
Citation: Xie, W.; You, J.; Wang, J. A

Tree Structure Protocol for

Hierarchical Deterministic Latency

Name Resolution System. Electronics

2022, 11, 2425. https://doi.org/

10.3390/electronics11152425

Academic Editors: Dongkyun Kim,

Muhammad Azfar Yaqub and

Muhammad Toaha Raza Khan

Received: 27 June 2022

Accepted: 28 July 2022

Published: 4 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Tree Structure Protocol for Hierarchical Deterministic Latency
Name Resolution System
Wei Xie 1,2, Jiali You 1,2,* and Jinlin Wang 1,2

1 National Network New Media Research Center, Institute of Acoustics, Chinese Academy of Sciences, No. 21,
North Ring Road, Haidian District, Beijing 100190, China

2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences,
No. 19 (A), Yuquan Road, Shijingshan District, Beijing 100049, China

* Correspondence: youjl@dsp.ac.cn

Abstract: Information-centric networking (ICN) shifts the communication model from a host-centric
paradigm to an information-centric paradigm, and is promising for solving several problems on
today’s Internet. For more efficient information dissemination, most ICN architectures are based
on the Identifier/Locator split design. Therefore, how to map an identifier to a routable locator
is an important problem for efficient data transmission. Nowadays, many new network services
such as industrial control and telemedicine are highly latency-sensitive and require deterministic
service response latency. To meet such requirements, name resolution with a deterministic latency
guarantee is needed, but less discussed. This paper proposes a tree-based resolution system structure
for deterministic latency resolution, which can support the Local Name Mapping Resolution System
(LNMRS) in the new ICN network architecture—SEANet—to provide deterministic name resolution
service in latency-sensitive scenarios like industrial control and telemedicine. The correctness of
such a structure is the key to achieving deterministic latency resolution. To ensure the structure’s
correctness in a distributed manner, a tree structure protocol based on delay measurement is also
proposed for structure generation and maintenance. Simulation results show that the protocol is
effective in generating a correct structure that has good performance in terms of service capability for
deterministic name resolution and system scalability.

Keywords: ICN; name resolution system; tree structure; deterministic latency

1. Introduction

The widely used Internet protocol (IP) network architecture of today’s Internet was
designed for a host-to-host communication model with best-effort data transmission. Its
data transmission relies on the endpoint hosts with limited performance and makes it
difficult to meet the forwarding demands of emerging network services that require strict
performance [1]. To improve the performance of the network, information-centric network-
ing (ICN) [2,3] has emerged. It uses an information-centric communication model that
separates content from its server location and can exploit the in-network storage capabilities
to achieve more efficient information delivery.

One major cause of the limitations of today’s Internet, such as scalability, flexibility, se-
curity, and mobility [4–6], is IP semantic overload. Most ICNs choose an Identifier/Locator
split design to overcome this problem [7]. Based on whether name resolution is coupled
with content routing, ICN networks can be classified into two categories: name-based
routing (NBR) and standalone name resolution systems (SNR) [8]. The NBR approach
uses identifier-based routing, such as a content-centric network (CCN) [9] and named data
networking (NDN) [10]. The SNR approach uses the Identifier/Locator split design. Users
first obtain the locator of the corresponding identifier from the resolution system, then use
the locator for data routing. Such ICN architectures include data-oriented network archi-
tecture (DONA) [11], the publish–subscribe Internet routing paradigm (PURSUIT) [12,13],

Electronics 2022, 11, 2425. https://doi.org/10.3390/electronics11152425 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11152425
https://doi.org/10.3390/electronics11152425
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics11152425
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11152425?type=check_update&version=1

Electronics 2022, 11, 2425 2 of 24

scalable and adaptive Internet solutions (SAIL) [14], and MobilityFirst [15]. The SNR
approach avoids the problems caused by IP semantic overload and has the advantage of
better scalability and compatibility with existing IP architecture.

In the SNR approach, accessing content requires mapping content names to locators
first. Name resolution, as the first step of data transmission, is a key influence factor on the
quality of service (QoS) provided by the network. Every ICN architecture that uses the SNR
approach has a name resolution system (NRS) for name resolution. However, existing NRSs
are having trouble meeting the QoS demand of emerging latency-sensitive applications.
Emerging network services [16,17], such as autonomous driving, industrial control, smart
medical, etc., have stringent requirements on network latency. These services not only
require the end-to-end latency to be low (less than 10 ms) but also to have deterministic
bounds [18,19]. Most existing NRSs cannot meet these requirements because their structure
is based on DHT or AS-based inter-domain routing relations. In these systems, resolution
requests are forwarded until they reach a node that can respond to the request. The
forwarding path length and the single-hop delay between the resolution nodes are often
not guaranteed, and therefore the resolution delay cannot be guaranteed. Inconstant
query hops and unguaranteed single-hop latency are the key limitations of existing name
resolution systems in providing resolution service with deterministically bounded latency.
How to provide deterministic low-latency name resolution is a new challenge for ICN
research in the face of the above-mentioned latency-sensitive scenarios.

SEANet [20] is a new ICN network architecture with on-site, elastic, and autonomous
characteristics, which guarantees ultra-low service response latency through on-site ser-
vices. It separates identifier and locator, each network entity is identified by a unique ID,
and the mapping of IDs to network addresses is managed and maintained by a resolution
system, which is crucial to its on-site data-processing capability. The SEANet resolution
system consists of two parts, Global Name Mapping and Resolution System (GNMRS)
and Local Name Mapping and Resolution System (LNMRS). The content accessibility is
guaranteed by GNMRS, which provides global name resolution that ensures information
retrieval, whereas the LNMRS provides resolution services on-site with guaranteed low
response latency for latency-sensitive scenarios. LNMRS [21] aims to provide resolution
services on-site for users within different deterministic time limits. This paper proposes a
nested tree structure to support deterministic latency resolution for LNMRS, and a struc-
ture protocol to guarantee the correct generation of LNMRS in deployment. The proposed
structure embeds latency relations of resolve nodes and users into the nested tree and
achieves deterministic latency by limiting the query path and single-hop latency in the
resolution process. Different layers of the tree have different latency guarantees, satisfying
the differential needs of various applications. A nested tree protocol is proposed to ensure
that the structure is correctly generated according to the latency relations and to maintain
the structural validity when network conditions change.

The main contributions of this paper are as follows:

• This paper embeds latency constraints into the NRS structure and proposes a new
nested tree structure for distributed resolution systems such as LNMRS, which can
support deterministic latency by exploiting the embedded latency relations of resolvers
and users.

• This paper proposes a protocol for nested tree generation and maintenance based
on a node relation inference method and a virtual node mechanism. The proposed
inference method ensures the desired latency characteristic of the generated structure.
The virtual node mechanism generates placeholders when needed in the process of
structure construction, enhancing the applicability of protocol in actual deployment.

The remainder of this paper is organized as follows: Section 2 introduces the related
work on ICN resolution methods, Section 3 illustrates the LNMRS architecture and its
protocol design requirements, Section 4 introduces the generation and maintenance protocol
design for deterministic latency tree structure, Section 5 evaluates the performance of

Electronics 2022, 11, 2425 3 of 24

LNMRS under the proposed protocol, and Section 6 concludes the work in this paper and
discusses future works.

2. Related Work

The NBR approach [9,10] uses a name as the locator for routing. When the location
of content changes, the adjustment to the routing table is expansive and slow. Although
method [22] has been proposed to speed up the management of the routing table (e.g.,
Search, Add, and Delete prefixes) on a single router using hybrid naming and a Compact
Trie, the flooding-based content publishing and request forwarding may produce high
traffic overhead. The length of the forwarding path is also variable, and therefore unable to
guarantee deterministic latency with a constant upper limit.

This paper focuses on the SNR approach. The SNR approach manages resolution
entries in the network through an independent resolution system. Endpoints obtain the
desired locator by querying the resolution system using the content name (identifier). Then
the network will route data based on the locator. This identifier/locator split manner can
support mobility better than the NBR approach. A lot of ICN architectures use the SNR
approach for resolution, including DONA, PURSUIT, COMET [23], SAIL, MobilityFirst,
etc. Their resolution systems differ in terms of system structure, query methods, etc. These
ICN resolution systems can be divided into two categories, on-path resolution systems
and query resolution systems. Prior works in both categories are insufficient in terms of
deterministic latency guarantee.

2.1. On-Path Resolution

An on-path resolution system completes the resolution of identifiers to locators on
the forwarding path of content requests between resolution servers. The resolution nodes
in the system route requests to the content provider by content name, and the locator
of the requester is in the request messages. When the request reaches the provider, the
provider can use the locator within the request message to establish communication with
the requestor. The resolution system of resolution handlers (RHs) [11] in DONA and
the Content Resolution System (CRS) [23] in COMET is two typical on-path resolution
systems. In the system of RHs, a resolution server is called a resolution handler and is
placed in each autonomous system (AS). RHs are interconnected according to existing
inter-domain routing relations, forming a hierarchical name resolution service. When an
object is published, the publisher will register its name-locator binding in the local RH, and
then the registration message is forwarded to the RHs in its parent and peering domains.
The RH that receives the registration message stores a mapping between the content name
and the address of the RH that forwarded the message, and continues the propagation
of the registration message, all the way up to the RHs of the tier-1 ISPs; when resolving
a name, it starts from the local RH, and each RH forwards the request to the next RH
according to the registered mappings that it stores, or to peering and parent RHs when no
mapping is found until the request reaches the content provider. RHs also cache content
copies to support nearby copy lookup and fast data access for users. The CRS node in
COMET is similar to the RH in DONA, except that the RH propagates data registration
messages to the nodes in the parent and peering domains, whereas the CRS only propagates
data registration messages to the parent domain to reduce the number of resolution entries
maintained in a single node.

In the on-path resolution systems, the name entries of the lower-level AS will be
aggregated to the top-level AS, which puts pressure on the RH of the top-level AS and
is deficient in system scalability. Meanwhile, the nearest copy location is not necessarily
close, and the caching of copies is determined by local RH policies with great uncertainty,
resulting in an uncertain and possibly long resolution path. Therefore, deterministic and
low-resolution latency is not guaranteed either.

Electronics 2022, 11, 2425 4 of 24

2.2. Query Resolution

A query resolution system serves as a database for name–locator bindings, and maps
content names to locators by searching for corresponding binding records that it stored.
Most query resolution systems in ICN use DHT for scalable querying of flat name bindings,
e.g., Dmap [24], Auspice [25], Ftree [26], DHT-NRS [27], HSkip [28], and MDHT [29].

Dmap, Auspice, and Ftree use DHT for name–locator mapping distribution. DMap is
a single-layer resolution system that consists of content routers (CR) from each AS. The
identifier–locator mapping is mapped to k existing network addresses via k consistent
hashing functions and stored in the CRs of the ASs that announce these addresses. When
performing name resolution, local CR can reach the mapping in a single overlay hop using
the same hashing functions. Because the geographical distribution is not considered when
selecting the location of the k mappings, DMap cannot guarantee low latency resolution.
Ftree is a tree-based resolution system that only stores name mappings on leaf nodes. It
uses hash functions to distribute mappings to multiple leaf nodes to prevent a root-level
bottleneck for hierarchical resolution systems. Requests are forwarded to the nearest leaf
node that has the name mapping. As the number of hash functions used increases, it is
more likely that the mapping would be placed in a nearby leaf node. However, the path
between two leaf nodes must first go through their common ancestor, which can result in
an inconstant and possibly long resolution path with no latency guarantee. Auspice takes
the geographic distribution of name-binding replicas and name popularity into account
and proposes an automatic name-binding replica placement method based on resolution
demand to reduce resolution latency. It divides the network according to geographic
regions and uses the demand-aware heuristic replica placement method to adaptively
determine the replica number and locations. A name binding is mapped to several Auspice
nodes using consistent hashing. These nodes are the replica controllers of the name binding
that determine numbers and locations of the replicas periodically. Other nodes cache the
replica locations from the replica controller when they receive the first request for the
name so that their users can choose the closest replica to query. Auspice fully considers
the spatiotemporal characteristics of name-binding distribution and greatly reduces the
resolution latency. However, the network conditions of each region are different, and
Auspice can only guarantee the acquisition of a close replica, but not the acquisition latency.

DHT-NRS, HSkip, and MDHT use DHT for structure generation. They also try to
build the system hierarchy based on the hierarchical structure of the underlying inter-
domain topology to achieve resolution locality and low latency. DHT-NRS is a hierarchical
resolution system based on an enhanced DHT design named H-Pastry [30]. It deploys
several rendezvous nodes (RNs) in each AS to store the name–locator bindings of locally
published data, and the RNs form a hierarchical rendezvous network (RENE) according
to the H-Pastry protocol. A resolution request that contains the requestor’s locator is
routed to the RN with the required binding using H-Pastry, and then the RN sends the
request’s locator and required content name to the publisher so that the publisher can
initiate a transmission. HSkip is a resolution system based on the DHT architecture named
SkipNet [31]. Every HSkip node is assigned a hierarchical string ID corresponding to the
underlying network topology (e.g., country.provider.organization.node), and a flat numeric
ID from the same namespace as the content. HSkip builds the system hierarchy base on the
string ID and forwards resolution requests from the lowest layer up to achieving resolution
locality. MDHT is a hierarchical resolution system that allows the coexistence of different
DHT mechanisms among nodes. Each level represents a topological level of a network,
e.g., the AS level and Point of Presence (POP) level. Each MDHT node can be in multiple
resolution levels and has a different DHT routing table for each level, so MDHT can forward
resolution requests between different DHT protocols traversing the resolution layer, giving
different providers more autonomy in choosing their own DHT mechanism.

DHT-NRS, HSkip, and MDHT are naturally highly scalable, but the possible inter-
domain forwarding of resolution requests, and the inconstant forwarding hops in DHT,
may result in long resolution paths and high latency.

Electronics 2022, 11, 2425 5 of 24

Table 1 summarizes the differences between the above-mentioned NRSs. As shown, in
on-path resolution systems, name mappings from different ASs are aggregated at the root
level. This puts a heavy load on the root level, creating a root-level bottleneck. Resolution
paths to roots are also distant, resulting in a long resolution latency. In DHT-based NRSs,
neighbors of nodes in a DHT ring can be physically scattered, and this would increase
hop stretch. In addition, the searching process in a DHT ring may contain multiple hops,
and therefore cannot guarantee resolution latency. Even though Dmap does not base its
structure on DHT, the mappings scattered by hash functions can be too distant for most
users. Auspice tries to address this problem using a proactive mapping placement method,
but it requires extensive information gathering, and there is no guaranteed boundary on
the latency from users to the closest location of mapping. Therefore, it is still unable to
guarantee deterministic latency.

Table 1. The comparison of different ICN NRS.

NRS Structure Mapping Distribution Resolution Latency

RHs Tree based on AS relations Propagates to all adjacent nodes Suffers from long distance and
heavy root-level load

CRS Tree based on AS relations Propagates to parent only Suffers from long distance and
heavy root-level load

Dmap Flat structure based on AS relations Distributed with consistent
hash functions Suffers from long distance

Ftree Tree based on AS relations With hush functions and only on
leaf nodes

Suffers from possibly long
forwarding path

Auspice Tree based on geography Demand-aware proactive replica
placement No guaranteed boundary

DHT-NRS H-Pastry Distributed with hash functions Suffers from hop stretch

Hskip SkipNet Distributed with hierarchical naming
and hash functions Suffers from hop stretch

MDHT Hierarchical heterogeneous DHT Bottom-up propagation Suffers from hop stretch

With the development of network service, the Internet tends to change from “best-
effort” data delivery to “deterministic data transmission service.” To meet this trend, this
paper proposes a nested tree structure for a distributed resolution system to achieve deter-
ministic latency. Different from prior solutions, our solution embeds latency constraints
into the structure and keeps the forwarding of requests under latency limits.

The system model is illustrated in Section 3, and the protocol design is described in
Section 4.

3. Local Name-Mapping Resolution System

To support the deterministic name resolution, this paper proposes a nested tree struc-
ture to implement LNMRS. Before presenting the structure proposed, this section first
describes the system model of LNMRS in Section 3.1.

3.1. System Model

To achieve deterministic resolution latency, this paper proposes a tree-based system
structure for LNMRS. In this section, the system model of LNMRS is introduced, and the
proposed nested tree structure is illustrated. The notations used are summarized in Table 2.

On-site resolve node: The LNMRS nodes are placed at the locations that can be
reached within a deterministic latency upper bound by users, and are chosen according
to users’ needs so that they can provide service with deterministic latency. Different
applications have different latency requirements, so the latency demand of users is stratified
from high to low into multiple levels, each with a latency upper bound Tl (l indicates the
level). At each level, a resolve node (RN) is placed at the location that can reach the users
within Tl to provide differentiated deterministic latency resolution. The user only chooses

Electronics 2022, 11, 2425 6 of 24

one node at each level as the main resolver, but a node can consist of one or more servers at
the same location.

Table 2. Summary of notations.

Notation Description

Tl Latency upper bound in l level
G The entire network

R or N An LNMRS resolver
RAR The resolution area of the resolver R
RNl All resolvers of level l

Φ(R) The user set of resolver R
Rj

u The resolver serving user u in level j
D(u, R) The latency between u and R

Resolution area: When an LNMRS node R is placed, the network area that is within
Tl distance to the node is its resolution area (RA). The resolution node can only guarantee
deterministic latency resolution for queries from its RA (indicated as RAR). With the grad-
ual deployment of RNs, each part of the network should be contained in an RA to achieve
full coverage of deterministic resolution service for the network, i.e., G =

⋃
R∈RNl RAR for

all l ∈ Levels, where G indicates the entire network and RNl indicates the RNs in level l.
Nested inter-level relation: The LNMRS node can only provide service within its RA,

so the user set of node R, Φ(R), also resides in RAR. To enable users to get different levels
of resolution latency guarantee, the user set of the higher-level nodes with a higher latency
upper bound and consequently larger RAs should contain the user set of the lower-layer
nodes. We call this relationship a nested relationship, i.e., the RNs that both serve user u in
levels j and k (k > j), indicated as Rj

u and Nk
u, respectively, should satisfy Φ

(
Rj

u

)
⊂ Φ

(
Nk

u

)
.

Name registration and resolution: Users send registration and resolution requests
to the node, whom they chose as their resolver, at the level that they need. The LNMRS
node will only forward these requests to strictly chosen neighbors that can still satisfy
the latency constraint. Name-binding propagation can be done by a proactive caching
mechanism or taking the advantage of the GNMRS, or other methods. However, both
neighbor selection and binding propagation are outside the scope of this paper, as this
paper tries to focus on the structural part of the system. So, in this paper, the forwarding
of requests to neighbors is not considered. The resolver only processes request locally,
and will not forward the request to other resolvers. Li’s paper [32] can be referred to as a
possible neighbor selection method.

3.2. Nested Tree Structure

A specific structure is needed to realize the system model described above. The nested
relationship between the upper and lower layers of the LNMRS fits naturally with the tree
structure, which is scalable and has simple node relations that are easy to maintain, so we
propose organizing LNMRS nodes based on a nested tree structure.

In the tree, each level has a guaranteed resolution latency T. The higher the level, the
higher the T, i.e., Tl > Tl−1. Users only choose one RN at each level as their resolver. At
level l, user u chooses RN R as a resolver only when D(u, R) ≤ Tl ; D(u, R) is the latency
between u and R. The nodes that are nested with the l-level node R in the l− 1 level are the
children of R, i.e., ∀ N ∈ RNl−1, R ∈ RNl , if Φ(N) ⊂ Φ(R), N ∈ Children(R). Therefore, a
node is nested with its entire sub-tree. Each node at the highest level with the highest T is a
root of a tree. The system is a forest of nested trees.

Figure 1 shows the example of a three-layer LNMRS system, which contains a root
manager (RM) and three layers of RNs, with each layer of RNs providing resolution services
under different latency constraints.

Electronics 2022, 11, 2425 7 of 24

Electronics 2022, 11, x FOR PEER REVIEW 7 of 25

In the tree, each level has a guaranteed resolution latency 𝑇. The higher the level, the
higher the 𝑇, i.e., 𝑇௟ ൐ 𝑇௟ିଵ. Users only choose one RN at each level as their resolver. At
level 𝑙, user 𝑢 chooses RN 𝑅 as a resolver only when 𝐷(𝑢, 𝑅) ൑ 𝑇௟; 𝐷(𝑢, 𝑅) is the la-
tency between 𝑢 and 𝑅. The nodes that are nested with the 𝑙-level node 𝑅 in the 𝑙 − 1
level are the children of 𝑅, i.e., ∀ 𝑁 ∈ 𝑅𝑁௟ିଵ, 𝑅 ∈ 𝑅𝑁௟, if Φ(𝑁) ⊂ Φ(𝑅), 𝑁 ∈ 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑅).
Therefore, a node is nested with its entire sub-tree. Each node at the highest level with the
highest T is a root of a tree. The system is a forest of nested trees.

Figure 1 shows the example of a three-layer LNMRS system, which contains a root
manager (RM) and three layers of RNs, with each layer of RNs providing resolution ser-
vices under different latency constraints.

Figure 1. LNMRS implementation based on the tree structure.

RM is responsible for managing all the roots’ information and serves as an entry of
the forest, so users or new RNs can get the root node information from RM and search for
the required RNs in the tree structure starting from the root.

Before using the LNMRS service, users will first determine its resolver at each layer
by traversing the forest and performing latency measurements. The nodes that a user
chooses are called a resolve node list (RNL). The user chooses which node to query in its
RNL according to the differentiated latency requirements of applications. The RNL selec-
tion method can be implemented based on any tree-searching method, such as Deep First
Search (DFS), Breadth First Search (BFS), or others. Due to the nested relationship between
parent and child, the resulting RNL should be a path from the root to a leaf or an internal
node of a tree in the system.

As mentioned in Section 3.1, an LNMRS resolver will not forward requests to other
resolvers. After receiving the querying request, the RNs search the locally stored name–
address bindings and return the results within a bounded latency to achieve deterministic
latency resolution.

3.3. System Deployment Considerations
In practice, LNMRS nodes are autonomous and the deployment is done in a distrib-

uted manner rather than centralized global engineering. Each LNMRS node is managed

Figure 1. LNMRS implementation based on the tree structure.

RM is responsible for managing all the roots’ information and serves as an entry of
the forest, so users or new RNs can get the root node information from RM and search for
the required RNs in the tree structure starting from the root.

Before using the LNMRS service, users will first determine its resolver at each layer by
traversing the forest and performing latency measurements. The nodes that a user chooses
are called a resolve node list (RNL). The user chooses which node to query in its RNL
according to the differentiated latency requirements of applications. The RNL selection
method can be implemented based on any tree-searching method, such as Deep First Search
(DFS), Breadth First Search (BFS), or others. Due to the nested relationship between parent
and child, the resulting RNL should be a path from the root to a leaf or an internal node of
a tree in the system.

As mentioned in Section 3.1, an LNMRS resolver will not forward requests to other
resolvers. After receiving the querying request, the RNs search the locally stored name–
address bindings and return the results within a bounded latency to achieve deterministic
latency resolution.

3.3. System Deployment Considerations

In practice, LNMRS nodes are autonomous and the deployment is done in a dis-
tributed manner rather than centralized global engineering. Each LNMRS node is managed
autonomously but needs to be organized into one structure. For the deployment of the LN-
MRS, a protocol for structure construction is needed, but some challenges exist: (1) When
constructing the system structure, it is possible that an RN cannot find an upper-layer
RN that can satisfy the nested relation with it, for the qualified node has not yet been
deployed—just left the system or failed—and therefore, it is unable to construct the nested
tree; and (2) since all nodes are autonomous, a node has no knowledge of which existing
node satisfies the nested relation with itself when joining. For the new node, how to
determine whether a node is nested with itself and choose a qualified parent is another
problem. For example, as shown in Figure 2, when nodes try to join the structure, they
do not know the existing nodes’ resolve area and need a method to determine which L2
node can satisfy the nested relation. However, in the situation shown, no L2 node satisfies

Electronics 2022, 11, 2425 8 of 24

the nested relation with nodes; therefore, node s is unable to choose a parent and join
the system.

Electronics 2022, 11, x FOR PEER REVIEW 8 of 25

autonomously but needs to be organized into one structure. For the deployment of the
LNMRS, a protocol for structure construction is needed, but some challenges exist: (1)
When constructing the system structure, it is possible that an RN cannot find an upper-
layer RN that can satisfy the nested relation with it, for the qualified node has not yet been
deployed—just left the system or failed—and therefore, it is unable to construct the nested
tree; and (2) since all nodes are autonomous, a node has no knowledge of which existing
node satisfies the nested relation with itself when joining. For the new node, how to de-
termine whether a node is nested with itself and choose a qualified parent is another prob-
lem. For example, as shown in Figure 2, when nodes try to join the structure, they do not
know the existing nodes’ resolve area and need a method to determine which L2 node can
satisfy the nested relation. However, in the situation shown, no L2 node satisfies the
nested relation with nodes; therefore, node s is unable to choose a parent and join the
system.

Figure 2. LNMRS implementation based on the tree structure.

For issue (1), a virtual node mechanism is proposed in Section 4.2. Virtual nodes are
generated to fill in the place of the missing upper-layer nodes, so that smooth construction
of the system structure can be achieved. For issue (2), a nested relation inference method
is proposed in Section 4.1. Based on the virtual node mechanism and the inference
method, our protocol is described in Section 4.

4. Tree Generation and Maintenance
An inference method is designed to determine nested relations of nodes in a distrib-

uted manner, and a virtual node mechanism is designed to enhance protocol applicability
and ensure the consistency of the tree structure in various cases.

4.1. Nested Relationship Inference Method
The key to ensuring the nested relationship of resolution areas between nodes is cor-

rect inference. The network delay space is often modeled in network coordinate research.
The most classical network coordinate algorithms such as GNP [33,34] and Vivaldi [35]
map the network delay space into Euclidean space and use the coordinates of different
network nodes in Euclidean space to estimate network latency. Based on this idea of rep-
resenting network delay space with Euclidean space, we modeled the resolution area of
nodes and designed a method to infer the relation of resolution areas. In this paper, the
deterministic latency service area of the resolved nodes was also mapped into Euclidean
space, and the nested relationship between two nodes was judged by their relations in the
Euclidean space, as shown in Figure 3.

Figure 2. LNMRS implementation based on the tree structure.

For issue (1), a virtual node mechanism is proposed in Section 4.2. Virtual nodes are
generated to fill in the place of the missing upper-layer nodes, so that smooth construction
of the system structure can be achieved. For issue (2), a nested relation inference method is
proposed in Section 4.1. Based on the virtual node mechanism and the inference method,
our protocol is described in Section 4.

4. Tree Generation and Maintenance

An inference method is designed to determine nested relations of nodes in a distributed
manner, and a virtual node mechanism is designed to enhance protocol applicability and
ensure the consistency of the tree structure in various cases.

4.1. Nested Relationship Inference Method

The key to ensuring the nested relationship of resolution areas between nodes is correct
inference. The network delay space is often modeled in network coordinate research. The
most classical network coordinate algorithms such as GNP [33,34] and Vivaldi [35] map
the network delay space into Euclidean space and use the coordinates of different network
nodes in Euclidean space to estimate network latency. Based on this idea of representing
network delay space with Euclidean space, we modeled the resolution area of nodes and
designed a method to infer the relation of resolution areas. In this paper, the deterministic
latency service area of the resolved nodes was also mapped into Euclidean space, and
the nested relationship between two nodes was judged by their relations in the Euclidean
space, as shown in Figure 3.

The node service area is mapped into a circle in the Euclidean space, with the node as
the center and the guaranteed resolution latency as the radius. The guaranteed latency Lr
and Ls of two resolved nodes r and s are known, and the distance D(r, s) between them can
be obtained by direct latency measurement, e.g., the average or maximum RTT of Ping in
an IP network or the average or maximum respond latency of a designated measurement
message during a period of time.

Electronics 2022, 11, 2425 9 of 24

Electronics 2022, 11, x FOR PEER REVIEW 9 of 25

(a) (b)

Figure 3. Nested relation inference method. (a) Same-tree constraint; (b) level constraint. r and s
are two different nodes, Lr is the latency guarantee of r, Ls is the latency guarantee of s, 𝐷(𝑟, 𝑠) is
the latency between s and r.

The node service area is mapped into a circle in the Euclidean space, with the node
as the center and the guaranteed resolution latency as the radius. The guaranteed latency
Lr and Ls of two resolved nodes r and s are known, and the distance 𝐷(𝑟, 𝑠) between
them can be obtained by direct latency measurement, e.g., the average or maximum RTT
of Ping in an IP network or the average or maximum respond latency of a designated
measurement message during a period of time.

Theorem 1. Level Inference Constraint (Possible Nested Inference): If 𝐷(𝑟, 𝑠) ൐ 𝐿𝑠 ൅ 𝐿𝑟, (1)

Two circles do not intersect, i.e., there is no overlap in the service area of the two nodes, and
there can be no nested relationship, otherwise, there may be full or partial nesting.

Theorem 2. Same Tree Condition (Definite Nested Inference): If 𝐷(𝑟, 𝑠) ൑ |𝐿𝑠 − 𝐿𝑟|, (2)

One circle is contained by the other, and there is a nested relationship between two nodes.

4.2. Virtual Node Mechanism
To address issue (1) discussed in Section 3.2, this section proposes a virtual node

mechanism to enhance the applicability of the tree protocol and enable the smooth con-
struction of nested tree structures. A virtual node is a logical placeholder in the tree. when
a node cannot find an upper-layer node that is nested with itself, it will generate a virtual
node at the logical location of the missing upper-layer node, ensuring smooth joining of
nodes and tree structure integrity. The virtual node only provides the function of sustain-
ing the logical tree and does not provide resolution service. It can be dynamically added
or deleted according to the needs of real nodes.
1. Latency to Virtual Nodes

Because of the presence of virtual nodes, nodes also need to consider their latency to
virtual nodes when joining the tree. A virtual node only provides structural connectivity
logically and does not provide resolution services. It represents a node that can nest its
children, so its position in the latency space should be determined by its real children. A
virtual node may have multiple children or only virtual children, so the average latency
of its real children in the nearest layer is used to represent its latency to other nodes.
2. Nested Relation Inference for Virtual Nodes

Figure 3. Nested relation inference method. (a) Same-tree constraint; (b) level constraint. r and s are
two different nodes, Lr is the latency guarantee of r, Ls is the latency guarantee of s, D(r, s) is the
latency between s and r.

Theorem 1. Level Inference Constraint (Possible Nested Inference): If

D(r, s) > Ls + Lr, (1)

Two circles do not intersect, i.e., there is no overlap in the service area of the two nodes, and there
can be no nested relationship, otherwise, there may be full or partial nesting.

Theorem 2. Same Tree Condition (Definite Nested Inference): If

D(r, s) ≤ |Ls− Lr|, (2)

One circle is contained by the other, and there is a nested relationship between two nodes.

4.2. Virtual Node Mechanism

To address issue (1) discussed in Section 3.2, this section proposes a virtual node mech-
anism to enhance the applicability of the tree protocol and enable the smooth construction
of nested tree structures. A virtual node is a logical placeholder in the tree. when a node
cannot find an upper-layer node that is nested with itself, it will generate a virtual node
at the logical location of the missing upper-layer node, ensuring smooth joining of nodes
and tree structure integrity. The virtual node only provides the function of sustaining the
logical tree and does not provide resolution service. It can be dynamically added or deleted
according to the needs of real nodes.

1. Latency to Virtual Nodes

Because of the presence of virtual nodes, nodes also need to consider their latency to
virtual nodes when joining the tree. A virtual node only provides structural connectivity
logically and does not provide resolution services. It represents a node that can nest its
children, so its position in the latency space should be determined by its real children. A
virtual node may have multiple children or only virtual children, so the average latency of
its real children in the nearest layer is used to represent its latency to other nodes.

2. Nested Relation Inference for Virtual Nodes

Because virtual nodes are merely placeholders, their real children are more important
when doing nested relation inference, so their real children are used when inferencing
whether a node is nested by the virtual node.

Theorem 3. Level Inference Constraint for Virtual Node: if a child q of virtual node r exists whose
latency to node s satisfies.

D(q, s) > 2Lr + Ls− Lq, (3)

Electronics 2022, 11, 2425 10 of 24

Then q and s cannot both be r’s children. There is no nested relation between s and r. As shown in
(a) of Figure 4.

Electronics 2022, 11, x FOR PEER REVIEW 10 of 25

Because virtual nodes are merely placeholders, their real children are more important
when doing nested relation inference, so their real children are used when inferencing
whether a node is nested by the virtual node.

Theorem 3. Level Inference Constraint for Virtual Node: if a child q of virtual node r exists whose
latency to node s satisfies 𝐷(𝑞, 𝑠) ൐ 2𝐿𝑟 ൅ 𝐿𝑠 − 𝐿𝑞, (3)

Then q and s cannot both be r’s children. There is no nested relation between s and r. As
shown in (a) of Figure 4.

When s is a possible child of r, its latency to r, 𝐷(𝑟, 𝑠), should satisfy Equation (1),
and q’s latency to r, 𝐷(𝑟, 𝑞), should satisfy Equation (2), so 𝐷(𝑟, 𝑠) ൅ 𝐷(𝑟, 𝑞) ൏ 2𝐿𝑟 ൅ 𝐿𝑠 − 𝐿𝑞. (4)

When s is at the farthest distance from q, these two nodes and r would be in the same
line in Euclidean space, so 𝐷(𝑠, 𝑞) = 𝐷(𝑠, 𝑟) ൅ 𝐷(𝑟, 𝑞), (5)

Combining Equations (4) and (5), if s and q are both to be the children of r, they should
satisfy Theorem 3.

(a) (b) (c)

Figure 4. Nested relation inference for virtual node. (a) Virtual node level constraint; (b) Virtual
node same-tree constraint with s on a higher level than q; (c) Virtual node same-tree constraint with
s on a lower level than q. r is a virtual node, q is a real child of r, s is a real node, Lr is the latency
guarantee of r, Lq is the latency guarantee of q

Theorem 4. Same-Tree Inference Constraint for Virtual Node: If a real child q exists in the nearest
layer of the virtual node that satisfies Theorem 2 with s, then s is nested by the virtual node.

If s is nested with the children of the virtual node, s should also be nested by the
virtual node, as shown by (b) and (c) in Figure 4.

4.3. Node Join and Leave
Node Join: Combined with the above mechanism, the node-joining process of

LNMRS is designed as shown in Figure 5 and Algorithm 1.

Figure 4. Nested relation inference for virtual node. (a) Virtual node level constraint; (b) Virtual node
same-tree constraint with s on a higher level than q; (c) Virtual node same-tree constraint with s on a
lower level than q. r is a virtual node, q is a real child of r, s is a real node, Lr is the latency guarantee
of r, Lq is the latency guarantee of q.

When s is a possible child of r, its latency to r, D(r, s), should satisfy Equation (1), and
q’s latency to r, D(r, q), should satisfy Equation (2), so

D(r, s) + D(r, q) < 2Lr + Ls− Lq. (4)

When s is at the farthest distance from q, these two nodes and r would be in the same
line in Euclidean space, so

D(s, q) = D(s, r) + D(r, q), (5)

Combining Equations (4) and (5), if s and q are both to be the children of r, they should
satisfy Theorem 3.

Theorem 4. Same-Tree Inference Constraint for Virtual Node: If a real child q exists in the nearest
layer of the virtual node that satisfies Theorem 2 with s, then s is nested by the virtual node.

If s is nested with the children of the virtual node, s should also be nested by the
virtual node, as shown by (b) and (c) in Figure 4.

4.3. Node Join and Leave

Node Join: Combined with the above mechanism, the node-joining process of LNMRS
is designed as shown in Figure 5 and Algorithm 1.

A new node joining the tree will request the list of roots from RM, measure latency to
real roots in the root list, and use Theorem 2 to find the root that can nest the new node as
its ancestor. If no root satisfies Theorem 2, the new node will select the closest node among
the real roots that satisfies Theorem 1 as its ancestor. If there is no real root satisfying the
condition, then the virtual root is considered. If neither real nor virtual roots exist that
satisfy the nested relationship with the new node, a virtual node is generated to fill in as
the missing ancestor. After selecting a root as the ancestor, the new node will continue
searching for an ancestor in the next layer among the chosen root’s children. This process
is repeated until a parent is found one layer above the new node, and the new node finds
its position in the tree. If the new node is in the highest layer, it will directly report its
information to the RM and join the structure as a root node.

Electronics 2022, 11, 2425 11 of 24

Algorithm 1 Node Joining

Input: n: the node joining tree; level: node join level; rootManager: address of Root Manager
1: parent← rootManager
2: l = 1
3: while l < level do
4: get realChildren, virtualChildren from parent
5: find possibleAncestors in realChildren with Theorem 2
6: if possibleAncestors exist then
7: find de f initeAncestors in possibleAncestors with Theorem 1
8: if de f initeAncestors exist then
9: parent← chose one of de f initeAncestors
10: else
11: parent← closest in possibleAncestors
12: end if
13: else
14: find possibleAncestors in virtualChildren with Theorem 3
15: if possibleAncestors exist then
16: find de f initeAncestors in possibleAncestors with Theorem 4
17: if de f initeAncestors exist then
18: parent← chose one of de f initeAncestors
19: else
20: parent← closest in possibleAncestors
21: end if
22: else
23: generate virtual node vn
24: REGISTER (vn, parent.virtualChildren)
25: parent←vn
26: end if
27: end if
28: l++
29: end while
30: REGISTER (n, parent.realChildren)

Electronics 2022, 11, x FOR PEER REVIEW 11 of 25

Figure 5. Node-joining process.

Algorithm 1 Node Joining
Input: 𝑛: the node joining tree; 𝑙𝑒𝑣𝑒𝑙: node join level; 𝑟𝑜𝑜𝑡𝑀𝑎𝑛𝑎𝑔𝑒𝑟: address of
Root Manager
1: 𝒑𝒂𝒓𝒆𝒏𝒕 ← 𝑟𝑜𝑜𝑡𝑀𝑎𝑛𝑎𝑔𝑒𝑟
2: 𝑙 = 1
3: while 𝑙 < 𝑙𝑒𝑣𝑒𝑙 do
4: get 𝑟𝑒𝑎𝑙𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛, 𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 from 𝒑𝒂𝒓𝒆𝒏𝒕
5: find 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠 in 𝑟𝑒𝑎𝑙𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 with Theorem 2
6: if 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠 exist then
7: find 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠 in 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠 with Theorem 1
8: if 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠 exist then
9: 𝒑𝒂𝒓𝒆𝒏𝒕 ← chose one of 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠
10: else
11: 𝒑𝒂𝒓𝒆𝒏𝒕← closest in 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠
12: end if
13: else
14: find 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠 in 𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 with Theorem 3
15: if 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠 exist then
16: find 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠 in 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠 with Theorem 4

17: if 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠 exist then
18: 𝒑𝒂𝒓𝒆𝒏𝒕 ← chose one of 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠
19: else
20: 𝒑𝒂𝒓𝒆𝒏𝒕 ← closest in 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠
21: end if
22: else
23: generate virtual node 𝑣𝑛
24: REGISTER(𝑣𝑛, 𝒑𝒂𝒓𝒆𝒏𝒕.𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛)
25: 𝒑𝒂𝒓𝒆𝒏𝒕 ←𝑣𝑛
26: end if
27: end if

Figure 5. Node-joining process.

Replacement of virtual node: After joining the structure, a node will judge whether
it can replace its virtual sibling. A virtual node is only a placeholder and does not have
resolution capability. When a real node that can replace the virtual node in the tree appears,

Electronics 2022, 11, 2425 12 of 24

the virtual node will no longer be of use and needs to be replaced. Replacement is decided
by judging whether it can nest the sub-tree of its virtual sibling.

The replacement process is as shown in steps (1)–(6) in Figure 6. Step (1): Request
the list of real children in the nearest layer from all virtual siblings. Step (2): Delete the
nodes that do not satisfy Theorem 1, and select the nodes that satisfy Theorem 2 to issue
the adoption invitations. If no node satisfies Theorem 2, invitations will be sent to the
remaining children in ascending order of latency distance. Step (3): The invited nodes can
accept the adoption and change their parents or reject it according to their situation. Steps
(5) and (6): When the virtual node finds itself with no children, it will notify its parent and
delete itself.

Electronics 2022, 11, x FOR PEER REVIEW 12 of 25

28: 𝑙++
29: end while
30: REGISTER(𝑛, 𝒑𝒂𝒓𝒆𝒏𝒕.𝑟𝑒𝑎𝑙𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛)

A new node joining the tree will request the list of roots from RM, measure latency
to real roots in the root list, and use Theorem 2 to find the root that can nest the new node
as its ancestor. If no root satisfies Theorem 2, the new node will select the closest node
among the real roots that satisfies Theorem 1 as its ancestor. If there is no real root satis-
fying the condition, then the virtual root is considered. If neither real nor virtual roots
exist that satisfy the nested relationship with the new node, a virtual node is generated to
fill in as the missing ancestor. After selecting a root as the ancestor, the new node will
continue searching for an ancestor in the next layer among the chosen root’s children. This
process is repeated until a parent is found one layer above the new node, and the new
node finds its position in the tree. If the new node is in the highest layer, it will directly
report its information to the RM and join the structure as a root node.

Replacement of virtual node: After joining the structure, a node will judge whether
it can replace its virtual sibling. A virtual node is only a placeholder and does not have
resolution capability. When a real node that can replace the virtual node in the tree ap-
pears, the virtual node will no longer be of use and needs to be replaced. Replacement is
decided by judging whether it can nest the sub-tree of its virtual sibling.

The replacement process is as shown in steps (1)–(6) in Figure 6. Step (1): Request the
list of real children in the nearest layer from all virtual siblings. Step (2): Delete the nodes
that do not satisfy Theorem 1, and select the nodes that satisfy Theorem 2 to issue the
adoption invitations. If no node satisfies Theorem 2, invitations will be sent to the remain-
ing children in ascending order of latency distance. Step (3): The invited nodes can accept
the adoption and change their parents or reject it according to their situation. Steps (5) and
(6): When the virtual node finds itself with no children, it will notify its parent and delete
itself.

Figure 6. Virtual node replacement and node leaving. Figure 6. Virtual node replacement and node leaving.

Node leaving: The node-leaving process is as shown in steps (a)–(d) in Figure 6. Step
(a): When a node exits, the exiting node sends an exit message to its parent and children.
Step (b): The parent/children will remove the exiting node from its children/parent list after
receiving the message. Steps (c) and (d): The child node will re-execute the node-joining
process after receiving the exit message and find a new parent to join the structure.

4.4. Node Failure

In the LNMRS structure, both machine failures and latency changes between nodes
can cause node failures.

Machine failure: When a node goes offline due to failure caused by a program crash,
hardware damage, etc., other nodes will not be notified of its leaves, and a node that has
gone offline will remain in the structure. Therefore, a heartbeat detection mechanism is
used to detect the crashed nodes. As shown in Figure 7, the online node sends heartbeat
messages to its parent and children at regular intervals to prove that it is online, and if the
heartbeat messages are not received from the node after a certain time limit, the node is
considered to be offline. Then, the parent will remove the node from its children list, and
its children will re-execute the node-joining process to find a new parent, as shown by steps
(a) and (b) in Figure 7.

Electronics 2022, 11, 2425 13 of 24

Electronics 2022, 11, x FOR PEER REVIEW 13 of 25

Node leaving: The node-leaving process is as shown in steps (a)–(d) in Figure 6. Step
(a): When a node exits, the exiting node sends an exit message to its parent and children.
Step (b): The parent/children will remove the exiting node from its children/parent list
after receiving the message. Steps (c) and (d): The child node will re-execute the node-
joining process after receiving the exit message and find a new parent to join the structure.

4.4. Node Failure
In the LNMRS structure, both machine failures and latency changes between nodes

can cause node failures.
Machine failure: When a node goes offline due to failure caused by a program crash,

hardware damage, etc., other nodes will not be notified of its leaves, and a node that has
gone offline will remain in the structure. Therefore, a heartbeat detection mechanism is
used to detect the crashed nodes. As shown in Figure 7, the online node sends heartbeat
messages to its parent and children at regular intervals to prove that it is online, and if the
heartbeat messages are not received from the node after a certain time limit, the node is
considered to be offline. Then, the parent will remove the node from its children list, and
its children will re-execute the node-joining process to find a new parent, as shown by
steps (a) and (b) in Figure 7.

Change of latency between nodes: The nested relationship is the key for the deter-
ministic latency resolution system to provide proper service, while the actual network
situation is constantly changing. With a change in routing policy, physical network topol-
ogy, or network traffic, network latency between two points may change, which often
means a change in their deterministic latency resolution area and their nested relation. To
keep providing deterministic services to users, the two nodes need to be restructured. A
periodic latency-checking mechanism is used to ensure the correctness of the nested rela-
tionship between nodes. An example is shown in Figure 7. Each node periodically checks
the latency to its parent, and if they no longer satisfy the nested relationship constraint, it
will notify the parent and re-execute the node-joining process to find a new parent, as
shown by steps (1)–(3) in Figure 7.

Figure 7. Example of node failure recovery.

5. Evaluation
In order to evaluate the performance of the designed protocol, we developed a sim-

ulator to simulate the resolution system. The simulator is based on Icarus [36]. Icarus is a
well-designed caching simulator for ICN. We used its cache simulation ability and add

Figure 7. Example of node failure recovery.

Change of latency between nodes: The nested relationship is the key for the determin-
istic latency resolution system to provide proper service, while the actual network situation
is constantly changing. With a change in routing policy, physical network topology, or
network traffic, network latency between two points may change, which often means a
change in their deterministic latency resolution area and their nested relation. To keep
providing deterministic services to users, the two nodes need to be restructured. A periodic
latency-checking mechanism is used to ensure the correctness of the nested relationship
between nodes. An example is shown in Figure 7. Each node periodically checks the latency
to its parent, and if they no longer satisfy the nested relationship constraint, it will notify
the parent and re-execute the node-joining process to find a new parent, as shown by steps
(1)–(3) in Figure 7.

5. Evaluation

In order to evaluate the performance of the designed protocol, we developed a sim-
ulator to simulate the resolution system. The simulator is based on Icarus [36]. Icarus is
a well-designed caching simulator for ICN. We used its cache simulation ability and add
some extensions to support the simulation of a resolution system. The simulated underly-
ing network topologies were modeled and analyzed using NetworkX [37] and FNSS [38].
The code is available at https://gitee.com/Phajuer/nmrsim (accessed on 11 July 2022). The
simulator reads a network topology and selects the deployment location of the resolution
server on the topology, and uses the server nodes to verify the structured protocols.

Considering the different latency requirements of major application scenarios in 5G-
IoT, the simulated LNMRS was divided into three layers, denoted as L1, L2, and L3, with
one-way deterministic latency requirements of 50 ms, 25 ms, and 5 ms, respectively [39].
The underlying network topologies were generated on scales of 2500, 5000, 7500, 10,000
by BRITE [40] using the top-down approach. For the delay settings between nodes in the
topology we referred to the paper by Rajahalme et al. [41], who used the averages over
published path latencies and lengths [42], with an average value of 2 ms for inter-domain
single-hop delay and 34 ms for inter-domain single-hop delay. For the server placement,
the node that could meet the delay requirements with the most network nodes was selected
as the resolution node (RN) in a greedy manner at each level until all nodes were in the
deterministic service area of at least one RN. The selected nodes generated the system
according to the designed protocol and join the system layer by layer from the top. The
nodes in the topology other than the RNs were viewed as user access points, and the users
chose the longest qualified path in the forest structure as their RNL. A path was considered

https://gitee.com/Phajuer/nmrsim

Electronics 2022, 11, 2425 14 of 24

qualified only when the latency from the user to every real node on the path was under
the guaranteed service latency. The experimental environment was Ubuntu 14.04LTS with
16GB RAM, created and run in Python 3.8.

We counted metrics such as service area nested ratio, service coverage, message
overhead, etc., to analyze the effectiveness of the node relationship inference method,
the service capability of the generated structure, and the scalability of the protocol; we
also compared the impact of different generation strategies on the service capability of
the structure.

The performance of the LNMRS generated under the proposed protocol was compared
with the Ftree system. We distributed 2.5× 104 contents evenly across the network and set
up 5× 104 name resolution requests as workloads for the experiment. These requests are
initiated by the network nodes in a stable distribution, where the content of the requests
follows a Zipf [43] distribution with parameter λ = 0.9, and the request event happens
following a Poisson distribution, with a default rate of 1000 requests per second. We
assumed the message is forwarded by cache-supporting ICN routers with the same cache
sizes and enforces a cache replacement strategy of least recently used (LRU) [44]. To address
the cold-start problems of network states, such as caching and NRS registration, we treated
104 requests of the workload as warm-up traffic and did not record these request events;
the remaining 4× 104 requests were recorded. The basic parameters of our experiments are
summarized in Table 3.

Table 3. Summary of parameters.

Parameters Value

LNMRS service levels L1, L2, L3
Latency bounds 50 ms, 25 ms, 5 ms

Network topology BRITE: top-down
Topology scale 2500, 5000, 7500, 10,000

Content number 2.5× 104

Request number 5× 104 (104 warm− ups)
Request rate 1000 req/s

Request distribution Poisson
Distribution of content source Random

Distribution of requested content Zipf with λ = 0.9
Ftree hash function number 10, 30, 50

5.1. Structure Analysis

The generated structure was analyzed to prove the correctness of the nested rela-
tions inference method, the usability of the generated structure, and the overhead of the
structure protocol.

5.1.1. Service Area Nested Ratio

The nested relationship means that the service area of the upper-layer node contains
that of the lower-layer node and is the key for the system to meet the differentiated needs of
users. The service area of the node is represented by the node’s user set, and the ratio of the
intersection of the two nodes’ user sets to the lower-layer node’s user set is defined as the
nested ratio. The nested ratio indicates how much of the lower-layer node service area can
be contained by the upper-layer node and reflects the accuracy of the nested relationship
inference method. The higher the nested ratio, the larger the common service area there is
between the nodes of the upper and lower layer, and the more users can get differentiated
services from both nodes.

In order to evaluate whether the designed nested relation inference method can
effectively infer the nested relationship of the service area between two nodes, the service
area nested ratio was calculated between all resolved nodes and their ancestor in the forest
structure generated under 2500, 5000, 7500, and 10,000 scale topologies in simulation.
Among them, for the node pairs that satisfied the same tree condition, the percentage of

Electronics 2022, 11, 2425 15 of 24

the nested ratio at 100% is shown in Figure 8. In Figure 6, the nested ratio of all L1 nodes to
L2 nodes and L2 nodes to L3 nodes reached 100%, and more than 99% of the node pairs
between L1 and L3 had a nested ratio of 100%. The high proportion of 100% nested ratio
among node pairs indicates that the definite nested inference using the same tree condition
can accurately infer the complete nested relationship of service area between nodes with
high probability.

Electronics 2022, 11, x FOR PEER REVIEW 15 of 25

Distribution of requested
content

Zipf with 𝜆 = 0.9

Ftree hash function number 10, 30, 50

5.1. Structure Analysis
The generated structure was analyzed to prove the correctness of the nested relations

inference method, the usability of the generated structure, and the overhead of the struc-
ture protocol.

5.1.1. Service Area Nested Ratio
The nested relationship means that the service area of the upper-layer node contains

that of the lower-layer node and is the key for the system to meet the differentiated needs
of users. The service area of the node is represented by the node’s user set, and the ratio
of the intersection of the two nodes’ user sets to the lower-layer node’s user set is defined
as the nested ratio. The nested ratio indicates how much of the lower-layer node service
area can be contained by the upper-layer node and reflects the accuracy of the nested re-
lationship inference method. The higher the nested ratio, the larger the common service
area there is between the nodes of the upper and lower layer, and the more users can get
differentiated services from both nodes.

In order to evaluate whether the designed nested relation inference method can ef-
fectively infer the nested relationship of the service area between two nodes, the service
area nested ratio was calculated between all resolved nodes and their ancestor in the forest
structure generated under 2500, 5000, 7500, and 10,000 scale topologies in simulation.
Among them, for the node pairs that satisfied the same tree condition, the percentage of
the nested ratio at 100% is shown in Figure 8. In Figure 6, the nested ratio of all L1 nodes
to L2 nodes and L2 nodes to L3 nodes reached 100%, and more than 99% of the node pairs
between L1 and L3 had a nested ratio of 100%. The high proportion of 100% nested ratio
among node pairs indicates that the definite nested inference using the same tree condi-
tion can accurately infer the complete nested relationship of service area between nodes
with high probability.

Figure 8. Accuracy for definite nested inference.

For ancestors and children that did not satisfy the same-tree constraint but satisfied
the level constraint, the cumulative distribution function of the nested ratio between dif-
ferent layers is shown in Figure 9. For all node pairs satisfying the level constraint, no
more than 30% of 1–2 layer and 2–3 layer node pairs had a nested ratio of less than 70%,
and only about 7% of 1–3 layers node pairs had nested ratios less than 100%. The high
proportion of high nested ratios indicates that under the possibly nested inference, the

Figure 8. Accuracy for definite nested inference.

For ancestors and children that did not satisfy the same-tree constraint but satisfied the
level constraint, the cumulative distribution function of the nested ratio between different
layers is shown in Figure 9. For all node pairs satisfying the level constraint, no more than
30% of 1–2 layer and 2–3 layer node pairs had a nested ratio of less than 70%, and only
about 7% of 1–3 layers node pairs had nested ratios less than 100%. The high proportion of
high nested ratios indicates that under the possibly nested inference, the service area of the
upper layer node could still nest most of the service area of the lower layer node with a
high probability, and the differentiated needs of most users could be guaranteed even if
strict same tree constraint could not be satisfied.

Electronics 2022, 11, x FOR PEER REVIEW 16 of 25

service area of the upper layer node could still nest most of the service area of the lower
layer node with a high probability, and the differentiated needs of most users could be
guaranteed even if strict same tree constraint could not be satisfied.

Figure 9. CDF for nested ratio in possible nested inference.

5.1.2. Service Coverage
The percentage of users getting deterministic latency services from a certain layer

among all users is defined as the service coverage of that layer. A higher service coverage
means that the generated structure can guarantee resolution latency for more users and
has better service capability. The nodes in the topology other than the RN are considered
the user locations. Each user selects a path in the forest as its RNL. Latency from each node
in the RNL to the user should be lower than the latency limits of the corresponding level.
The selected path is the longest path among all qualified paths. If a user has a real node of
a certain layer in its RNL, it is covered by the resolution service. Service coverage is cal-
culated in simulated networks of different scales.

As shown in Figure 10, among different topological scales, all coverage ratio of the
L1 layer was above 99%, the lowest of L2 was 91%, and the lowest of L3 was 86%, which
indicates that the structure generated by our protocol can guarantee deterministic resolu-
tion service for most users with different latency limits, and has good enough service ca-
pability.

Figure 9. CDF for nested ratio in possible nested inference.

5.1.2. Service Coverage

The percentage of users getting deterministic latency services from a certain layer
among all users is defined as the service coverage of that layer. A higher service coverage
means that the generated structure can guarantee resolution latency for more users and has
better service capability. The nodes in the topology other than the RN are considered the
user locations. Each user selects a path in the forest as its RNL. Latency from each node
in the RNL to the user should be lower than the latency limits of the corresponding level.
The selected path is the longest path among all qualified paths. If a user has a real node

Electronics 2022, 11, 2425 16 of 24

of a certain layer in its RNL, it is covered by the resolution service. Service coverage is
calculated in simulated networks of different scales.

As shown in Figure 10, among different topological scales, all coverage ratio of the
L1 layer was above 99%, the lowest of L2 was 91%, and the lowest of L3 was 86%, which
indicates that the structure generated by our protocol can guarantee deterministic resolution
service for most users with different latency limits, and has good enough service capability.

Electronics 2022, 11, x FOR PEER REVIEW 16 of 25

service area of the upper layer node could still nest most of the service area of the lower
layer node with a high probability, and the differentiated needs of most users could be
guaranteed even if strict same tree constraint could not be satisfied.

Figure 9. CDF for nested ratio in possible nested inference.

5.1.2. Service Coverage
The percentage of users getting deterministic latency services from a certain layer

among all users is defined as the service coverage of that layer. A higher service coverage
means that the generated structure can guarantee resolution latency for more users and
has better service capability. The nodes in the topology other than the RN are considered
the user locations. Each user selects a path in the forest as its RNL. Latency from each node
in the RNL to the user should be lower than the latency limits of the corresponding level.
The selected path is the longest path among all qualified paths. If a user has a real node of
a certain layer in its RNL, it is covered by the resolution service. Service coverage is cal-
culated in simulated networks of different scales.

As shown in Figure 10, among different topological scales, all coverage ratio of the
L1 layer was above 99%, the lowest of L2 was 91%, and the lowest of L3 was 86%, which
indicates that the structure generated by our protocol can guarantee deterministic resolu-
tion service for most users with different latency limits, and has good enough service ca-
pability.

Figure 10. Service coverage.

5.1.3. Message Overhead

(1) Node-joining overhead: The number of messages generated by the 1441 simulated
nodes in the 10,000-scale topology is shown in Figure 11. Nodes joined the structure in top-
down order. As shown in Figure 11, there was a significant difference in the join message
overhead between different layers and some similarities between the same layer. In general,
from the top down, the message overhead gradually increased, and the difference in
overhead within the layer increased, and this difference mainly came from the specific
structures of different sub-trees. The message overhead of newly joined nodes in one layer
did not change significantly with the expansion of the system scale, indicating that the
protocol has good scalability, which is attributed to the tree-like hierarchy and the nested
relationship constraints of parents and children. It does not take many children to fully
cover the parent’s service area, and the placement of the server is based on user demand,
so a parent will not have many children. Therefore, the message overhead for joining the
system will not expand drastically.

Electronics 2022, 11, x FOR PEER REVIEW 17 of 25

Figure 10. Service coverage.

5.1.3. Message Overhead
(1) Node-joining overhead: The number of messages generated by the 1441 simu-

lated nodes in the 10,000-scale topology is shown in Figure 11. Nodes joined the structure
in top-down order. As shown in Figure 11, there was a significant difference in the join
message overhead between different layers and some similarities between the same layer.
In general, from the top down, the message overhead gradually increased, and the differ-
ence in overhead within the layer increased, and this difference mainly came from the
specific structures of different sub-trees. The message overhead of newly joined nodes in
one layer did not change significantly with the expansion of the system scale, indicating
that the protocol has good scalability, which is attributed to the tree-like hierarchy and the
nested relationship constraints of parents and children. It does not take many children to
fully cover the parent’s service area, and the placement of the server is based on user de-
mand, so a parent will not have many children. Therefore, the message overhead for join-
ing the system will not expand drastically.

Figure 11. Node-joining overhead at different system size.

(2) Maintenance overhead: The structure maintenance mechanism mainly checks the
latency relationships and online status of adjacent nodes (parent and children), and the
maintenance overhead is the same for each adjacent node, so the number of relationships
that nodes need to maintain can reflect the structure maintenance overhead.

The number of relationships that nodes needed to maintain in L1 and 2 at different
system scales (an L3 node has only one relationship with its parent) is shown in Figure 12.
The total number of relationships that needed to be maintained in one layer increased
with the expansion of the system scale, but the average number of relationships main-
tained by nodes remained relatively stable, indicating that the structure maintenance pres-
sure of a single node did not rise significantly with the expansion of the system and the
maintenance mechanism was rather scalable.

Figure 11. Node-joining overhead at different system size.

Electronics 2022, 11, 2425 17 of 24

(2) Maintenance overhead: The structure maintenance mechanism mainly checks the
latency relationships and online status of adjacent nodes (parent and children), and the
maintenance overhead is the same for each adjacent node, so the number of relationships
that nodes need to maintain can reflect the structure maintenance overhead.

The number of relationships that nodes needed to maintain in L1 and 2 at different
system scales (an L3 node has only one relationship with its parent) is shown in Figure 12.
The total number of relationships that needed to be maintained in one layer increased with
the expansion of the system scale, but the average number of relationships maintained by
nodes remained relatively stable, indicating that the structure maintenance pressure of a
single node did not rise significantly with the expansion of the system and the maintenance
mechanism was rather scalable.

Electronics 2022, 11, x FOR PEER REVIEW 18 of 25

Figure 12. Maintenance overhead at different system sizes.

While ensuring the consistency of the tree structure, the virtual node mechanism also
preserves the benefits of the tree structure in terms of scalability. An L1 node that could
nest the most L3 nodes was selected as the root in a 10,000-scale topology and the system
maintenance overheads of it with and without the virtual node were compared. We used
the selected root as the only L1 node and made all the nodes in the topology that could be
nested by the selected root join the structure as L3 nodes, then recorded the number of
relationships maintained in both cases. The results are shown in Figure 13.

Figure 13. Maintenance overhead with and without virtual node design.

In the case without the virtual node mechanism, the L3 nodes were put directly under
the L1 node. It can be seen from Figure 11 that the number of relationships maintained by
L1 nodes was significantly reduced and the growth rate slowed down significantly after
adopting the virtual node mechanism, whereas the average number of relationships main-
tained by the virtual nodes was stable. This shows a great scalability advantage in adopt-
ing the virtual node mechanism.

Figure 12. Maintenance overhead at different system sizes.

While ensuring the consistency of the tree structure, the virtual node mechanism also
preserves the benefits of the tree structure in terms of scalability. An L1 node that could
nest the most L3 nodes was selected as the root in a 10,000-scale topology and the system
maintenance overheads of it with and without the virtual node were compared. We used
the selected root as the only L1 node and made all the nodes in the topology that could
be nested by the selected root join the structure as L3 nodes, then recorded the number of
relationships maintained in both cases. The results are shown in Figure 13.

Electronics 2022, 11, x FOR PEER REVIEW 18 of 25

Figure 12. Maintenance overhead at different system sizes.

While ensuring the consistency of the tree structure, the virtual node mechanism also
preserves the benefits of the tree structure in terms of scalability. An L1 node that could
nest the most L3 nodes was selected as the root in a 10,000-scale topology and the system
maintenance overheads of it with and without the virtual node were compared. We used
the selected root as the only L1 node and made all the nodes in the topology that could be
nested by the selected root join the structure as L3 nodes, then recorded the number of
relationships maintained in both cases. The results are shown in Figure 13.

Figure 13. Maintenance overhead with and without virtual node design.

In the case without the virtual node mechanism, the L3 nodes were put directly under
the L1 node. It can be seen from Figure 11 that the number of relationships maintained by
L1 nodes was significantly reduced and the growth rate slowed down significantly after
adopting the virtual node mechanism, whereas the average number of relationships main-
tained by the virtual nodes was stable. This shows a great scalability advantage in adopt-
ing the virtual node mechanism.

Figure 13. Maintenance overhead with and without virtual node design.

Electronics 2022, 11, 2425 18 of 24

In the case without the virtual node mechanism, the L3 nodes were put directly under
the L1 node. It can be seen from Figure 11 that the number of relationships maintained
by L1 nodes was significantly reduced and the growth rate slowed down significantly
after adopting the virtual node mechanism, whereas the average number of relationships
maintained by the virtual nodes was stable. This shows a great scalability advantage in
adopting the virtual node mechanism.

5.2. Protocol Analysis
5.2.1. Number of Search Paths

The protocol designed in this paper chooses ancestors layer by layer, and the upper-
layer decisions have a great influence on the lower layer. Generally, more search paths can
reduce the influence of upper-layer decisions on the final decision and find a better solution
than a single search path. The effect of different numbers of search paths on the service
coverage of the generated structure was analyzed by letting the RNs search one, two, and
three paths to determine their position when joining the system under the 10,000-scale
topology. The results are shown in Figure 14. There was no significant difference in service
coverage between the systems generated with different search paths, whereas a higher
number of search paths implied a higher message overhead. From the experiments, it is
clear that the node-joining strategy with a single search path is effective enough to build a
system structure with high service coverage.

Electronics 2022, 11, x FOR PEER REVIEW 19 of 25

5.2. Protocol Analysis
5.2.1. Number of Search Paths

The protocol designed in this paper chooses ancestors layer by layer, and the upper-
layer decisions have a great influence on the lower layer. Generally, more search paths
can reduce the influence of upper-layer decisions on the final decision and find a better
solution than a single search path. The effect of different numbers of search paths on the
service coverage of the generated structure was analyzed by letting the RNs search one,
two, and three paths to determine their position when joining the system under the 10,000-
scale topology. The results are shown in Figure 14. There was no significant difference in
service coverage between the systems generated with different search paths, whereas a
higher number of search paths implied a higher message overhead. From the experiments,
it is clear that the node-joining strategy with a single search path is effective enough to
build a system structure with high service coverage.

Figure 14. Impact of search path number on structure.

5.2.2. Inference Strategy
Two constraints are proposed for nested relationship inference: same-tree constraint

and level constraint. The same-tree constraint requires that the service area of one node
fully contain the other in Euclidean space, whereas the level constraint only requires that
the service area of two nodes overlap. The strategy that only judges two nodes that satisfy
the same-tree constraint (i.e., Theorem 2 in Section 4.1) to be nested is referred to as the
strict strategy, and the strategy that uses the level constraint (i.e., Theorem 1 in Section 4.1)
is referred to as the relaxed strategy. Since RNs are deployed in a decentralized manner,
there is no guaranteed nested relationship between them. A strict relation inference strat-
egy for nodes may ensure a more complete nesting of service areas among RNs, but it may
also cause users to miss services on certain layers because it would be hard for RNs to find
ancestors, and the accuracy of the relaxed strategy is limited. In order to determine the
impact of the two inference strategies on the system structure, the tree-generation process
was simulated on 10,000-scale topology under two strategies. One is that the RNs can only
choose ancestors from nodes that satisfied the same-tree constraint (strict strategy), and
the other is that they can also choose the nodes that satisfy the level constraint when none
satisfy the same-tree constraint (relaxed strategy).

The results are shown in Figure 15. Under the two strategies, the service coverage of
the system in L1 was not much different, but the service coverage of the relaxed strategy
in other layers was much higher than that of the strict strategy. Under the strict condition,

Figure 14. Impact of search path number on structure.

5.2.2. Inference Strategy

Two constraints are proposed for nested relationship inference: same-tree constraint
and level constraint. The same-tree constraint requires that the service area of one node
fully contain the other in Euclidean space, whereas the level constraint only requires that
the service area of two nodes overlap. The strategy that only judges two nodes that satisfy
the same-tree constraint (i.e., Theorem 2 in Section 4.1) to be nested is referred to as the
strict strategy, and the strategy that uses the level constraint (i.e., Theorem 1 in Section 4.1)
is referred to as the relaxed strategy. Since RNs are deployed in a decentralized manner,
there is no guaranteed nested relationship between them. A strict relation inference strategy
for nodes may ensure a more complete nesting of service areas among RNs, but it may
also cause users to miss services on certain layers because it would be hard for RNs to find
ancestors, and the accuracy of the relaxed strategy is limited. In order to determine the
impact of the two inference strategies on the system structure, the tree-generation process
was simulated on 10,000-scale topology under two strategies. One is that the RNs can only
choose ancestors from nodes that satisfied the same-tree constraint (strict strategy), and

Electronics 2022, 11, 2425 19 of 24

the other is that they can also choose the nodes that satisfy the level constraint when none
satisfy the same-tree constraint (relaxed strategy).

The results are shown in Figure 15. Under the two strategies, the service coverage of
the system in L1 was not much different, but the service coverage of the relaxed strategy in
other layers was much higher than that of the strict strategy. Under the strict condition,
a large number of lower layer nodes could not find eligible parents, so a large number of
virtual nodes was generated and users were missing services, whereas under the relaxed
condition they could find eligible parents, so some of the users could still get deterministic
service from lower layers, thus achieving a higher service coverage. The message overhead
of latency measurement and maintenance of virtual nodes was much larger than that of
real nodes, and the strict strategy was thus more costly, as shown in Figure 15. Based on the
results, the relaxed relationship inference strategy has advantages in both system service
coverage and overhead.

Electronics 2022, 11, x FOR PEER REVIEW 20 of 25

a large number of lower layer nodes could not find eligible parents, so a large number of
virtual nodes was generated and users were missing services, whereas under the relaxed
condition they could find eligible parents, so some of the users could still get deterministic
service from lower layers, thus achieving a higher service coverage. The message over-
head of latency measurement and maintenance of virtual nodes was much larger than that
of real nodes, and the strict strategy was thus more costly, as shown in Figure 15. Based
on the results, the relaxed relationship inference strategy has advantages in both system
service coverage and overhead.

Figure 15. Impact of inference strategy on structure.

5.3. Comparative Study
To evaluate the performance of the LNMRS generated under the proposed protocol,

we conducted a comparative study between LNMRS and Ftree with the same set of reso-
lution nodes. The response latency, the success rate of resolution requests, and the request
message overhead were compared.

5.3.1. Resolution Response Latency
The resolution response latency is the time between the user sending a request and

receiving a response from the NRS. We compared the response latency of LNMRS and
Ftree under different topology sizes. The one-way latency requirement was set to 5 ms, 25
ms, and 50 ms for L3, L2, and L1, respectively, in LNMRS, and the required deterministic
response round trip times (RTT) were, therefore, 10 ms, 50 ms, and 100 ms. The number
of hash functions used in Ftree was set to 10, 30, and 50, respectively. For each hash func-
tion number and each level of LNMRS, 4 × 10ସ requests were simulated. Figure 16
shows the distribution of the response latency for the requests. As can be seen from Figure
16, the overall response latency of LNMRS was much lower than Ftree and had a deter-
ministic guarantee. LNMRS could guarantee the max resolution response latency to be
within the set response RTT at each level, and achieved deterministic resolution response.
For Ftree, although it could reduce its average response latency by increasing the number
of hash functions used, the upper bound of the response latency was hardly affected.
Therefore, it could not guarantee deterministic response latency.

Figure 15. Impact of inference strategy on structure.

5.3. Comparative Study

To evaluate the performance of the LNMRS generated under the proposed protocol, we
conducted a comparative study between LNMRS and Ftree with the same set of resolution
nodes. The response latency, the success rate of resolution requests, and the request message
overhead were compared.

5.3.1. Resolution Response Latency

The resolution response latency is the time between the user sending a request and
receiving a response from the NRS. We compared the response latency of LNMRS and
Ftree under different topology sizes. The one-way latency requirement was set to 5 ms,
25 ms, and 50 ms for L3, L2, and L1, respectively, in LNMRS, and the required deterministic
response round trip times (RTT) were, therefore, 10 ms, 50 ms, and 100 ms. The number of
hash functions used in Ftree was set to 10, 30, and 50, respectively. For each hash function
number and each level of LNMRS, 4× 104 requests were simulated. Figure 16 shows the
distribution of the response latency for the requests. As can be seen from Figure 16, the
overall response latency of LNMRS was much lower than Ftree and had a deterministic
guarantee. LNMRS could guarantee the max resolution response latency to be within the
set response RTT at each level, and achieved deterministic resolution response. For Ftree,
although it could reduce its average response latency by increasing the number of hash
functions used, the upper bound of the response latency was hardly affected. Therefore, it
could not guarantee deterministic response latency.

Electronics 2022, 11, 2425 20 of 24

Electronics 2022, 11, x FOR PEER REVIEW 21 of 25

Figure 16. Response latency of LNMRS and Ftree.

5.3.2. Success Resolution Rate
The success resolution rate is the ratio of the number of resolution requests success-

fully resolved in an NRS to the total number of requests received from users. Successfully
“resolved” means that the user received the correct locator corresponding to the requested
name from the NRS.

The success resolution rates within different limits of resolution time are shown in
Figure 17. They indicate how many requests are successfully resolved within the time
limits. The total 4 × 10ସ request is denoted as 𝑆ோ௘௤ and the time limit as 𝑇, and the suc-
cess resolution rate within the time limit 𝑇 is defined as in Equation (6): 𝑆𝑅𝑎𝑡𝑒் = ෍ 𝐼்(𝑟)௥∈ௌೃ೐೜ ห𝑆ோ௘௤หൗ (6)

where 𝐼்(𝑟) indicates whether the request 𝑟 is successfully resolved within 𝑇, as shown
in Equation (7): 𝐼(𝑟) = ൜1, 𝑖𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 𝑤𝑖𝑡ℎ𝑖𝑛 𝑇0, 𝑖𝑓 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑖𝑙𝑒𝑑 𝑜𝑟 𝑒𝑥𝑐𝑒𝑒𝑑𝑠 𝑇 (7)

As shown in Figure 17, LNMRS had higher success resolution rates than Ftree within
all set latency requirements. It shows that LNMRS is better suited for applications with
low and deterministic latency requirements. LNMRS emphasizes timely response over
successful retrieval. The successful retrieval is guaranteed by the other part of the resolu-
tion scheme (GNMRS) in SEANet, so the success rate shown in Figure 17 is tolerable, but

Figure 16. Response latency of LNMRS and Ftree.

5.3.2. Success Resolution Rate

The success resolution rate is the ratio of the number of resolution requests successfully
resolved in an NRS to the total number of requests received from users. Successfully
“resolved” means that the user received the correct locator corresponding to the requested
name from the NRS.

The success resolution rates within different limits of resolution time are shown in
Figure 17. They indicate how many requests are successfully resolved within the time
limits. The total 4× 104 request is denoted as SReq and the time limit as T, and the success
resolution rate within the time limit T is defined as in Equation (6):

SRateT = ∑
r∈SReq

IT(r)/
∣∣SReq

∣∣ (6)

where IT(r) indicates whether the request r is successfully resolved within T, as shown in
Equation (7):

Ir =
{

1, i f success f ully resolved within T
0, i f resolution f ailed or exceeds T

(7)

As shown in Figure 17, LNMRS had higher success resolution rates than Ftree within
all set latency requirements. It shows that LNMRS is better suited for applications with
low and deterministic latency requirements. LNMRS emphasizes timely response over
successful retrieval. The successful retrieval is guaranteed by the other part of the resolution
scheme (GNMRS) in SEANet, so the success rate shown in Figure 17 is tolerable, but is
certainly not ideal. Future works are needed on the improvement of the success rate, which
we will discuss in Section 6.

Electronics 2022, 11, 2425 21 of 24

Electronics 2022, 11, x FOR PEER REVIEW 22 of 25

is certainly not ideal. Future works are needed on the improvement of the success rate,
which we will discuss in Section 6.

Figure 17. Success resolution rate under different time limits.

5.3.3. Resolution Overhead
The number of query messages generated during the resolution process of the 4 × 10ସ request is shown in Figure 18. For Ftree, the message number increased with the

network size, because the size of the NRS also increased, resulting in longer forwarding
paths for requests. LNMRS, on the other hand, did not forward requests to other nodes,
and therefore the message overhead during resolution was lower and did not increase
with the network size. This means that the LNMRS could effectively reduce the network
traffic generated by name resolution.

Figure 18. Number of messages generated during the resolution process.

6. Conclusions and Future Work
This paper proposes a tree structure for LNMRS that guarantees deterministic reso-

lution latency and a protocol to generate the structure. The protocol enables the generation
and maintenance of a nested tree structure, each layer of which provides users with a

Figure 17. Success resolution rate under different time limits.

5.3.3. Resolution Overhead

The number of query messages generated during the resolution process of the 4× 104

request is shown in Figure 18. For Ftree, the message number increased with the network
size, because the size of the NRS also increased, resulting in longer forwarding paths for
requests. LNMRS, on the other hand, did not forward requests to other nodes, and therefore
the message overhead during resolution was lower and did not increase with the network
size. This means that the LNMRS could effectively reduce the network traffic generated by
name resolution.

Electronics 2022, 11, x FOR PEER REVIEW 22 of 25

is certainly not ideal. Future works are needed on the improvement of the success rate,
which we will discuss in Section 6.

Figure 17. Success resolution rate under different time limits.

5.3.3. Resolution Overhead
The number of query messages generated during the resolution process of the 4 × 10ସ request is shown in Figure 18. For Ftree, the message number increased with the

network size, because the size of the NRS also increased, resulting in longer forwarding
paths for requests. LNMRS, on the other hand, did not forward requests to other nodes,
and therefore the message overhead during resolution was lower and did not increase
with the network size. This means that the LNMRS could effectively reduce the network
traffic generated by name resolution.

Figure 18. Number of messages generated during the resolution process.

6. Conclusions and Future Work
This paper proposes a tree structure for LNMRS that guarantees deterministic reso-

lution latency and a protocol to generate the structure. The protocol enables the generation
and maintenance of a nested tree structure, each layer of which provides users with a

Figure 18. Number of messages generated during the resolution process.

6. Conclusions and Future Work

This paper proposes a tree structure for LNMRS that guarantees deterministic resolu-
tion latency and a protocol to generate the structure. The protocol enables the generation
and maintenance of a nested tree structure, each layer of which provides users with a
different latency guarantee. In order to ensure the generation of correct nested relationships
between LNMRS nodes, this paper also proposes a nested relationship inference method
based on latency measurement. A virtual node mechanism is designed to ensure the
smooth joining and exiting of nodes and enhance protocol applicability.

Based on the simulation results the accuracy of definite nested inference reached more
than 99%, and less than 30% of the node pairs satisfying possible nested inference had a
service area nested ratio below 70%, which indicates that the proposed inference method
can effectively inference node relations. The structure generated under the protocol had

Electronics 2022, 11, 2425 22 of 24

good service capability regardless of the network topology scale and could achieve high
service coverage at each layer. The node-joining and structure maintenance overheads were
relatively stable at each layer, with no significant positive correlation with the system scale,
showing good scalability for the system. Comparative experiments with the Ftree showed
that LNMRS generated with the proposed protocol could support the deterministic latency
name resolution well and that the generated resolution traffic was low.

Our solution embeds latency constraints into the structure of NRS by limiting the
forwarding of requests to achieve deterministic latency resolution. Since the forwarding
is limited, the successful resolution depends highly on the locally stored mappings of the
queried resolver. Although desired information is often published locally for scenarios like
auto-driving or industry control, the limited forwarding may still result in a low hit ratio
for name mappings. Once local resolution fails, users have to access the global NRS, and
the QoS degrades. Thus, for future work, further research on the neighbor mechanisms
and the mapping distribution method can be done to improve the success rate of local
lookups. A neighbor mechanism can also improve mobility support for the system. For
mobile scenarios like auto-driving, the user needs a fast transfer from the old resolver
to the new one that serves its current area to maintain the deterministic service. So, a
cooperation mechanism for neighbors is important. Another direction of future work
worth considering is the optimization of the system structure. The deterministic latency is
achieved by exploiting the latency constraints embedded in the system structure; therefore,
the structure is important for deterministic resolution. Although the protocol proposed
in this paper ensures a structure that correctly embeds the latency constraint, it does not
guarantee the structure to be optimal, especially when the member nodes change. Future
work on how to optimize the system structure based on member changes can be further
studied to improve system usability.

Author Contributions: Conceptualization, W.X., J.W. and J.Y.; methodology, J.Y.; software, W.X.;
validation, W.X.; formal analysis, W.X.; investigation, W.X.; data curation, W.X.; writing—original
draft preparation, W.X.; writing—review and editing, J.Y.; visualization, W.X.; supervision, J.Y. and
J.W.; project administration, J.Y.; funding acquisition, J.Y. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by Strategic Leadership Project of Chinese Academy of Sciences:
SEANET Technology Standardization Research System Development (Project No. XDC02070100).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to express our gratitude to Jiaqi Li and Yanxia Li for their
meaningful support in this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, R.R. Network 2030 a Blueprint of Technology, Applications and Market Drivers towards the Year 2030 and beyond. 2019. Avail-

able online: https://www.itu.int/en/ITU-T/focusgroups/net2030/Documents/White_Paper.pdf (accessed on 26 June 2022).
2. Barakabitze, A.A.; Xiaoheng, T.; Tan, G. A Survey on Naming, Name Resolution and Data Routing in Information Centric

Networking (ICN). IJARCCE 2014, 3, 8322–8330.
3. Xylomenos, G.; Ververidis, C.N.; Siris, V.A.; Fotiou, N.; Polyzos, G.C. A Survey of Information-Centric Networking Research.

IEEE Commun. Surv. Tutor. 2013, 16, 1024–1049. [CrossRef]
4. Gurtov, A.; Komu, M.; Moskowitz, R. Host identity protocol: Identifier/locator split for host mobility and multihoming. Internet

Protoc. J. 2009, 12, 27–32.
5. Kafle, V.P.; Otsuki, H.; Inoue, M. An ID/locator split architecture for future networks. Commun. Mag. IEEE 2010, 48, 138–144.

[CrossRef]
6. Menth, M.; Hartmann, M.; Klein, D. Global Locator, Local Locator, and Identifier Split (GLI-Split). Future Internet 2013, 5, 67–94.

[CrossRef]

https://www.itu.int/en/ITU-T/focusgroups/net2030/Documents/White_Paper.pdf
http://doi.org/10.1109/SURV.2013.070813.00063
http://doi.org/10.1109/MCOM.2010.5402677
http://doi.org/10.3390/fi5010067

Electronics 2022, 11, 2425 23 of 24

7. Ohlman, B. From ID/locator split to ICN. In Proceedings of the 2015 12th Annual IEEE Consumer Communications and
Networking Conference (CCNC), Las Vegas, NV, USA, 9–12 January 2015; pp. 256–261.

8. Dong, L.; Wang, G. A Hybrid Approach for Name Resolution and Producer Selection in Information Centric Network. In
Proceedings of the 2018 International Conference on Computing, Networking and Communications (ICNC), Maui, HI, USA, 5–8
March 2018.

9. Jacobson, V.; Smetters, D.K.; Thornton, J.D.; Plass, M.F.; Braynard, R.L. Networking named content. Commun. ACM 2009, 55,
117–124. [CrossRef]

10. Zhang, L.; Afanasyev, A.; Burke, J.; Jacobson, V.; Papadopoulos, C.; Claffy, K.; Lan, W.; Crowley, P.; Zhang, B. Named data
networking. Acm Sigcomm Comput. Commun. Rev. 2014, 44, 66–73. [CrossRef]

11. Koponen, T.; Chawla, M.; Chun, B.-G.; Ermolinskiy, A.; Kim, K.H.; Shenker, S.; Stoica, I. A data-oriented (and beyond) network
architecture. In Proceedings of the 2007 Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications, Kyoto, Japan, 27–31 August 2007; pp. 181–192.

12. Fotiou, N.; Nikander, P.; Trossen, D.; Polyzos, G.C. Developing information networking further: From PSIRP to PURSUIT. In
Proceedings of the International Conference on Broadband Communications, Networks and Systems, Athens, Greece, 25–27
October 2010; pp. 1–13.

13. Lagutin, D.; Visala, K.; Tarkoma, S. Publish/subscribe for internet: Psirp perspective. In Towards the Future Internet; IoS Press:
Amsterdam, The Netherlands, 2010; pp. 75–84.

14. Edwall, T.; Tremblay, B. SAIL Project. Available online: https://sail-project.eu/wp-content/uploads/2011/10/SAIL-Newsletter_
4.pdf (accessed on 26 July 2022).

15. Venkataramani, A.; Kurose, J.F.; Raychaudhuri, D.; Nagaraja, K.; Mao, M.; Banerjee, S. Mobilityfirst: A mobility-centric and
trustworthy internet architecture. ACM SIGCOMM Comput. Commun. Rev. 2014, 44, 74–80. [CrossRef]

16. Li, S.; Da Xu, L.; Zhao, S. 5G Internet of Things: A survey. J. Ind. Inf. Integr. 2018, 10, 1–9. [CrossRef]
17. Agiwal, M.; Saxena, N.; Roy, A. Towards connected living: 5G enabled internet of things (IoT). IETE Tech. Rev. 2019, 36, 190–202.

[CrossRef]
18. Nasrallah, A.; Thyagaturu, A.S.; Alharbi, Z.; Wang, C.; Shao, X.; Reisslein, M.; Elbakoury, H. Ultra-Low Latency (ULL) Networks:

The IEEE TSN and IETF DetNet Standards and Related 5G ULL Research. IEEE Commun. Surv. Tutor. 2018, 21, 88–145. [CrossRef]
19. Parvez, I.; Rahmati, A.; Guvenc, I.; Sarwat, A.I.; Huaiyu, D. A Survey on Low Latency Towards 5G: RAN, Core Network and

Caching Solutions. IEEE Commun. Surv. Tutor. 2018, 20, 3098–3130. [CrossRef]
20. Wang, J.; Cheng, G.; You, J.; Sun, P. SEANet: Architecture and Technologies of an On-site, Elastic, Autonomous Network. J. Netw.

New Media 2020, 6, 1–8.
21. ITU-T Y. ICN-NMR Framework of Locally Enhanced Name Mapping and Resolution for Information Centric Networking in

IMT-2020. Available online: https://www.itu.int/md/T17-SG13-C-1319/ (accessed on 26 July 2022).
22. Souk, S.H.; Ahmed, S.H.; Kim, D. Hierarchical and hash based naming with Compact Trie name management scheme for

Vehicular Content Centric Networks. Comput. Commun. 2015, 71, 73–83.
23. García, G.; Beben, A.; Ramón, F.J.; Maeso, A.; Psaras, I.; Pavlou, G.; Wang, N.; Śliwiński, J.; Spirou, S.; Soursos, S. COMET: Content

mediator architecture for content-aware networks. In Proceedings of the 2011 Future Network & Mobile Summit, Warsaw, Poland,
15–17 June 2011; pp. 1–8.

24. Vu, T.; Baid, A.; Zhang, Y.; Nguyen, T.D.; Fukuyama, J.; Martin, R.P.; Raychaudhuri, D. Dmap: A shared hosting scheme for
dynamic identifier to locator mappings in the global internet. In Proceedings of the 2012 IEEE 32nd International Conference on
Distributed Computing Systems, Macau, China, 18–21 June 2012; pp. 698–707.

25. Sharma, A.; Tie, X.; Uppal, H.; Venkataramani, A.; Westbrook, D.; Yadav, A. A global name service for a highly mobile internetwork.
In Proceedings of the 2014 ACM Conference on SIGCOMM, Chicago, IL, USA, 17–22 August 2014; pp. 247–258.

26. Louati, W.; Ben-Ameur, W.; Zeghlache, D. A bottleneck-free tree-based name resolution system for Information-Centric Network-
ing. Comput. Netw. 2015, 91, 341–355. [CrossRef]

27. Katsaros, K.V.; Fotiou, N.; Vasilakos, X.; Ververidis, C.N.; Tsilopoulos, C.; Xylomenos, G.; Polyzos, G.C. On inter-domain name
resolution for information-centric networks. In Proceedings of the International Conference on Research in Networking, Prague,
Czechia, 21–25 May 2012; pp. 13–26.

28. Dannewitz, C.; D’Ambrosio, M.; Vercellone, V. Hierarchical DHT-based name resolution for information-centric networks. Comput.
Commun. 2013, 36, 736–749. [CrossRef]

29. D’Ambrosio, M.; Dannewitz, C.; Karl, H.; Vercellone, V. MDHT: A hierarchical name resolution service for information-centric
networks. In Proceedings of the ACM SIGCOMM Workshop on Information-Centric Networking, Toronto, ON, Canada, 19
August 2011.

30. Fotiou, N.; Katsaros, K.; Vasilakos, X.; Tsilopoulos, C.; Ververidis, C.N.; Xylomenos, G.; Polyzos, G.C. H-Pastry: An Adaptive
Multi-Level Overlay Inter-Network. Athens Univ. Econ. Bus. Athens Greece Tech. Rep. 2012. Available online: https://www.
eurecom.fr/~{}vasilako/pubs/techRep/2011-MMLAB-TR-003.pdf (accessed on 26 June 2022).

31. Harvey, N.; Jones, M.B.; Saroiu, S.; Theimer, M.; Wolman, A. SkipNet: A Scalable Overlay Network with Practical Locality
Properties. In Proceedings of the Usenix Symposium on Internet Technologies & Systems, Seattle, WA, USA, 26–28 March 2003.

32. Li, J.; You, J.; Deng, H. Adjacency-Information-Entropy-Based Cooperative Name Resolution Approach in ICN. Future Internet
2022, 14, 68. [CrossRef]

http://doi.org/10.1145/2063176.2063204
http://doi.org/10.1145/2656877.2656887
https://sail-project.eu/wp-content/uploads/2011/10/SAIL-Newsletter_4.pdf
https://sail-project.eu/wp-content/uploads/2011/10/SAIL-Newsletter_4.pdf
http://doi.org/10.1145/2656877.2656888
http://doi.org/10.1016/j.jii.2018.01.005
http://doi.org/10.1080/02564602.2018.1444516
http://doi.org/10.1109/COMST.2018.2869350
http://doi.org/10.1109/COMST.2018.2841349
https://www.itu.int/md/T17-SG13-C-1319/
http://doi.org/10.1016/j.comnet.2015.08.024
http://doi.org/10.1016/j.comcom.2013.01.014
https://www.eurecom.fr/~{}vasilako/pubs/techRep/2011-MMLAB-TR-003.pdf
https://www.eurecom.fr/~{}vasilako/pubs/techRep/2011-MMLAB-TR-003.pdf
http://doi.org/10.3390/fi14030068

Electronics 2022, 11, 2425 24 of 24

33. Ng, T.E.; Zhang, H. Predicting Internet network distance with coordinates-based approaches. In Proceedings of the Twenty-First
Annual Joint Conference of the IEEE Computer and Communications Societies, New York, NY, USA, 23–27 June 2002; pp. 170–179.

34. Ng, T.E.; Zhang, H. Towards global network positioning. In Proceedings of the 1st ACM SIGCOMM Workshop on Internet
Measurement, San Francisco, CA, USA, 1–2 November 2001; pp. 25–29.

35. Dabek, F.; Cox, R.; Kaashoek, F.; Morris, R. Vivaldi: A decentralized network coordinate system. ACM SIGCOMM Comput.
Commun. Rev. 2004, 34, 15–26. [CrossRef]

36. Saino, L.; Psaras, I.; Pavlou, G. Icarus: A caching simulator for information centric networking (icn). In Proceedings of the
SimuTools, Lisbon, Portugal, 17–19 March 2014; pp. 66–75.

37. Hagberg, A.; Swart, P.; S Chult, D. Exploring Network Structure, Dynamics, and Function Using NetworkX; Los Alamos National Lab.
(LANL): Los Alamos, NM, USA, 2008.

38. Saino, L.; Cocora, C.; Pavlou, G. A toolchain for simplifying network simulation setup. SimuTools 2013, 13, 82–91.
39. Schulz, P.; Matthe, M.; Klessig, H.; Simsek, M.; Fettweis, G.; Ansari, J.; Ashraf, S.A.; Almeroth, B.; Voigt, J.; Riedel, I. Latency

Critical IoT Applications in 5G: Perspective on the Design of Radio Interface and Network Architecture. IEEE Commun. Mag.
2017, 55, 70–78. [CrossRef]

40. Medina, A.; Lakhina, A.; Matta, I.; Byers, J. BRITE: An Approach to Universal Topology Generation. In Proceedings of the
International Workshop on Modeling, Rzeszów, Poland, 17–20 September 2001; pp. 346–353.

41. Rajahalme, J.; Särelä, M.; Visala, K.; Riihijärvi, J. On name-based inter-domain routing. Comput. Netw. 2011, 55, 975–986. [CrossRef]
42. Zhang, B.; Ng, T.E.; Nandi, A.; Riedi, R.; Druschel, P.; Wang, G. Measurement based analysis, modeling, and synthesis of the

internet delay space. In Proceedings of the 6th ACM SIGCOMM Conference on Internet Measurement, Rio de Janeriro, Brazil,
25–27 October 2006; pp. 85–98.

43. Breslau, L.; Pei, C.; Li, F.; Phillips, G.; Shenker, S. Web caching and Zipf-like distributions: Evidence and implications. In
Proceedings of the Infocom 99 Eighteenth Joint Conference of the IEEE Computer & Communications Societies IEEE, New York,
NY, USA, 21–25 March 1999.

44. Fricker, C.; Robert, P.; Roberts, J. A versatile and accurate approximation for LRU cache performance. In Proceedings of the 2012
24th International Teletraffic Congress (ITC 24), Krakow, Poland, 4–7 September 2012.

http://doi.org/10.1145/1030194.1015471
http://doi.org/10.1109/MCOM.2017.1600435CM
http://doi.org/10.1016/j.comnet.2010.12.014

	Introduction
	Related Work
	On-Path Resolution
	Query Resolution

	Local Name-Mapping Resolution System
	System Model
	Nested Tree Structure
	System Deployment Considerations

	Tree Generation and Maintenance
	Nested Relationship Inference Method
	Virtual Node Mechanism
	Node Join and Leave
	Node Failure

	Evaluation
	Structure Analysis
	Service Area Nested Ratio
	Service Coverage
	Message Overhead

	Protocol Analysis
	Number of Search Paths
	Inference Strategy

	Comparative Study
	Resolution Response Latency
	Success Resolution Rate
	Resolution Overhead

	Conclusions and Future Work
	References

