle of the HS-SZSC

This section presents the physical structure and operating principle of the proposed
switched converter.

Figure 3 depicts the arrangement of the power circuit, which is composed of an
impedance network (C1, C2, L1, L2), two MOSFETs (S1 and S2) that turn off and turn on at
the same time and share the same gate signal, output capacitor C3, inductor L3, and load
(3-phase H-bridge inverter). Apart from switch S2 and inductor L3, the structure of the
new topology is similar to the conventional ZSC as shown in Figure 2. Thus, similar to the
traditional ZSC, the proposed design has two operating states, i.e., switch-on period and
switch-off period.
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During the switch-on period, capacitors will supply energy to inductors; hence, the
inductor current will increase and store the energy, while the capacitor voltage will be
rising during the switch-off period, as inductors will release the energy to capacitors and
the load [38]. The following section demonstrates the calculation of the boost factor for the
proposed HS-SZSC.

3. Calculation of Gain Factor

This section demonstrates the calculation of the gain factor. The gain factor is described
as the ratio of the output voltage to the input voltage. Applying the Kirchhoff’s voltage and
current laws (i.e., KVL and KCL) on the proposed converter in both states, the following
equations can be obtained:

State-1

VL1 = VC1 + VC3 (1)

VL2 = VC2 + VC3 (2)

VO = VC3 (3)

IC3 = IS1 − IO (4)

IS1 = IL1 + IL2 + IL3 (5)

where VL1, VL2, VL3, IL1, IL2, and IL3 are voltages across and currents through L1, L2, and
L3, respectively; VC1, VC2, and VC3 are voltages across C1, C2, and C3, respectively; and IC3,
IS1, describe currents through C3 and S1, respectively.

State-2

VL1 = VI − VC2 (6)

VL2 = VI − VC1 (7)

VL3 = 2VI − VC1 (8)

VC3 = VI + VC1 (9)

ID1 = IL1 − IC1 (10)

ID2 = IL1 + IC2 (11)
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where VI, ID1, and ID2 are input voltage and currents through diodes D1 and D2. Using the
concept of the volt-second principle for the HS-SZSC [37], we obtain

VC1 = VC2 =
2 − D

1 − 3D
∗ VI (12)

VO =
3 − 4D
1 − 3D

∗ VI (13)

G =
VO
VI

=
3 − 4D
1 − 3D

(14)

where VO, G and D are defined as the output voltage, gain factor and duty cycle, respectively.

4. HS-SZSC Interfaced with 3-Phase Inverter (GCI)

The GCIs are classified according to the power range, which can vary from a few watts
to thousands of watts. The power range up to 5 kW is suitable for household applications;
however, a power range higher than 5 kW is utilized in larger buildings. Moreover, the
power generation less than 5 kW is called microinverters [2]. Generally, The GCI contains
two basic features.

1. Phase matching.
2. Reaction to the power outage: addressing an islanding issue.

The output voltage of the GCI must be in phase with the mains supply. The GCI senses
the phase of the main supply and produces a phase-matched AC supply.

Moreover, islanding is a critical condition occurring in a power system in which a
distributed generator, e.g., the solar system supplies the power to the grid even when the
power from utility does not exist [37–40]. One of the key advantages of grid-connected
inverters is that it disconnects automatically in the events of the main power failure or
no-load conditions. This safety feature protects the line workers and avoids inverter loss.
Thus, a simulation model based on HS-SZSC and GCI is proposed in this research article
that will be discussed later in Section 6.

This section presents the circuit configuration, PWM technique, and inverter side
closed-loop control for a switched converter interfaced with the inverter.

4.1. Circuit Configuration

Figure 4 shows the circuit arrangement for the two-stage power conversion system
with the switched converter. The circuit consists of a DC power supply connected with
the HS-SZSC [38] to boost the voltage significantly to the higher levels. The output of the
converter is interfaced with the famous 3-phase H-bridge inverter in order to generate an
AC output power. The output of the inverter will pass through an LC filter to reduce the
harmonics.
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4.2. Sinusoidal Pulse Width Modulation (SPWM)

The pulse width modulation (PWM) is widely used in different applications, e.g.,
variable speed drives, motor control, etc. The most common technique used for inverters
is sinusoidal PWM (SPWM). In this method, a reference sinusoidal waveform with the
frequency f r is compared with a triangular carrier waveform having the frequency f C
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in order to create the switching signals [41,42]. The output frequency of the inverter is
defined by the reference signal frequency, which also controls the modulation index Ma.
The modulation index Ma is defined as

Ma =
Vr

Vc
(15)

where Vr and VC define the voltages across reference and carrier signals, respectively.
Moreover, the number of pulses per half cycle is defined by carrier frequency f r. Figure 5
shows the method of generating signals for the 3-phase H -bridge inverter.
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In this method, three reference sinusoidal waveforms are separately compared with
a common sawtooth carrier waveform as in Figure 6. Each comparison results in the
switching pulse of the corresponding switch. Since one leg contains two complementary
switches, control signals for both the switches in one leg will be opposite in nature, which
are produced by using the NOT gate in the circuit.
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4.3. Inverter-Side Controller

To test the system for a closed-loop and verify the performance of the HS-SZSC, the
proportional integral (PI) controller is employed with the inverter. Figure 7 displays the
inverter-side controller. It can be seen that abc to dq0 transformation, also known as
park transformation, is used. Park transformation refers to the conversion of the three-
phase signal (abc) to rotating reference frame (dq0). In contrast to the abc system, the
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dq0 frame offers easier control, thus the system can be controlled by using only one
controller. Moreover, the PI controller with DC quantities offers a reliable and effective
control solution; therefore, the output of the inverter is transformed using abc to dq0
transformation in MATLAB. Furthermore, the angular position of the rotating frame (Wt) is
obtained using the phase lock loop (PLL) model. Later, the three-phase voltage (Vabc) along
with the angular position of the rotating frame (Wt) is fed to the transformation block. The
obtained dq0 components are compared with the reference signal, which generates the error
signal. The error signal is fed to the PI controller, which outputs the desired signal. The PI
controller parameters are taken as KP = 0.001 and KI = 0.5.
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5. Comparison of Voltage Gains

To estimate the converter’s performance, the boost ability is the significant one among
other properties of the DC-DC converter. In this section, traditional converters employed
with GCIs are compared with the proposed HS-SZSC [38]. The converter topologies
presented in [5,6,25,26] are compared with the proposed switched converter. The graph
shown in Figure 8 describes the relationship between the duty cycle and gain factor. From
Figure 8, it can be realized that the proposed converter obtains the higher voltage gain in
comparison to other conventional converters. With this feature, the switched converter can
be employed with GCIs at a lower cost and higher efficiency.
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6. Results and Discussions

The block diagram for a two-stage power conversion system utilizing the switched
converter is shown in Figure 4. The system consists of a DC power supply followed by a
HS-SZSC whose output relates to a 3-phase H-bridge inverter. The important parameters
adopted for simulations are specified in Table 1 [38].

Table 1. Simulation parameters.

Converter Parameters Inverter Parameters

L1–3 330 µH f Cr 3000 Hz
C1–3 320 µF Lf 4 × 10−3 H
VI 35 V Cf 7 × 10−5 F

In this research, the simulations are carried out for three cases i.e., normal condition,
transient condition, and addressing an islanding issue in GCIs. For normal conditions, the
HS-SZSC is supplied with a fixed input voltage VI = 35 V; however, for the transient state,
the HS-SZSC is fed with the variable supply voltage to exhibit the transient characteristics.

In addition, the simulation results are compared with traditional ZSC with similar
conditions to validate the performance of the proposed model. The simulation results for
conventional ZSC and HS-SZSC for all cases are given through the following case studies.

6.1. Case 1: Normal Conditions

In this case, the HS-SZSC and ZSC are fed with a fixed supply voltage of VI = 35 V.
The simulation results for both the converters are manifested in Figures 9–12. Figure 9
presents the output voltage of conventional ZSC and HS-SZSC. From Figure 9, for the same
input voltage (VI = 35 V) and duty cycle (D = 0.15), the HS-SZSC achieves significantly
higher output voltage (VO = 150 V) compared to conventional ZSC (VO = 50 V). Since the
gain factor is described as the ratio of the output voltage to the input voltage thus, the gain
factor at D = 0.15 for the HS-SZSC and ZSC are G = 4.28 and G = 1.42, respectively. Hence,
the HS-SZSC clearly achieves a higher gain factor in comparison with traditional ZSC.
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Since the output of both converters are interfaced with a 3-phase H-bridge inverter,
Figure 10 shows the output voltage and current waveforms for these converters. From
Figure 10a, the peak voltage and current values for the ZSC are VO(ac) = 40 V and
IO(ac) = 2.5 A, respectively. On the other hand, for proposed HS-SZSC, these values are
found to be VO(ac) = 140 V and IO(ac) = 7.6 A. This can be justified by considering the DC
gains of both the converters at the aforementioned conditions, i.e., HS-SZSC (4.28) and
ZSC (1.42). Since the output of the converter is fed to the inverter as input, thus, the lower
DC gain will produce a reduced ac voltage and current. It is evidenced that, compared to
conventional ZSC, the proposed converter achieves significantly higher voltage and current
values on the inverter side as well.

The total harmonic distortion (THD) is one among the considerable factors for the
inverter operation.

Thus, for the efficient operation, this value should be as low as possible. The THD
curves for the inverter interfaced with the ZSC and HS-SZSC are given in Figures 11 and 12,
respectively. From Figures 11 and 12, it can be found that the THD value for both output
voltage and current is 0.55% when the proposed HS-SZSC is interfaced with the inverter,
which complies well with the IEEE standard [43,44]. However, for the inverter with the
conventional ZSC, the values of the THD are 32.59% for voltage and 39.74% for current.
The higher values of THD for ZSC-inverter combination are because of higher ripples at
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the output of the ZSC, thus the inverter supplied with such a voltage tends to have higher
THD. Further it can be noticed that the proposed design achieves a smaller value of THD,
thus the efficiency of the inverter interfaced with HS-SZSC will be higher, compared to
the ZSC.

6.2. Case 2: Transient Conditions

In this case, the transient state was introduced by supplying the HS-SZSC and ZSC
with a variable supply voltage. The voltage is varied between 40 and 80 V. The simulation
results for both the converters in this case study are demonstrated in Figures 13 and 14.
Figure 13 presents the variable input voltage along output voltages of conventional ZSC
and HS-SZSC during this state. The set value of the output voltage for both converters
is 160 V. From the simulation result in Figure 13, the output of the ZSC is continuously
varying with the input voltage. It is only constant when the input voltage reaches higher
than 60 V. This point can be observed from the waveform during the time from 2 to 3 s
and 6 to 8 s. The reason behind this is the continuous change in input voltage and switch
stress. When the voltage is between 40 and 60 volts, the ZSC has to generate the gain of
4.0–2.66 to maintain the output voltage at 160 volts, thus with the higher gain, the stress on
the switches increases that produces the ripples at the output voltage.
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On the other hand, the proposed HS-SZSC maintains the constant voltage throughout
the input supply. There are minor surges for a very short time (milliseconds), which is
because of a sudden rise in the input voltage. The proposed inverter design performs
well while comparing to the conventional converter. The reason behind this is higher gain,
reduced output voltage ripples (DC output), and reduced current and voltage stress on
the switches.

Apart from this, the output voltage and current waveforms of inverter interfaced with
both converters are given in Figure 14. From Figure 14, the output voltage and current
of inverter interfaced with the ZSC vary continuously due to the variation in the input
voltage. This can harm the load connected to it. However, on the other side, the same
inverter interfaced with the HS-SZSC maintains the constant output voltage throughout
the voltage range. Hence, the proposed HS-SZSC performs better during the transient
conditions as compared to the conventional ZSC, which further justifies the suitability of
the proposed design for GCI applications.
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6.3. Case 3: Islanding Issues in GCIs

Aside from the above analysis, this paper also focuses on the islanding issue of the
grid. Addressing an islanding issue is much important for GCIs in order to protect the
line workers and avoid the inverter loss. In this paper, to address the islanding issue, one
Simulink model using the switched converter is built using MATLAB, which is shown in
Figure 15.
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In this model, a MOSFET is utilized with the switched converter at the output side.
During the no-load condition, the manual switch is activated by the logically compared
output, which operates MOSFETs accordingly. Hence, no current flows through the line
during the no-load condition as shown in Figure 16.
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Furthermore, the HS-SZSC interfaced with the 3-phase H-bridge inverter is also
tested at different loading as well as power factor conditions which are demonstrated in
Figures 17 and 18, respectively. Figure 17 shows the variation in the efficiency with the
load current (at unity power factor).
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The efficiency of the inverter at maximum power handling is 80.75; however, it can
achieve the maximum efficiency of 83.1%. The efficiency vs. power factor graph is shown
in Figure 18. The efficiency of the proposed design varies with variations in the power
factor; however, the maximum efficiency that can be achieved is 83.4% at 0.90 pf lagging.
Owing to the gain ability and flexibility in the control of switched converter, it is observed
that the proposed design is more suitable for interfacing RESs with the AC grid.

7. Conclusions and Future Works

In this work, an advanced model of the Z-source converter (HS-SZSC) intended for
the GCI application is investigated. The proposed model exhibits the features of a higher
boost factor and utilizes a reduced number of components thus making it cost-effective
and highly efficient. In addition, the performance of the HS-SZSC employed with a GCI is
analyzed and compared with conventional ZSC for both normal and transient conditions.
In comparison to the ZSC, the proposed HS-SZSC performs better in both conditions.
During the normal condition, the HS-SZSC attained a higher boost factor of 4.28 and the
smaller THD value of 0.55% which complies well with the IEEE standards. Besides, during
the transient condition, it maintained the constant output voltage throughout the variations
in the input voltage. Apart from that, this paper also suggests a Simulink model to address
the islanding issue GCIs. Finally, the HS-SZSC interfaced with the 3-phase inverter was
tested under varying load conditions (at unity power factor) and power factor conditions.
The two-stage conversion system utilizing a switched converter maintained the efficiency
of 80.75% at maximum power handling and maximum efficiency of 83.6%. Owing to the
performance of the HS-SZSC in normal and transient conditions, it can be concluded that
the proposed HS-SZSC is more suitable for GCI applications. Future work will involve
practical validation of the proposed design. Later on, the proposed design will also be used
for single stage power conversion employed with a self-boost ability.
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