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Abstract: Traffic flow prediction provides support for travel management, vehicle scheduling, and
intelligent transportation system construction. In this work, a graph space–time network (GSTNCNI),
incorporating complex network feature information, is proposed to predict future highway traffic
flow time series. Firstly, a traffic complex network model using traffic big data is established, the
topological features of traffic road networks are then analyzed using complex network theory, and
finally, the topological features are combined with graph neural networks to explore the roles played
by the topological features of 97 traffic network nodes. Consequently, six complex network properties
are discussed, namely, degree centrality, clustering coefficient, closeness centrality, betweenness
centrality, point intensity, and shortest average path length. This study improves the graph convo-
lutional neural network based on the above six complex network properties and proposes a graph
spatial–temporal network consisting of a combination of several complex network properties. By
comparison with existing baselines containing graph convolutional neural networks, it is verified
that GSTNCNI possesses high traffic flow prediction accuracy and robustness. In addition, ablation
experiments are conducted for six different complex network features to verify the effect of different
complex network features on the model’s prediction accuracy. Experimental analysis indicates that
the model with combined multiple complex network features has a higher prediction accuracy, and
its performance is improved by 31.46% on average, compared with the model containing only one
complex network feature.

Keywords: traffic flow prediction; GSTNCNI; complex network feature information

1. Introduction

As a physical fundamental of any country, the road transportation network plays a vital
role in both social and economic development. However, with recent rapid socioeconomic
development, car ownership continues to rise, which in turn places tremendous pressure on
road traffic, and traffic congestion is becoming increasingly problematic [1]. Optimizing and
transforming the traffic network and intelligent management are effective ways to alleviate
traffic congestion. Road traffic network analysis and research are of great importance and
strongly support intelligent transportation.

Complex networks which describe the relationship between different individuals have
become an emerging research hotspot in recent years. Individuals are usually considered
to be network nodes and connecting edges if there is a specific relationship between them.
Therefore, a large number of nodes and the connected edges between them constitute a
complex network. Complex network theory has good applicability in several complex
problem fields, including protein, citation, computer, and power networks. Transportation
networks are also typical complex network structures [2–4]. Many studies have introduced
complex network theory into transportation network analysis and research. Shen et al. [5]
used complex network theory to analyze the metro-bus composite network in Chengdu, a
small-world network with scale-free features, and analyzed its resistance to destruction
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under random and deliberate attacks. Chang et al. [6] used complex network theory to
analyze the Beijing rail transit network. Zhang et al. [7] established the main skeleton
regional network and urban network of the national comprehensive three-dimensional
transportation network by searching for important nodes with high centrality. They then
analyzed their robustness based on proximity centrality, mediator, and PageRank centrality,
respectively. Hu et al. [8] applied complex network theory to urban traffic congestion
factor risk propagation. They proposed the concept of network node importance, based on
complex network metrics, to classify network nodes and perform direct immune control
on core nodes. It was found that this method can reduce the degree of traffic congestion
factor risk and speed up risk recovery. Yang et al. [9] applied complex network theory
to critical node identification and integrated the degree and clustering coefficients and
neighbors to identify critical nodes and calculate the weights of degrees and clustering
coefficients using entropy techniques. The experimental results from four real networks
showed that the method can more effectively identify critical nodes. The above study only
analyzes traffic complex network topology and features and does not discuss integration
with intelligent transportation.

Intelligent transportation can effectively improve traffic congestion and operational
efficiency through traffic control and inducement, while real-time and accurate traffic flow
prediction is the key to achieving intelligent traffic management. Through various monitors
distributed on the traffic network, we can obtain rich traffic data which researchers can
apply to deep learning traffic flow prediction models [10,11].

Long short-term memory networks (LSTM), convolutional neural networks (CNN),
and combined models have been successively applied to traffic prediction problems.
Jia et al. [12] used deep belief networks (DBN) with LSTM to achieve traffic flow predic-
tion under wet weather conditions in Beijing. Ma et al. [13] dynamically transformed
traffic data into images describing spatial–temporal traffic flow relationships and used
CNN to extract the spatial–temporal features in the image to realize the traffic speed pre-
diction. LSTM is good at processing time-series data [14] and CNN is good at extracting
Euclidean spatial data features [15]. Traffic data not only have a temporal correlation,
but also have a spatial relationship between monitors, as the source of traffic data is an
ir-regular graph structure belonging to non-Euclidean space. Therefore, to fully exploit
the spatial correlation between data, a graph convolutional neural network (GCN) is
introduced to traffic flow prediction. Zhao et al. [16] proposed a T-GCN model, which
uses GRU to extract temporal correlations between data, and GCN to extract spatial
correlations. Yu et al. [17] established an ST-GCN consisting purely of convolutional
neural networks, which combines graph convolution and gated-temporal convolution.
There are fewer parameters in this model, allowing it to be more effectively applied to
large-scale datasets. On this basis, Guo et al. [18] proposed the MSTGCN model and
applied it to highway traffic prediction. The MSTGCN consists of three independent
components modeling the proximity dependence, daily cycle, and weekly cycle depen-
dence of traffic data, with each component consisting of a standard 2-dimensional graph
convolution. The ASTGCN model [19] is based on the MSTGCN but with an added
spatial–temporal attention mechanism.

Complex network theory, as a new graph structure data analysis tool, can deeply an-
alyze and mine the spatial relationships among monitoring stations. Tang et al. [20] used
complex network theory to study traffic flow time series, providing a new perspective for
traffic flow analysis. The complex network degree distribution can be fitted to a Gaussian
function and the cumulative degree distribution can be fitted to an exponential function.
The density and clustering coefficients reflect the changes in connectivity between nodes
in complex networks, and the change results are consistent with the observed adjacency
matrix graph results. Consequently, the range of critical thresholds can be determined,
based on complex network theory. This work provides a new method for understanding
the dynamics of traffic flow time series. Tang et al. [21] used the Lempel–Ziv algorithm
to evaluate traffic flow data complexity over different time scales. To gain more insight
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into the complexity and periodicity of the traffic flow time series, each day is considered
a cycle, and each cycle is considered a single node, thus constructing a complex network
from the traffic flow time series. The complex networks are analyzed according to vari-
ous statistical properties, including average path length, clustering coefficient, average
degree, and intermediate degree. The experimental results in the above paper show that
complex networks are a practical tool for mining the dynamic variation characteristics of
traffic flow time series. However, the paper only analyzes the traffic flow data through a
complex network and does not apply it to traffic prediction.

In this research, complex networks and GCN are combined to predict traffic flow.
Firstly, a traffic complex network model is established using highway traffic big data, the
topological features of traffic road networks are then analyzed by complex network theory,
and finally, the topological features are combined with graph neural networks to explore
the role of topological features in complex networks in traffic flow prediction. The main
motivations and contributions of this paper are as follows.

(1) In traffic flow forecasting, many forecasting models are highly accurate. However,
a spatiotemporal prediction model, based on the graph structure, cannot consider
multiple properties in the graph structure information, which would otherwise
enable it to improve the prediction accuracy. This work mines and analyzes many
features and information of the complex traffic network composed of traffic nodes
and proposes a novel graph spatial–temporal model (GSTNCNI) that can merge
the complex network feature information. The prediction times are 5 min, 30 min,
and 60 min.

(2) The spatial convolution layer in GSTNCNI can fuse the complex network feature
information to fully capture and mine the complex spatial correlation relationships
between traffic nodes. The temporal convolutional layer in GSTNCNI is used to com-
pute time-dependent time-series features. To overcome the limitations of traditional
recurrent neural networks that do not support parallel computation and slow training
speed, the temporal convolution layer uses a multilayer residual structure instead of
the gating mechanism of recurrent neural networks.

(3) Comparison and ablation experiments are conducted on GSTNCNI using the PeMS
dataset. The experimental results show that GSTNCNI is optimal, and exhibits a
strong, stable traffic flow prediction performance.

2. Traffic Complexity Network
2.1. Traffic Complexity Network Construction

Complex network theory is used to model the traffic complex network to intensely
analyze the traffic network topological features. Complex network modeling mainly
involves two methods, Space L and Space P [22]. The Space L method abstracts monitoring
stations as nodes and connects edges between two nodes through roads if they are directly
adjacent. The Space P method also abstracts monitoring stations as nodes but connects
edges between two nodes if they are reachable through roads. The complex network
established by the Space L method is closer to the real traffic road network and is more
conducive to the extraction of monitoring station spatial features. Consequently, this paper
employs the Space L method to model the traffic network.

The traffic complex network can be defined as G = (V, E, W), where the set
V = {v1, v2, . . . , vn} is the set of nodes, n is the total number of nodes, and a monitor-
ing station is abstracted as a node. The set E = {e1, e2, . . . , em} is the set of edges and m is
the total number of edges when two monitors are directly adjacent, which corresponds to
two nodes with edges between them, i.e., ek =

(
vi, vj

)
∈ E and vi, vj ∈ V. Additionally,

W : E→ R , for each edge ek of G, W(ek) = d
(
vi, vj

)
is the weight on the edge. d

(
vi, vj

)
is

the shortest distance between two points vi, vj. The shortest distance in the unweighted
graph refers to the number of edges of the shortest path between two points, and the
sum of the weights of the edges in the shortest path in the weighted graph is the shortest
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distance between two points. The expression of the complex network adjacency matrix
A =

{
aij
}

n×n. aij is shown in Equation (1).

aij =

{
1,
(
vi, vj

)
∈ E

0,
(
vi, vj

)
/∈ E

(1)

The traffic California highway network is analyzed in this paper, with data obtained
from the PeMS highway dataset [23]. The data are gathered from sensors distributed along
the highway, and this study contains data downloaded from 157 sensors, including the
sensor location coordinates as well as traffic flow, speed, and lane occupancy. The traffic
flow is sampled at 5 min intervals, with each sensor obtaining up to 288 pieces of data a
day. The coordinates data are used to model the highway network, while the flow data are
used for traffic forecasting.

The nodes are numbered by removing duplicate locations and proximity at 157 moni-
toring points, which are then sorted according to latitude and then longitude. Subsequently,
a neighbor table is built between the nodes according to the neighboring relationship, from
which the road network model is finally formed. The final traffic complex network contains
97 nodes and 178 edges, and is shown in Figure 1. As seen in Figure 1, each node in the
graph represents a physical sensor. Due to the large distance between physical sensors, the
traffic network topology cannot be observed intuitively. Therefore, this paper represents
physical sensors in the graph in the form of nodes that are connected in the topology graph
according to the road connectivity between the sensors.
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Figure 1. Traffic complex network structure and node location. (a) Traffic complex network structure;
(b) The geographical location of the 97 monitoring stations.

2.2. Analysis of Complex Network Topological Features

The topological features of a complex network are parameters used to describe its
structural features, and this paper analyzes the importance and the degree of mutual influ-
ence of nodes in the network. Statistics such as degree centrality, clustering coefficient [24],
closeness centrality, betweenness centrality [25], point strength [26], and ASPLN [27] are
introduced to characterize the node structural features. Among them, point strength and
average shortest path length are the statistical parameters in the weighted graph.

2.2.1. Degree and Degree Centrality

The degree of a node in a network indicates the number of times the point acts as
an edge endpoint, and for simple graphs, the degree is the number of neighboring nodes.
The greater the node degree, the more connected it is to other nodes and the greater its
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importance. Degree centrality is obtained by normalizing the degree. Equations (2) and (3)
are the formulas for degree and degree centrality, respectively.

Ki =
n

∑
j=1

aij (2)

DCi =
Ki

n− 1
(3)

where aij represents the connectivity between node i and node j. If node i is connected
to node j, then aij = 1, otherwise aij = 0. Ki represents the degree value of the i-th node.
Degree centrality of the i-th node is DCi. The node degrees of this highway network are
shown in Figures 2 and 3, and the node color in Figure 2 represents the node degree value.
The node with degree 1 is the road starting point, the node with degree 2 accounts for 45%
at most, the degree values of the rest of the nodes are concentrated in 3, 4, and 5, and there
are three nodes with degree values up to 12. The node degree of the network conforms to
the power law distribution.
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2.2.2. Clustering Coefficients

The clustering coefficient represents the degree of node aggregation in a network and
is characterized by the number of edges between neighboring nodes. Assuming that the
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i-th node degree is Ki, there are at most (Ki(Ki − 1))/2 possible edges between Ki nodes,
and the clustering coefficient of a node is the ratio of the actual number of edges between
Ki nodes to the maximum number of possible edges, as given by Equation (4).

Ci =
Ei

(Ki(Ki − 1))/2
(4)

where Ei is the actual number of edges between Ki nodes. Clustering coefficients of the i-th
node are represented by Ci. Figure 4 displays the clustering coefficient of this high-speed
road network. Compared with the urban road network, the highway network has fewer
intersections and more 2-degree nodes. So, more than 50% of the nodes in the network
have a clustering coefficient of 0, 25% have a clustering coefficient between 0.3 and 0.4, and
only 10% of the nodes have a clustering coefficient over 0.5. The average road network
clustering coefficient is 0.19, indicating that it is a low-aggregation network.
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2.2.3. Closeness Centrality

The centrality degree is calculated based solely on the network local characteristics,
while the closeness centrality can be obtained based on the network global topology. Its
value is defined as the reciprocal of the sum of the shortest distance between the node
and all other nodes. The larger its value, the closer it is to the network geometric center.
Facilities with high pedestrian traffic generally need to be built at locations with large
closeness centrality. The normalized closeness centrality equation is shown in Equation (5).

CCi =
n− 1

∑n
j=1 d

(
vi, vj

) (5)

where d
(
vi, vj

)
represents the shortest distance between node vi and node vj. CCi represents

the closeness centrality of the i-th node. The highway network closeness centrality is shown
in Figure 5. The minimum closeness centrality value is 0.095 and the maximum is 0.229. In
total, 90% of the node closeness centrality lies between 0.1 and 0.2.

2.2.4. Betweenness Centrality

Betweenness centrality is a global statistic when two disjoint nodes in a network need
to pass through other nodes to connect. The higher the number of times a node acts as an
“intermediary”, the greater its betweenness centrality. Betweenness centrality is defined as
the ratio of the number of shortest paths through the node to the number of all the shortest
paths in the network. The normalized betweenness centrality equation is Equation (6),
where gst is the number of shortest paths between nodes s and t, and gst(i) is the number
of shortest paths between s and t through i. [(n− 1)(n− 2)]/2 is the maximum value of
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the shortest path possible through the i node. BCi represents the betweenness centrality of
the i-th node.

BCi =
1

[(n− 1)(n− 2)]/2 ∑
s 6=i 6=t

gst(i)
gst

(6)
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The highway network betweenness centrality is shown in Figure 6. The betweenness
centrality varies widely between nodes, from a minimum value of 0 to a maximum value
of 0.26. In total, 82% of the nodes have intermediary centrality between 0 and 0.1.
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2.2.5. Point Strength

The node degree reflects the node network structure characteristics while the point
strength adds the node’s associated edges’ weight information to the degree value. Thus,
the node characteristics reflected by the point strength are more accurate and comprehen-
sive than the degree value. The point strength is defined as the sum of the weights of the
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node edges and the adjacent nodes, and its formula is Equation (7). Si represents the node
strength of node i. wij represents the weight of the edge between node i and node j.

Si = ∑
j∈Γi

wij (7)

The highway network point strength is shown in Figure 7. The maximum value is 358
and the minimum value is 0.3. In total, 74% of the nodes have point strength between 0
and 50.
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2.2.6. Average Shortest Path Length of Nodes

The average shortest path length of nodes (ASPLN) is defined as the average length of
the shortest paths from that node to other nodes by adding the edge weight information in
the network based on the closeness centrality. Its formula is Equation (8).

asplni =
1

n− 1

n

∑
j=1,j 6=i

d
(
vi, vj

)
(8)

Here, the shortest path length is the sum of the edge weights in the shortest path.
The highway network ASPLN is shown in Figure 8. The maximum value is 88 and the

minimum value is 27. In total, 57% of the nodes have an ASPLN of between 20 and 40.
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3. Deep Spatial–Temporal Model Design

Figure 9 shows the GSTNCNI model structure which consists of two main parts: the
spatial convolutional layer for modeling the spatial correlation relationship between traffic
nodes and the temporal convolutional layer for modeling the temporal data temporal
dependence features. To highlight the impact of complex network features on the model
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performance, we introduce the complex network feature calculation process in spatial
relations. A detailed elaboration of the spatial and temporal convolutional layers is shown
in Sections 3.1 and 3.2, respectively.
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(1) Input data periodicity

This paper divides the traffic flow data into 5 min time steps. As described in Sec-
tion 2.1, the traffic network topology graph is defined as G = (V, E, W), where
V = {v1, v2, . . . , vn} is the set of nodes in the traffic network topology graph. |V| = n
indicates that there are n nodes in the topology graph. Let the input data time periods be
T; xi

t ∈ R, i ∈ [1, 2, . . . , n], t ∈ [1, 2, . . . , T] represent the i-th node traffic flow size in the
t-th time periods. Xt ∈ Rn represents the traffic flow of all nodes at the t-th time periods.
X = {X1, X2, . . . , XT} ∈ Rn×T represents all traffic flow data. Since the change of a node’s
traffic flow data is affected by the traffic flow change of the node in the previous period,
this paper uses the historical traffic flow data of the previous hour, that is, 12 time periods,
to predict the future (12 time periods) traffic flow. When the model predicts the traffic flow
of all nodes 12 time periods after tp, the input data of the model is defined as:

Input =
{

Xtp−11, Xtp−10, . . . , Xtp

}
∈ Rn×12 (9)

(2) Data Standardization

When training the traffic flow data, the large range of traffic flow values can lead to
low traffic data prediction accuracy and slow gradient descent for the optimal solution. To
resolve these issues, the Z-score normalization method is used in this paper and the data
are processed to conform to standard normal distribution with the transformation function.
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where X is the real traffic data, µ is the mean of all the sample data, and σ is the standard
deviation of all the sample data. During the data standardization process, the traffic flow
data mean and standard deviation need to be calculated. Standardization of the data can
lessen the effect of some large variable values on the model.

Xnorm =
X− µ

σ
(10)

The Dropout mechanism [28] is used to prevent the overfitting of the complex model
in this paper. This mechanism simplifies the model by randomly discarding a part of the
neuron nodes (feature detectors) which prevents the model from overfitting. Since the
two neurons do not necessarily appear in a network, this can reduce the interaction between
the neuron nodes. By randomly discarding part of the neuron nodes, the neurons can pay
more attention to whether their feature detection is advantageous to the final result, rather
than relying on the feature values detected by other neurons with a fixed relationship.

(3) Output data periodicity

In addition, Yi
t ∈ R indicates the i-th node traffic flow at a future moment t. The traffic

flow of all nodes at the future moment t is shown in Equation (3).

Output =
(

Y1
tp+1, Y2

tp+2, . . . , Yn
tp+12

)
∈ Rn (11)

3.1. Spatial Convolution Layer

In the graph neural network process, it is essential that each node in the graph is
influenced by its related neighbor nodes and changes its state until it reaches an equilibrium
state. This influence becomes greater as the closeness of the relationship increases [29].
As mentioned above, the network topological features can describe the network-resultant
features and reflect the role and importance of each node in the network. The graphical
neural network introduces a modified version of the Laplacian matrix to incorporate the
influence of neighboring nodes as well as its own nodes in the network into the calculation
process. As shown in the Figure 10, the Laplacian matrix L of a graph is defined as:
L = D− A, where D is the degree matrix. A is the adjacency matrix [30]. The normalized
Laplacian matrix is shown in Equation (12).

Lsym = D−
1
2 LD−

1
2 (12)
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The problem of transferring node information is overcome in the Laplacian matrix,
and the first-order Chebyshev approximation is used to simplify the calculation [31], as
shown in Equation (13), where θ is the trainable parameter matrix, D is the degree matrix,
and x is the input signal.

θ ∗g x = θ
(

In + D−
1
2 AD−

1
2

)
x (13)

The matrix T is introduced as the network topological characteristic matrix. tii can
represent the six network topological features above, such as degree centrality, clustering
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coefficients, closeness centrality of nodes, etc. Parameter initialization is an important part
of parameter training and has a significant impact on the model accuracy.

T =

t11 · · · 0
...

. . .
...

0 · · · tnn

; Tsym =


t11

∑n
i=1 tii

· · · 0
...

. . .
...

0 · · · tnn
∑n

i=1 tii

 (14)

By normalizing the T matrix to Tsym, the influence of different features is reduced
in terms of magnitude, thus reflecting the relative importance of the node’s features in
the network. θ is initialized to the value of Tsym matrix, thus realizing the topological
properties of the network into the graph convolution process. θ already contains the
relative-importance information of the node at the beginning, which can achieve faster
convergence in the training process. This makes the results closer to the global optimal
solution, as shown in Equation (14).

Different features correspond to different initialization parameter matrices, which in
turn correspond to different GCN modules, and the modules corresponding to different
features are fused by weighting and are trained centrally, as shown in Equation (15), where
n is the number of GCNs.

θ ∗g x = (θ1 ⊕ θ2 ⊕ · · · ⊕ θn) ∗g x (15)

3.2. Temporal Convolution Layer

A special Temporal Convolution Layer (TCL) was designed in this paper to compute
the data time-dependent features, as shown in Figure 11. The TCL is particularly useful
in three ways. Firstly, it can retain all the historical information and compute long-term
historical information using causal convolution. Secondly, it uses dilated convolution to
extend the receptive field of the convolution process. The dilation rate varies according to
a convex function, which allows the model to compute deep features without losing any
local information due to an oversized receptive field. Finally, it is entirely composed of
convolutional networks and uses a multilayer residual structure instead of the traditional
“gate” structure. Furthermore, TCL overcomes the traditional RNN issues of not support-
ing parallel computation and slow training speed [32]. In general, TCL can effectively
mine and model the data temporal features, unlike Convolutional Gated Recurrent Units
(ConvGRU), which allows GRU to directly process image information by introducing
convolutional operations.
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Causal convolution [33] in the TCL is used to obtain long-term historical information.
The causal convolution formula is shown in Equation (16), where X = (x1, x2, . . . xT) de-
notes the input sequence, Y = (y1, y2, . . . yT) denotes the output sequence, and
F = ( f1, f2, . . . fk) denotes the filter. The causal convolution focuses solely on histori-
cal information and ignores future information. In addition, the larger K is, the more
historical information is obtained during the causal convolution.

yt =
K

∑
i=1

fi · xt−K+i (16)

A downsampling process is required by the model in deep neural networks to increase
the receptive field and reduce the computational effort. However, downsampling also leads
to a decrease in spatial resolution. We therefore consider the use of dilated convolution [34]
to maintain a certain degree of spatial resolution while increasing the receptive field. Dilated
convolution has a parameter that sets the dilation rate, meaning that the convolution kernel
is filled with dilation rate. As a result, the dilation rate and size of the receptive field vary,
enabling multiscale information to be acquired. The dilated convolution formula is shown
in Equation (17), where d denotes the dilation rate, which changes as a convex function
according to the depth of the network. Increasing either d or K can widen the receptive
field range. However, the receptive field will be deepened with the network layers in a
deep network so that there is no correlation between the information obtained from the
long-distance convolution, resulting in a loss of local information. Consequently, we vary
the dilation rate according to an exponential function of 2, as in the d variation process in
Figure 11. This design pattern ensures that the perceptual field range in the deep network
is limited to a certain extent, reducing the loss of local information.

yt =
K−1

∑
i=0

fi · xt−i·d (17)

The residual structure is used instead of the traditional “gate” structure to diminish
the training process complexity and increase the training speed, as shown in Figure 12. The
residual structure consists mainly of a two-layer convolutional network and a nonlinear
mapping process. Weight Norm [35] is a data normalization method that rewrites parame-
ters and is often used to accelerate model convergence. By normalizing the weight, it can
ensure that the gradient range is suppressed when the gradient is backpropagated, and
thus, the gradient becomes self-stabilizing. In addition, the Dropout layer can ignore a
certain number of neurons to reduce the overfitting phenomenon. TCL contains five layers
of residual blocks.
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4. Experiments
4.1. Experimental Setup

All experiments were performed and tested on the Windows 10 system (CPU: Intel(R)
Xeon(R) W-2133 CPU @3.60GHz; GPU: NVIDIA GeForce RTX 2080 Ti). In this paper, the
daily inputting data time was 12 time periods, that is, 1 h in total, and the time for the
most recent data input was 12 time periods or 1 h. The traffic data were predicted over
the next 12 time periods, or for the next hour. In TCL, the initial expansion factor was 2
and the convolution kernel size was 3. The experimental settings of the two TCL layers
were the same. In GCN, the spatial feature extraction accuracy increased as the number of
Chebyshev polynomial terms increased. However, a larger number of items will increase
the training difficulty. In this article, Chebyshev’s third-order polynomial was used, that
is, K = 3. In the training phase, all experimental batch sizes were 32, and the learning rate
was set to 0.001. All experiments used the Adam optimizer [36] to train the model, and the
maximum number of training iterations was set to 1000.

4.2. Dataset

The dataset selected for this paper were traffic flow data on California freeways in
the United States. The data come from the Performance Measurement System (PeMS,
http://pems.dot.ca.gov/) (accessed on 30 June 2022) on California freeways in the U.S. and
traffic data in PeMS is collected in real-time from over 39,000 detectors. These sensors cover
the freeway systems of all major cities in California. PeMS is also an archived data user
service (ADUS) containing more than a decade of historical analysis data which integrate
a variety of information from Caltrans and other local agency systems. The dataset was
accessed on 10 August 2020. In this paper, 97 detectors were selected from PeMS as nodes
in the training set. For these 97 nodes, the traffic flow data from 1 April to 1 May 2020
(30 days in total) are selected as the training set with 8640 5 min time segments in total. To
verify the model performance, the test set is used for the traffic flow from 1 May to 25 May
2020, a total of 25 days. The test set data consists of 7200 5 min time segments.

4.3. Evaluation Metrics and Baselines

This paper selected Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE)
as indicators to evaluate the model performance. The MAE value range was [0, +∞). When
the predicted value was fully consistent with the actual value, the MAE calculation result
was equal to 0, that is, a perfect model. The larger the MAE, the larger the error. The
definition expression of MAE is Equation (18).

MAE =
1
n

n

∑
i=1
|ŷi − yi| (18)

RMSE is often used as a standard for measuring machine learning model prediction
results and measures the deviation between the observed and true values. The RMSE value
range is the same as that of MAE. Similarly, the larger the RMSE, the larger the error. The
definition expression of RMSE is Equation (19).

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (19)

We selected the experimental results of the following four baselines to compare with
the GSTNCNI experimental results:

• GCN [30]: Graph Convolutional Network, a special CNN model.
• T-GCN [16]: A Temporal Graph Convolutional Network for Traffic Prediction. T-GCN

is used to capture temporal and spatial dependence, for both short-term and long-
term prediction.

http://pems.dot.ca.gov/
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• STGCN [17]: Spatiotemporal Graph Convolutional Network, a deep learning frame-
work for traffic prediction. STGCN applies a pure convolutional layer to simultane-
ously extract spatiotemporal information from the graph structure time series.

• ASTGCN [19]: Attention Based Spatial–temporal Graph Convolutional Network; a
deep learning model for traffic flow prediction. ASTGCN uses a spatiotemporal
attention mechanism to highlight the temporal and spatial features of input data; GCN
is then used to extract the input data spatial features, and standard convolution is
used to obtain the temporal features.

4.4. Comparison Experiments and Ablation Experiments

The GSTNCNI was placed under the same experimental conditions as the other
four baseline models to predict the test set, and the MAE, RMSE, and prediction results
were recorded. During the experiments, traffic flows were predicted for the next 12 time
segments (i.e., 60 min). Table 1 displays the evaluation results of all traffic flow prediction
models on the same dataset. It can be seen that the model outperforms other baselines in
the same training environment. Compared with the baseline, GSTNCNI incorporates node
correlation analysis to improve the model prediction accuracy.

Table 1. Results of the evaluation of different flow prediction models.

Model
MAE RMSE

5 Min 30 Min 60 Min 5 Min 30 Min 60 Min

GCN 20.61 24.19 26.45 25.74 28.10 29.68
T-GCN 15.74 18.25 21.08 20.36 24.63 27.97
STGCN 12.86 16.77 17.83 18.64 20.71 24.02

ASTGCN 10.97 13.56 15.14 17.33 19.68 22.41
Ours 8.38 11.23 12.67 14.56 16.89 20.50

4.4.1. Comparison of GSTNCNI with a Model Containing a Graph Convolutional
Neural Network

In Figure 13, each time step on the x-axis is 5 min, and the y-axis represents the
amount of traffic passing through within that time. This paper selects the traffic flow within
400 consecutive time steps as the prediction target to more intuitively show the time series
changes in traffic flow. In the model prediction process, the traffic flow of the first 12 time
periods was taken to predict the traffic flow of the subsequent 12 time periods, and the
prediction results were then spliced in order of time to obtain 400 consecutive time step
predictions. The traffic flow data were standardized by the Z-score normalization method,
and the mean value after standardization was 0. The initial value of the parameter matrix
of GCN in the compared models was randomly generated, so it can be considered that the
predicted value starts from the mean value, then iterates and optimizes according to the loss
function through the backpropagation gradient descent method, and gradually fits the real
value. Therefore, the prediction curve is generally below the real curve. Figure 13 shows
a comparison of the prediction results between GSTNCNI and four models containing
graph convolutional neural networks on the same dataset. It can be seen that the GSTNCNI
prediction results are better than those of the four baselines, the traffic flow data have strong
spatial correlation, and GCN can fully extract the traffic flow data spatial features. However,
traffic flow data, as typical time-series data, have a strong temporal correlation. Although
GCN can fully extract the spatial traffic flow data features, it lacks any temporal correlation
analysis. Therefore, the GCN prediction effect is the worst among the four baselines. T-GCN
adds the temporal correlation analysis module to GCN and extracts the temporal traffic flow
data features via the temporal correlation analysis module. By comparing the T-GCN and
GCN prediction results in Figure 13, it can be seen that the prediction effect of the model
after incorporating the time correlation analysis module is significantly improved. As shown
in Table 1, the T-GCN MAE is reduced by 5.39 on average, and the RMSE is reduced by 3.52
on average compared with GCN. T-GCN uses CNN to extract traffic flow data temporal
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features, but CNN is commonly used to extract Euclidean structured data spatial features,
including images and speech signals. Therefore, CNN cannot fully analyze the traffic flow
data temporal correlation. STGCN uses GRU to achieve traffic flow data temporal feature
extraction. Compared with CNN, GRU, as a typical recurrent neural network model, has
additional advantages in temporal correlation analysis. It can be seen in Figure 13 that the
STGCN prediction effect is closer to the real value. It can also be seen from Table 1 that the
STGCN MAE decreases to 15.82 on average and the RMSE decreases to 19.81 on average.
ASTGCN incorporates the STGCN-based attention mechanism. The attention mechanism
can effectively improve the efficiency of the spatial–temporal module in extracting the
traffic flow data spatial–temporal features. However, the GCNs in all four baseline models
use the traffic network adjacency matrix to calculate the Laplace matrix and complete the
spatial correlation analysis. This method lacks traffic node feature analysis, so to address
this problem, this paper uses the topological features of six complex networks to assist in
calculating the Laplace matrix and improve the GCN. The traffic prediction comparison
graph in Figure 13 shows that GSTNCNI can accurately fit the real traffic flow data and
improve traffic flow data prediction. The numerical comparison plot in Figure 13 shows
that the GSTNCNI prediction effect is uniformly distributed around the y = x diagonal,
indicating that the error between the predicted and real values of GSTNCNI is smaller.
Compared with baselines, the prediction results in this paper are closer to the real data.

4.4.2. Ablation Experiments

Figure 14 shows a comparison of the GSTNCNI prediction results with the model that
retains only one complex network characteristic. Among them, Ours_DC indicates a model
that only incorporates degree centrality; Ours_CC indicates a model that only incorporates
clustering coefficients; Ours_CTC indicates a model that only incorporates closeness cen-
trality; Ours_BC indicates a model that only incorporates betweenness centrality; Ours_PS
indicates a model that only incorporates point strength; Ours_ASPLN indicates a model
that only incorporates the average shortest node path length; Ours indicates a model that
incorporates all six of the above complex network features. Ours_None indicates a model
that does not contain the above features. By analyzing Figure 14, it can be seen that the
model incorporating only one network characteristic has errors in the traffic flow data
prediction results. However, compared with the Our_ None, their prediction results all
have improved. Among them, the model that only incorporates the average shortest node
path length has the worst prediction results. The node average path length only contains
part of the nodal distance information, which has less influence on the spatial correlation
analysis. Furthermore, the model that only incorporates clustering coefficients has inferior
results. The clustering coefficients reflect the degree of aggregation between nodes in the
graph. The model incorporating the clustering coefficients can fully extract the Euclidean
structure data spatial features. However, as traffic flow consists of typical non-Euclidean
structure data, the clustering coefficients cannot fully analyze the traffic flow data spatial
features. As a result, the Ours_CC prediction results still contain large errors compared
with the real traffic flow data. The GCN model, which uses Chebyshev polynomials instead
of a Fourier transform, achieves traffic flow data spatial correlation analysis with the help of
the node degree matrix. Ours_DC calculates the node degree centrality based on the node
degree matrix. The node degree centrality can effectively enhance the node correlation
information and reduce the model prediction error. Although node degree centrality can
effectively improve the traffic flow prediction accuracy of individual traffic nodes, it lacks
global node correlation analysis. Therefore, only incorporating node degree centrality has a
limited improvement in the model prediction capability. The node degree reflects the node
network structure features, while the point strength adds the node correlation edge weight
information to the degree value, so the node features reflected by the point strength are
more accurate and comprehensive than the degree value. As can be seen from Figure 14, the
prediction effect of the model incorporating only point strength is significantly improved
compared with the first three complex network feature metrics.



Electronics 2022, 11, 2432 16 of 22

Electronics 2022, 11, x FOR PEER REVIEW 15 of 22 
 

 

T-GCN MAE is reduced by 5.39 on average, and the RMSE is reduced by 3.52 on average 
compared with GCN. T-GCN uses CNN to extract traffic flow data temporal features, but 
CNN is commonly used to extract Euclidean structured data spatial features, including 
images and speech signals. Therefore, CNN cannot fully analyze the traffic flow data tem-
poral correlation. STGCN uses GRU to achieve traffic flow data temporal feature extrac-
tion. Compared with CNN, GRU, as a typical recurrent neural network model, has addi-
tional advantages in temporal correlation analysis. It can be seen in Figure 13 that the 
STGCN prediction effect is closer to the real value. It can also be seen from Table 1 that 
the STGCN MAE decreases to 15.82 on average and the RMSE decreases to 19.81 on aver-
age. ASTGCN incorporates the STGCN-based attention mechanism. The attention mech-
anism can effectively improve the efficiency of the spatial–temporal module in extracting 
the traffic flow data spatial–temporal features. However, the GCNs in all four baseline 
models use the traffic network adjacency matrix to calculate the Laplace matrix and com-
plete the spatial correlation analysis. This method lacks traffic node feature analysis, so to 
address this problem, this paper uses the topological features of six complex networks to 
assist in calculating the Laplace matrix and improve the GCN. The traffic prediction com-
parison graph in Figure 13 shows that GSTNCNI can accurately fit the real traffic flow 
data and improve traffic flow data prediction. The numerical comparison plot in Figure 
13 shows that the GSTNCNI prediction effect is uniformly distributed around the y = x 
diagonal, indicating that the error between the predicted and real values of GSTNCNI is 
smaller. Compared with baselines, the prediction results in this paper are closer to the real 
data. 

  
(a) (b) 

  
(c) (d) 

Electronics 2022, 11, x FOR PEER REVIEW 16 of 22 
 

 

  
(e) (f) 

  
(g) (h) 

Figure 13. Comparison of the GSTNCNI experimental results with four models containing graph 
convolutional neural networks on the same data. (a) Comparison between GSTNCNI and GCN; (b) 
Scatter diagram of GSTNCNI and GCN prediction results; (c) Comparison between GSTNCNI and 
T-GCN; (d) Scatter diagram of GSTNCNI and T-GCN prediction results; (e) Comparison between 
GSTNCNI and STGCN; (f) Scatter diagram of GSTNCNI and STGCN prediction results; (g) Com-
parison between GSTNCNI and ASTGCN; (h) Scatter diagram of GSTNCNI and ASTGCN predic-
tion results. 

4.4.2. Ablation Experiments 
Figure 14 shows a comparison of the GSTNCNI prediction results with the model 

that retains only one complex network characteristic. Among them, Ours_DC indicates a 
model that only incorporates degree centrality; Ours_CC indicates a model that only in-
corporates clustering coefficients; Ours_CTC indicates a model that only incorporates 
closeness centrality; Ours_BC indicates a model that only incorporates betweenness cen-
trality; Ours_PS indicates a model that only incorporates point strength; Ours_ASPLN 
indicates a model that only incorporates the average shortest node path length; Ours in-
dicates a model that incorporates all six of the above complex network features. 
Ours_None indicates a model that does not contain the above features. By analyzing Fig-
ure 14, it can be seen that the model incorporating only one network characteristic has 
errors in the traffic flow data prediction results. However, compared with the Our_ None, 
their prediction results all have improved. Among them, the model that only incorporates 
the average shortest node path length has the worst prediction results. The node average 
path length only contains part of the nodal distance information, which has less influence 
on the spatial correlation analysis. Furthermore, the model that only incorporates cluster-
ing coefficients has inferior results. The clustering coefficients reflect the degree of aggre-
gation between nodes in the graph. The model incorporating the clustering coefficients 
can fully extract the Euclidean structure data spatial features. However, as traffic flow 
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Although point strength can improve the model prediction, it lacks a global traffic
network analysis. The Ours_CTC model uses closeness centrality to analyze global
node features, and closeness centrality can obtain the node centrality degree based on
the network global topology. By incorporating closeness centrality into the model, its
analysis of global node correlation can successfully be improved and its effectiveness
enhanced. Closeness centrality can reflect the centrality of a node in a complex network
but lacks information about interactions between nodes. Betweenness centrality is
a global statistic where two disjoint nodes in a network need to pass through other
nodes to connect. The higher the number of times a node acts as an “intermediary”,
the greater its betweenness centrality. The betweenness centrality can adequately rep-
resent the node connectivity and incorporating betweenness centrality in the model
can effectively improve its prediction ability. It can be seen from Figure 14 that the
model only incorporating betweenness centrality has the best prediction among the
six ablation experiments. The model incorporating the six complex network features
can fully extract the local and global spatial features in the network and substantially
improve the model prediction effect. By analyzing Figure 14, it can be seen that the
prediction result of the model incorporating the six complex network features accurately
fits the real traffic flow data variation.
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5. Discussion

Traffic flow data have a strong spatial correlation and certain baselines can adequately
extract their spatial characteristics. However, traffic flow data, as typical time series data,
also possess a strong temporal correlation. Although certain models can adequately extract
the traffic flow data spatial features, they lack analysis of the traffic flow data temporal
correlation. In recent years, graph spatial–temporal networks have been widely used in
the field of spatial–temporal traffic flow data prediction. The unique features of graphs
can capture the structural relationships between data. Therefore, more insights can be
attained using graph structures rather than using data analysis. However, solving the
learning problem on graphs is often challenging. An effective solution is to learn graph
representations in low-dimensional Euclidean space to preserve certain graph attributes
with the vast majority of the information. Deep learning models, based on graph structure
information, have recently emerged in the deep learning field and have exhibited superior
performance for a variety of problems. However, GCN uses the traffic network adjacency
matrix to compute the Laplace matrix and complete spatial correlation analysis based on
it. This method lacks analysis of traffic node characteristics and so to resolve this, this
paper uses the topological features of six complex networks to assist in calculating the
Laplace matrix and improve the GCN. The experimental results show that GSTNCNI can
accurately fit real traffic flow data and improve traffic flow data prediction. Compared
with all baselines, the complex network-based approach proposed in this paper improves
the actual performance by about 31.46% on average.

In addition, the ablation experiments results show that models only incorporating one
network feature have traffic flow data prediction errors. Among them, the prediction per-
formance of the model that only includes the average shortest node path length is the worst.
The average node path length only contains part of the node distance information and has
little influence on spatial correlation analysis. Furthermore, the model that only includes
the clustering coefficients performed poorly. Since traffic flow is typical non-European
structure data, the clustering coefficient cannot fully analyze the spatial characteristics of
traffic flow data. Node degree centrality can effectively enhance node-related informa-
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tion and reduce model prediction errors. However, it lacks any analysis of global node
correlations. The node degree reflects the node network structure characteristics, and the
point strength adds the weight information of the node-related edges to the degree value.
Consequently, the node characteristics reflected by the point strength are more accurate
and comprehensive than the degree value. The addition of closeness centrality to the model
effectively improves the global node correlation analysis, which helps improve the model’s
effectiveness. Betweenness centrality can fully represent the node connectivity and the
addition of betweenness centrality to the model effectively improves the model prediction
effect. In summary, the prediction results of the model combining the six complex network
features can accurately fit the changes in real traffic flow data.

Finally, there are numerous specific application scenarios for this work. For example,
Australia’s most populated city, Sydney, in New South Wales, plans to spend millions
of dollars to strengthen the monitoring and management of the region’s road networks.
The program called for Cubic to provide an intelligent traffic congestion management
program, an operational example of a predictive analytics application. Sydney will utilize
a data-driven model and management platform to predict traffic flow, reduce congestion,
and respond to emergency traffic incidents on time. By the end of 2020, when the plan
is complete, it will be the first city in the world to manage its transport network based
on predictive analytical models. Despite the high level of complexity, predictive models
are easily scalable. In other words, while the initial time and resource investment to
build the base model are substantial, once completed, the model can be applied to cities,
incrementally improving the quality of urban life.

6. Conclusions and Future Work

Complex network theory, as a new tool for graph structure data analysis, can deeply
analyze and mine the spatial relationships of monitoring stations. In this paper, we firstly
established a traffic complex network model by using traffic big data, then analyzed
the topological features of the traffic road network via complex network theory, and
finally combined the topological features with a graph neural network to explore the
role of topological features in traffic flow prediction. Six complex network properties are
discussed, namely, degree centrality, clustering coefficient, betweenness centrality, closeness
centrality, point strength, and average shortest path length. In this paper, we improve the
graph convolutional neural network based on the above six complex network properties
and propose a graph spatial–temporal network that combines several complex network
properties. By comparing with existing graph convolutional neural network baselines, it
is verified that GSTNCNI has high accuracy and robustness in traffic flow prediction. In
addition, ablation experiments are conducted on six different complex network features to
verify the impact of different complex network features on the model’s prediction accuracy.
The experimental analysis shows that a model incorporating multiple complex network
features has a more accurate prediction than a model incorporating only one complex
network characteristic. The six complex network features analyzed in this paper can
be divided into two main parts: locally relevant complex network features and globally
relevant complex network features. Incorporating multiple complex network features can
fully analyze local node correlation and global network correlation, which significantly
improves the model prediction accuracy.

Although GSTNCNI can make accurate traffic flow data predictions, there are still
several areas that can be improved. Firstly, the traffic data variation is not only affected
by spatial and temporal correlation, but also by external influences, such as weather and
holidays. Secondly, most graph neural networks are constructed based on static graphs,
lacking the dynamic analysis of complex networks. Finally, existing models are based on
short-term traffic data prediction and lack long-term data prediction ability. Consequently,
we will continue to improve the related work. On the one hand, we consider the influence of
external influencing factors on the model prediction effect, and on the other, we improve the
model’s long-term data prediction accuracy. Thus, traffic prediction tasks can be completed
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accurately and efficiently, providing a scientific basis for the rational planning of traffic
routes while improving travel efficiency.
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