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Abstract: Advanced research in robotics has allowed robots to navigate diverse environments
autonomously. However, conducting complex tasks while handling unpredictable circumstances
is still challenging for robots. The robots should plan the task by understanding the working
environments beyond metric information and need countermeasures against various situations.
In this paper, we propose a semantic navigation framework based on a Triplet Ontological Semantic
Model (TOSM) to manage various conditions affecting the execution of tasks. The framework allows
robots with different kinematics to perform tasks in indoor and outdoor environments. We define
the TOSM-based semantic knowledge and generate a semantic map for the domains. The robots
execute tasks according to their characteristics by converting inferred knowledge to Planning Domain
Definition Language (PDDL). Additionally, to make the framework sustainable, we determine a policy
of maintaining the map and re-planning when in unexpected situations. The various experiments
on four different kinds of robots and four scenarios validate the scalability and reliability of the
proposed framework.

Keywords: semantic navigation; ontology; PDDL; semantic knowledge; semantic map; robotics

1. Introduction

Robots now have the ability to independently navigate a variety of surroundings
thanks to advanced robotics research. Nevertheless, addressing unanticipated situations
while performing complex jobs remains challenging for robots. Robots should execute
tasks by comprehending working environments beyond metric data and considering
protective measures for various scenarios. Using semantic knowledge recently has become
a research trend to solve such problems [1,2]. In cognitive robotics, the concept of “semantic
knowledge” can be represented by general knowledge that people use, such as concepts,
attributes, properties, and purposes of environmental elements (e.g., object and place) and
their relationships.

We introduce a map for robots to explain semantic knowledge. When building a map
for people, we first consider how to represent the environment according to their require-
ments. For example, if we make a park guide map, the map shows the park’s structure.
In this case, we illustrate the location of significant landmarks and paths connecting them
on the map. However, maps used by robots are extremely different. We need to consider
the understanding ability of the robot that uses the map. If robots have human-level intelli-
gence, it would be enough to give them the maps we use. However, for robots that do not
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have human-level intelligence, it is essential to make specific maps that can be perceived
and utilized. Building maps for robots is handled as a Simultaneously Localization and
Mapping (SLAM) problem in robotics. The SLAM problem can be defined as generating an
unknown environmental map and simultaneously estimating the robot’s pose on the map.

The early research directions for SLAM were aimed at building a metric map such as a
grid, feature, and point cloud map [3,4]. A metric map describes the world using low-level
metric information within a fixed coordinate system. Therefore, using the metric map,
robots can deduce only the metric location and geometrical structure of the environment.
Furthermore, to operate the robots, an administrator should convert their instructions
into a metric form that robots can perceive. For example, if we want the robots to “move
to a second door”, we must give them instructions such as “move to (x,y) coordinate”.
Controlling the robots with numerical commands is not a problem when performing
simple tasks in uncomplicated environments. However, various limitations exist while
performing a high-level task (e.g., fetch a package) in complex environments using only
metric instructions and information.

An increasing number of recent studies have shown advancements in the map con-
cept by including semantic knowledge on the map to overcome these limitations [2,5,6].
Many researchers have developed numerous semantic SLAM approaches that build en-
riched maps, known as semantic maps, by extracting semantic knowledge such as environ-
mental elements’ labels and geometrical relationships that can be obtained from various
sensors [7–11]. These approaches combine extracted semantic knowledge with the metric
maps. On the other hand, in the case of implicit knowledge (e.g., conceptual hierarchy,
attributes, and properties) that cannot be extracted directly, researchers have defined and
represented the knowledge depending on a specific domain for the robot’s application [1].

A semantic navigation framework enables robots to perform tasks by utilizing seman-
tic knowledge. The framework’s core is modeling and handling knowledge to complete
tasks without problems. Our previous work [12] proposed a semantic navigation frame-
work composed of the Semantic Modeling Framework (SMF), the Semantic Autonomous
Navigation (SAN) module, and the Semantic Information Processing (SIP) module. Each
framework module utilizes semantic knowledge by defining the Triplet Ontological Seman-
tic Model (TOSM). We showed the inspection scenario based on semantic knowledge in an
indoor single-floor environment.

In this paper, we present a TOSM-based scalable semantic navigation framework
for various conditions: robots, environments, and scenarios. We extend the previous
framework with the following contributions:

• Integrating the framework for robots with different kinematics and various tasks using
Web Ontology Language (OWL) and Planning Domain Definition Language (PDDL);

• Modeling a TOSM-based semantic knowledge for robots, indoor multi-floor buildings,
and outdoor environments;

• Generating a semantic map containing asserted and inferred semantic knowledge of
environmental elements: objects, places, and robots;

• Designing a hierarchical planning scheme that utilizes semantic knowledge in each layer;
• For maintenance, updating the semantic map whenever the robot works;
• Re-planning to ensure the framework’s reliability when the plan fails.

In the rest of the paper, we introduce and compare the related works in Section 2.
Sections 3 and 4 explain the extended framework’s modules that define and utilize semantic
knowledge. Section 5 describes the experiments that demonstrate the framework. Lastly,
we discuss and conclude in Sections 6 and 7.

2. Related Work

Ontology is a method for describing concepts and the relationships between them. Many
researchers have adopted ontology-based approaches to design semantic knowledge [1,2,13,14].
Ontological definitions of semantic knowledge can be specified according to each application
domain: office [15,16], challenging fields [17], medical [18,19], manufacturing [20,21], domes-



Electronics 2022, 11, 2420 3 of 19

tic [22–26], and convention center [12]. We set the detailed comparison criteria as semantic
knowledge (ontology, reasoner, query), planner, scalability (environment, robot type, and
task), and reliability (re-planning and map maintenance). Table 1, ordered by year, shows the
comparison between semantic navigation frameworks.

In Table 1, (M) represents that multiple methods are used depending on the case for
semantic knowledge and planner; methods not mentioned are expressed with a hyphen
(−). (In) and (Out) mean that the framework is applied indoors and outdoors. A black
circle (•) and (

√
) mean that the framework considers various robot types and tasks and

has functions for re-planning and map maintenance. An empty circle (◦) and a hyphen (×)
mean that it does not.

Table 1. Comparison for semantic navigation frameworks.

Name Ref. Semantic Knowledge Planner Scalability Reliability
Ontology Reasoner Query Env Robot Task Replan Maintain

Galindo et al. [15] DL − − Metric-FF In ◦ • × ×
OUR-K [22] OWL M − [27] In ◦ ◦ × ×
Dhouib et al. [17] OWL Pellet − − Out • • × ×
KnowRob [28] OWL Prolog M − In ◦ • × ×
Goncalves et al. [18] OWL M EL − In ◦ ◦ × ×
Sadik et al. [20] JADE/ACL Drools − Drools In ◦ • × ×
Kootbally et al. [21] OWL/XSDL − − − In • ◦

√
×

SEMAP [16] OWL/SWRL M M − Both • • ×
√

Sabri et al. [25] µConcept DL − SmartRules In ◦ • × ×
Sun et al. [26] OWL/SWRL JESS − − In ◦ ◦ ×

√

Chang et al. [19] OWL Prolog SPARQL − In ◦ • × ×
Joo et al. [12] OWL Pellet SPARQL POPF In ◦ ◦ × ×
TOSMNav Ours OWL/SWRL Pellet SPARQL POPF Both • •

√ √

While most frameworks do not consider scalability and reliability, our framework,
TOSMNav, manages all components of them. We explain some papers and our previous
work in detail for further understanding.

Galindo et al. used a semantic map to improve the robot’s task planning efficiency [15].
The utilized semantic map is defined by integrating hierarchical spatial information and
semantic knowledge. The spatial information, called S-Box, contains the state of elements
in the environment (e.g., area, object, and robot) and the spatial relationships between them,
such as at and connected. The domain knowledge for the elements is defined as a termino-
logical component called T-Box. The instances and assertions of the concepts are stored in
the assertional component called A-Box. When the robot builds a map, the occupancy map
can be classified as area-4 in the S-Box and linked to Room, an ontological concept, in the
T-Box. The explained semantic map is represented based on the structure of the knowledge
representation system called Description Logic (DL) [29]. They demonstrated the proposed
semantic map using MOVE and OBSERVE actions in a home environment.

Lim et al. proposed an Ontology-Based Unified Robot Knowledge (OUR-K) framework [22],
which consists of knowledge description and knowledge association for indoor service robots.
The knowledge description module separates the knowledge into the world model (objects,
spaces, and contexts) and interaction methods with the world (features and actions). The object
knowledge contains three hierarchical levels: O1, O2, and O3. O1 is the part-object level with
functional and perceptual parts. O2 is the object level for name, and O3 is the compound level
for similar concepts. The space knowledge includes three kinds of maps: metric (S1), topological
(S2), and semantic (S3). Context knowledge comprises spatial relationships (e.g., on, in, and
left) and temporal concepts (e.g., before, after, and met). For the interaction knowledge, the
feature knowledge has the perceptual feature and the concept level; the action knowledge has
the primitive behavior, sub-task, and task level. The framework’s semantic knowledge repre-
sentation is based on the ontological framework of Karlsruhe Ontology (KAON) in [30]. The
knowledge association module defines the relationships between knowledge descriptions using
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logical inference, Bayesian inference, and heuristics. The proposed framework was verified with
a reception service scenario.

In another research work, Tenorth et al. presented the KnowRob-Map system that
combines encyclopedic knowledge with instances of an object in the environment [31]. The
object-based map is built using the method in [32] and processed to semantically represent
the knowledge based on the system, called KnowRob [33]. The KnowRob-Map system
integrates both systems to generate knowledge-linked semantic object maps. The maps
are constructed using a triple SemObjMap = (D, O, R), consisting of data, ontology, and
rules, represented by SWI Prolog [34]. Kunze et al. applied the system to search for objects
in large-scale indoor environments [35]. They presented the decision-theoretic search
algorithm to maximize the probability of finding the object’s location. Other applications
using the system are described in detail in the paper [28].

Deeken et al. introduced the Semantic Environment Mapping (SEMAP) framework [16,36].
The framework aims to generate and maintain spatial relationships using Geometrical Informa-
tion Systems (GIS), specifically PostGIS, and to support query languages for reasoning based
on an ontological framework, Apache JENA. The ontological model for the environment rep-
resentation consists of a core ontology for general knowledge and a domain-specific ontology
for various applications. Environmental instances’ geometrical information (e.g., points, lines,
and polygons) are stored in the PostGIS database and connected with the SEMAP’s knowl-
edge database using the properties such as semap:hasDbId. The framework utilizes these links
to manage and query the semantic map. They applied the framework to the real robot by
implementing an interface to the Robot Operating System (ROS) in the office environment.

We proposed the semantic navigation framework consisting of the SMF, the SIP
module, and the SAN module [12], based on the TOSM integrating three models: explicit,
implicit, and symbolic. The explicit model describes the information obtained from sensors,
such as metric state, geometrical characteristics, and image information. The implicit model
contains relationships and facts for environmental elements; we classify the environmental
elements as Object, Place, and Robot. The environmental elements are symbolized using the
symbolic model. The TOSM utilizes OWL terminologies defined in the OWL reference [37]
to represent the world. The terminologies consist of the class, object property, and data
property. The class defines the hierarchy of the environmental elements that provide “is-a”
knowledge of elements. The classes’ relationship knowledge and attributes are represented
using object and data properties, respectively. We demonstrated the framework using an
inspection scenario in an indoor convention center environment.

3. Semantic Knowledge Representation

We propose the SMF based on the TOSM in our previous work [12]. This work
extends semantic knowledge for various environments and mobile robots by defining new
classes and properties. We explain which semantic knowledge is added compared with the
previous work and how semantic maps are generated in the following sections by targeting
an experimental environment. For clarity, classes and properties are represented in italic,
and individuals as usual.

3.1. Semantic Knowledge for Working Environment

Determining the robot’s path and traversable doorways to reach its goal is required
when planning a task. The decision inside the semantic navigation framework depends on
semantic knowledge of environmental elements.

In this work, we selected a complex experimental environment, illustrated in Figure 1,
composed of an office-like multi-floor building, two experimental facilities, and outdoor
roads connecting them. In the environment, the office building has an automatic door
that has fixed-access time in the main lobby, and the facilities have closed, large gates.
Additionally, the building has three floors with two kinds of elevators. One is a small
passenger elevator that connects each floor from the inside; the other is a large freight
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elevator with two doors that connect indoors and outdoors on the first floor and one door
on the other floors.

Figure 1. The experimental environment including an office building, experimental facilities, and
outdoor roads.

To utilize the environmental information, first, we define data properties for the
elements according to the target environment, as described in Table 2. availableStartTime
and availableEndTime, respectively, represent a doorway’s open and close time, at the robot
can go through; assignedTaskAt is the time when the robot receives a task. Moreover, since
the robot should open the elevator to take, we include the canBeOpenedByRobot property
that indicates which elevator the robot can enter. isLeafPlace is utilized to represent the
lowest hierarchical level of places. In other words, the leaf places do not have any child
place represented by the isInsideOf property. The leaf places are the criterion for judging
navigability when planning. The properties for size in the explicitModel are defined for
determining whether the robot can pass. When passing the doorway while executing tasks,
the robot needs to check whether the door inside the doorway is open or not. At this time,
the robot selects sensors to check using material knowledge of the door.

Table 2. Data properties for EnvironmentalElement.

Data Property Hierarchy Domains Ranges

implicitModel

availiableStartTime Doorway double
availiableEndTime Doorway double

assignedTaskAt Robot double
canBeOpenedByRobot Elevator boolean

isLeafPlace Place boolean
material Door string

explicitModel entranceSize Doorway double
footPrintSize Robot double

Second, we define the Robot’s object properties to utilize semantic knowledge of
places. Table 3 shows the definition of the properties. canWorkingAt expresses the robot’s
working area by considering the robot’s specification. For example, we can use this
property to distinguish whether it is for indoor or outdoor use. canNotGoThrough and
canNotRotateInPlace define the knowledge between robots and leaf places; canGoThrough
is disjoint with canNotGoThrough. LeafPlace in ranges means “isLeafPlace value true” in
the class expression. These object properties are used for generating a specific robot’s
on-demand semantic map.
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Table 3. Object properties for Robot.

Object Property Hierarchy Domains Ranges

robotRelationship

canWorkingAt Robot Place
canGoThrough Robot LeafPlace

canNotGoThrough Robot LeafPlace
canNotRotateInPlace Robot LeafPlace

Finally, we use the Semantic Web Rule Language [38] (SWRL) to allow the robot to
infer semantic knowledge based on the asserted properties. The SWRL is a language for
expressing rules that allow the inferring of new knowledge from existing OWL ontologies.
The defined SWRL rules for the environmental elements are as follows:

• Rule 1:
Robot(?r) ˆ Place(?p) ˆ canWorkingAt(?r, ?p) ˆ Place(?lp) ˆ
isLeafPlace(?lp, true) ˆ isInsideOf(?lp, ?p) -> canWorkingAt(?r, ?lp)

• Rule 2:
Robot(?r) ˆ assignedTaskAt(?r, ?amt) ˆ Doorway(?dw) ˆ
availableStartTime(?dw, ?st) ˆ swrlb:lessThan(?amt, ?st) -> canNotGoThrough(?r, ?dw)

• Rule 3:
Robot(?r) ˆ assignedTaskAt(?r, ?amt) ˆ Doorway(?dw) ˆ
availableEndTime(?dw, ?et) ˆ swrlb:greaterThan(?amt, ?et) ->
canNotGoThrough(?r, ?dw)

• Rule 4:
Robot(?r) ˆ footPrintSize(?r, ?fs) ˆ Doorway(?dw) ˆ entranceSize(?dw, ?es) ˆ
swrlb:greaterThan(?fs, ?es) -> canNotGoThrough(?r, ?dw)

• Rule 5:
Robot(?r) ˆ Elevator(?ev) ˆ canBeOpenedByRobot(?ev, false) ->
canNotGoThrough(?r, ?ev)

• Rule 6:
Robot(?r) ˆ canNotRotateInPlace(?r, elevator2) ->
canNotGoThrough(?r, doorway115)

These rules’ primary purpose is to generate the robot’s on-demand database for task
planning. Rule 1 infers the canWorkingAt property from places to leaf places. For example,
if the semantic knowledge base has the fact that the robot can work for building1, the
robot can deduce all workable leaf places that are inside of building1 (e.g., corridor313 and
room311). Rule 2, 3, and 4 define the canNotGoThrough property between the robot and
doorways using each doorway’s available time and size. Rule 5 and 6 determine whether
the robot can take the elevator based on the robot’s locomotion and ability, defined as the
implicit model. In the case of Rule 6, environmental-specific knowledge is applied.

3.2. Semantic Map Generation

Generating a semantic map consists of an assertion and inference step. The assertion
step involves individuals and their relationships, called assertion components (A-box),
from the TOSM-based semantic knowledge definition, called terminology components
(T-box). The inference step uses reasoners to generate an inferred knowledge graph based
on the characteristics of properties and SWRL rules.

In the assertion step, first, we divide the environment into top place individuals;
building1, building2, building3, and outdoor1. Each top place consists of child places such
as floors, corridors, or doorways. Figure 2 shows part of the place individuals inside of
building1. The fact that three floors are inside of building1 is defined by the isInsideOf
property. Second, we build metric maps of each floor to divide and make leaf places. The
leaf places’ boundary is determined based on the metric map. The relationships between
leaf places are defined by the isConnectedTo property. Similarly, the isInsideOf property
between each floor and leaf place is defined.
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Figure 2. An example of place individuals’ asserted object and data properties.

After defining places and their relationships for entire environments, we add object
individuals using the object detector, YOLOv5 [39]. The detector is trained using 26,078 la-
beled images that cover all environments. The training is conducted on 30 epochs with
the initial learning rate of 5 × 10−4 and the rate reduction of 0.95 factor for plateau loss.
The detected objects’ 3D position in the camera frame is decided by their central position,
calculated using the following equations:

Xc =
1
N

N

∑
i=1

di
fx

(
ui −

w− 1
2

)
(1)

Yc =
1
N

N

∑
i=1

di
fy

(
vi −

h− 1
2

)
(2)

Zc =
1
N

N

∑
i=1

di (3)

where (Xc, Yc, Zc) is the object’s position in the camera frame, N is the number of pixels
inside of the bounding box, (ui, vi, di) are a pixel and its depth, ( fx, fy) is the focal length
of each coordinate, and (w, h) is the image size. The calculated position is transformed
into the global coordinate and tracked using the Kalman Filter (KF) to cluster points for
sequential scenes. We add the detected objects every time a robot passes through a leaf
place. Each object and leaf place are linked with the isInsideOf property by checking the
places’ boundary and objects’ position. Figure 3 visualizes the generated objects and places
on building1 using their position and boundary in the explicit model.

Lastly, we define subclasses of Robot, as illustrated in Figure 4. The subclasses (Tricy-
cleRobot, OmnidirectionalRobot, and DifferentialRobot) are distinguished by a robot’s kine-
matics. We create a robot individual used in our experiments per each subclass: Kirobot,
NRlab02, SmartCookie, and NRlab04. Figure 4 describes the asserted properties of each robot
(canNotRotateInPlace and canWorkingAt). The individual of NRlab04 can work in build-
ing1 and outdoor1, but cannot rotate in elevator2 because of its kinematics. This knowledge
can be defined by the following SWRL rule: TricycleRobot(?r) -> canNotRotateInPlace(?r,
elevator2). The individuals of Kirobot and NRlab02 can work only indoors, but the individual
of SmartCookie can work only outdoors.

The inference step uses the Pellet reasoner [40] to reason logical knowledge based on
the A-box from the previous step. The reasoner finds all relationships between environ-
mental elements (objects, places, and robots). For example, using the asserted relationships
“corridor31 is inside of floor3”, we can infer “corridor31 is inside of building1”. These kinds
of inferred knowledge are utilized in semantic navigation.
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Figure 3. The explicit model-based visualization of objects and places on the generated semantic map.

Figure 4. Subclasses of Robot and some of their individuals’ asserted object properties.

4. Semantic Navigation

To make a robot complete an assigned task based on semantic knowledge, we pre-
sented the Semantic Autonomous Navigation (SAN) module and the Semantic Information
Processing (SIP) module in [12]. The SAN module adopts the hierarchical planning scheme
composed of task, behavior, and action planning. When a robot works, the SIP module
semantically recognizes the environment to handle the robot’s behaviors and actions. This
work enhances the modules to take miscellaneous robots and tasks in indoor and outdoor
fields. The following sections explain how the modules are implemented organically and
make the framework sustainable in the selected environment, as shown in Figure 1.

4.1. Hierarchical Planning

The main components of hierarchical planning are task, behavior, and action planning.
The task planner generates a behavior sequence using PDDL, the behavior planner decides
an action sequence for each behavior by exploiting the behavior database, and the action
planner makes direct robot control signals for each action. For each planner, we offer criteria
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to distinguish them. First, “task” is a set of goal states that a robot needs to accomplish.
The state can be visiting somewhere, delivering coffee, or finding something. Second,
“behavior” is a concept of acting to target goals with prior static knowledge. For example,
when we go to a convenience store, we plan paths such as “going to an elevator” and
“using the elevator”, then “going through some places” to get to the goal. These instances
can be behaviors. Lastly, on the other hand, “action” needs to make real-time decisions by
considering dynamic situations while executing.

For a clear understanding, we describe the hierarchical planning procedure for differ-
ent robots using a delivery task example. When a robot receives a task, such as “Deliver a
stuff to corridor32”, the task planner makes the goal state “(deliver robot_name stuff_name
corridor32)” in the problem file of PDDL by parsing the task. The predicates of goal states
are defined in the domain file of PDDL.

Next, the SAN module queries the robot’s on-demand semantic database to the SMF.
Exploiting SPARQL, the SMF queries all semantic knowledge related to the robot to the
database using the robot’s name. After acquiring the on-demand database, the task plan-
ner can realize the robot’s locations, workable and untraversable leaf places defined as
isLocatedAt, canWorkingAt, and canNotGoThrough, respectively. For example, if the task is
assigned to nrlab04_1, part of the obtained semantic relationships is as follows: “nrlab04_1
isLocatedAt corridor11”, “nrlab04_1 canWorkingAt sidewalk2”, “nrlab04_1 canWorkingAt
corridor39”, and “nrlab04_1 canNotGoThrough doorway115”. These relationships are stored
in the problem file as init states, and environmental individuals’ classes are saved in the
object field of the domain file. Then, the task planner generates behavior sequences through
the Partial Order Planning Forwards (POPF) planner [41] using the built problem file and
pre-defined domain file.

As expected, assigning the same task to different robots causes different results, as
illustrated in Figure 5. Recall the characteristics of two robots: NRlab04 and Kirobot. Since
NRlab04 cannot directly go to floor3 indoors, the plan for NRlab04 guides the robot outdoors
via sidewalks, whereas Kirobot takes the elevator indoors. The task planner’s results for
each robot are represented in Listing 1 and Listing 2, respectively. There are two kinds of
“goto” behavior in the listings: goto_place and goto_place_through_doorway. goto_place,
defined in Listing 3, handles general navigation behaviors between connected leaf places.
Otherwise, goto_place_through_doorway specifies behaviors for two connected leaf places
with a doorway. The parameter field of goto_place_through_doorway is defined as (?r -
robot ?from ?to - leafplace ?dw - doorway) in the PDDL domain file. In line 8 of Listing 1, the
robot moves between floors using move_floor_using_elevator behavior with the parameter
field (?r - robot ?from ?to - leafplace ?dw_from ?dw_to - doorway ?ev - elevator).

Listing 1. A behavior sequence for NRlab04 generated by the task planner.

1 ( g e t _ s t u f f nrlab04_1 s t u f f 1 )
2 ( goto_place nrlab04_1 corr idor1 1 corr idor1 4 )
3 ( goto_place_through_doorway nrlab04_1 cor r idor1 4 cor r idor 17

doorway114 )
4 ( goto_place_through_doorway nrlab04_1 cor r idor1 7 sidewalk1

doorway121 )
5 ( goto_place nrlab04_1 sidewalk1 sidewalk2 )
6 ( goto_place nrlab04_1 sidewalk2 sidewalk3 )
7 ( goto_place nrlab04_1 sidewalk3 sidewalk4 )
8 ( move_f loor_using_elevator nrlab04_1 sidewalk4 cor r idor 35

doorway113 doorway317 e l e v a t o r 2 )
9 ( goto_place nrlab04_1 corr idor3 5 cor r idor3 9 )

10 ( goto_place nrlab04_1 corr idor3 9 cor r idor3 1 )
11 ( goto_place nrlab04_1 corr idor3 1 cor r idor3 2 )
12 ( g i v e _ s t u f f nrlab04_1 s t u f f 1 )
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Listing 2. A behavior sequence for Kirobot generated by the task planner.

1 ( g e t _ s t u f f k i robot1 s t u f f 1 )
2 ( goto_place k i robot1 corr idor1 1 corr idor1 3 )
3 ( goto_place k i robot1 corr idor1 3 corr idor1 6 )
4 ( goto_place k i robot1 corr idor1 6 corr idor1 5 )
5 ( move_f loor_using_elevator k i robot1 cor r idor1 5 cor r idor 35

doorway115 doorway317 e l e v a t o r 2 )
6 ( goto_place k i robot1 corr idor3 5 corr idor3 9 )
7 ( goto_place k i robot1 corr idor3 9 corr idor3 1 )
8 ( goto_place k i robot1 corr idor3 1 cor r idor3 2 )
9 ( g i v e _ s t u f f k i robot1 s t u f f 1 )

Listing 3. goto_place behavior.

1 ( : durative − a c t i o n goto_place
2 : parameters ( ? r − robot ? from ? to − l e a f p l a c e )
3 : durat ion (= ? duration (/ ( d i s t a n c e ? from ? to ) ( v e l o c i t y ? r

) ) )
4 : condi t ion ( and
5 ( over a l l ( canGoThrough ? r ? from ) )
6 ( over a l l ( canGoThrough ? r ? to ) )
7 ( over a l l ( canWorkingAt ? r ? from ) )
8 ( over a l l ( canWorkingAt ? r ? to ) )
9 ( over a l l ( isConnectedTo ? from ? to ) )

10 ( a t s t a r t ( isLocatedAt ? r ? from ) )
11 )
12 : e f f e c t ( and
13 ( a t s t a r t ( not ( isLocatedAt ? r ? from ) ) )
14 ( a t end ( isLocatedAt ? r ? to ) )
15 )
16 )

(a) A deliver task planning result for NRlab04. (b) A deliver task planning result for Kirobot.

Figure 5. Different task planning results according to different classes of Robot.

After generating the behavior sequence, each behavior is dispatched to its behavior
planner. The behavior planner can determine sophisticated action sequences using seman-
tic knowledge of environmental elements. In the case of goto_place_through_doorway
behavior, the planner obtains the individual name of the doorway that connects two leaf
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places. Then, the planner queries a door that is inside the doorway. If there is no door, the
robot goes through via the doorway, but if an automatic door or a hinged door exists, the
robot should check the door before passing. Therefore, the planner includes a checking
action for this case.

Additionally, due to the robot’s ability, we select a wireless elevator control solution
for move_floor_using_elevator behavior. The following sequences can solve the behavior:
“Find the elevator”, “Wait until opened”, “Call the elevator”, “Enter the elevator”, “Select
the floor”, “Wait until arrived”, and “Leave the elevator”. If the robot has a manipulator
that can touch the elevator buttons, the “Call” and “Select” action is converted into “Push
the button” actions.

Finally, the action planner directly controls the robot according to the given action
sequence from the behavior planner. We separate actions into moving and others. For
moving actions, the robot navigates to the goal by changing the navigation parameters
considering the type of the goal. For example, the robot can speed up in wide places; other-
wise, it can be careful in narrow or complex places such as doorways or crowded hallways.
Other actions, such as handling the elevator, depend on domain-specific knowledge.

4.2. Plan Execution

The hierarchical planning scheme follows a top-down approach; conversely, the robot
executes the plan bottom-up. After completing the action, the action planner returns the
action result to the behavior planner. Likewise, obtaining all results of the action sequence,
the behavior planner sends the behavior result to the task planner.

While the robot executes the plans, the SIP module semantically recognizes the work-
ing environment as the following sequences.

First, the object detector, explained in Section 3.2, finds objects and their positions to
identify them. Based on the robot’s location (place), represented as isLocatedAt, the SIP
module queries objects using the isInsideOf relationship with the place name, and then
compares the positions to determine the ID of the detected objects. The SIP module updates
and adds objects whenever the robot finishes each behavior because, after finishing a
behavior, the robot moves to another leaf place. At this time, the matched objects’ position
is updated, and others and their relationships are added to the semantic map in the same
way as in semantic map generation in Section 3.2.

Second, the SIP module recognizes the states of objects and places defined in the
TOSM. In our environments, the most critical information about objects that the SIP mod-
ule needs to check is whether the door is open or not. The SIP module uses ultrasonic
sensors for the undetectable glass doors (automaticdoor114 and automaticdoor121); for
others, such as wood and steel doors, it uses images and point clouds. The sensors to use
are determined based on the door’s implicit knowledge (material), queried by the object
detector’s identification results. In addition, the SIP module inspects whether the place is
blocked; this information is related to the canNotGoThrough property. These results make
the action planner decide to go, wait, or fail.

When the action planner returns a fail result with reason, the behavior planner sends
the information to the task planner. Then, after updating the on-demand database, the task
planner re-plans to find other behavior sequences. We explain the re-planning scenario in
detail in Section 5.

5. Experiment

In this section, we introduce experiments considering various conditions, such as
robot kinematics, environment, and scenarios. The purpose of the experiments is to verify
the scalability of the described semantic navigation framework.

5.1. Experimental Environment

We conducted the experiments in an environment containing multi-floor buildings and
outdoors; the detailed description of the environment is given in Section 3. The OWL-based
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semantic database for the environment is generated using Protege [42]. Figure 6 illustrates
the generated semantic map of the environment based on the explicit model. Table 4
represents the metric information of the semantic database used for the experiments. In the
first column of the table, the number of defined OWL terminologies includes definitions of
our previous work; we utilize 66 classes, 13 object properties, and 32 data properties. On
the other hand, the second column only counts the individuals and asserted properties for
the current environment; the database has 114 objects, 152 places, 4 robots, 432 asserted
object properties, and 2096 asserted data properties.

Figure 6. The explicit model-based visualization of the generated semantic map for the entire environment.

Table 4. Metric information for the semantic database.

Definitions Individuals
Class Object Property Data Property Object Place Robot Object Property Assertion Data Property Assertion

63 13 32 114 152 4 432 2096

5.2. On-Demand Database

To validate the scalability according to robot types, we used four robots, illustrated
in Figure 7. NRlab04 and SmartCookie can work in outdoor1 because they are waterproof;
otherwise, Kirobot and NRLab02 can work only indoors, in building1. Moreover, Smart-
Cookie cannot work indoors due to its size. These facts are stored as canWorkingAt in the
semantic database.

Since the robots have different characteristics, they do not need the entire semantic
database for their tasks. Therefore, we made an on-demand semantic database for each
robot to obtain efficiency by considering their features. Using the Pellet reasoner, first, we
inferred relationships based on the asserted semantic knowledge and the SWRL rules. The
reasoning step took 1346 ms. Second, we used SPARQL, the query language, to generate
their on-demand database. We adopted Owlready [43], which utilizes RDF quadstore in an
optimized database (SQLite3) to handle the OWL-based database.

The results for their on-demand database are described in Table 5. In the relationships
column, canWorkingAt (a) and canWorkingAt (i) mean asserted knowledge and inferred
knowledge, respectively, from Rule 1, which finds the leaf places where the robot can
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work. The number of canNotGoThrough can be changed according to assignedTaskAt. The
table assumes that the robots are assigned when the doorway is available. The number of
relationships and individuals is queried based on their workable places. The total number
of relationships contains relationships between queried individuals such as isInsideOf,
isConnectedTo, and isLocatedAt. We describe assigned tasks for each robot in the next section.

(a) NRLab04. (b) Kirobot.

(c) NRLab02. (d) SmartCookie.

Figure 7. Robot’s individuals used for the experiment. (a) is TricycleRobot, (b,c) are DifferentialRobot,
and (d) is OmnidirectionalRobot.

Table 5. On-demand semantic database for each subclass of Robot.

Classes Relationships Individuals Assigned TaskscanWorkingAt (a) canWorkingAt (i) canNotGoThrough Total Objects Places

NRLab04 building1, outdoor1 138 2 1924 114 152 Delivery
Kirobot building1 95 1 1572 94 110 Guidance
NRLab02 building1 95 2 1573 94 110 Surveillance
SmartCookie outdoor1 43 0 255 20 42 Patrol

5.3. Scenario

We demonstrate the semantic navigation framework by showing various scenarios:
delivery, guidance, surveillance, and patrol. Each task is assigned as shown in Table 5.
When the robot receives the task, the SAN module generates the problem file using knowl-
edge in its on-demand database; the initial location of the robot is defined as the isLocatedAt
property. We perform the scenario by changing the robot’s starting and goal place to
evaluate the framework. The goal can be set using our user interface, which has selectable
lists for each task.

5.3.1. Delivery

The first scenario, delivery, was assigned to NRLab04, which can work for entire
environments. As explained in Section 4.1, the delivery task can be defined as the predicate
(deliver_complete ?r - robot ?s - stuff ?p - place), which becomes the goal state of the
problem file. To introduce a building-to-building navigation scenario, we set the robot’s
location to corridor32 and the goal to road17 connected to building2. In this scenario,
querying for the on-demand database took 348 ms, generating the problem file took 622 ms,
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and task planning took 49 ms. The behavior sequence has 16 behaviors similar to Listing 1,
and the total sequence duration time used as the planner’s optimization cost was 563 s.

Using the scenario, we added an unexpected situation in which we blocked the place
when the robot was working. To create the re-planning signal, we barricaded road3 using
large boxes. In this situation, the re-planning proceeds as follows. First, the SIP module
decides that the robot cannot go through road3. Using the result, the action planner for
the goto_place behavior sends feedback to the task planner through the behavior planner.
Second, the task planner updates the on-demand database by removing the isConnectedTo
property between the current leaf place and road3. Finally, the task planner re-plans based
on the updated knowledge until all sequences fail. The first generated and re-planned
behavior sequences are illustrated in Figure 8.

(a) The first generated behavior sequence. (b) The re-planned behavior sequence.

Figure 8. The behavior sequence generated by the task planner. (a) The plan result from corridor32 to
road17. (b) The re-plan result from road2 to road17.

Furthermore, we included a predicate for the object’s location to expand the scenario.
Using the predicate, the robot can also deliver an object that is not in the robot’s starting
place. In this case, the user should select the goal and the object’s location.

5.3.2. Guidance

The guidance scenario is simpler than the deliver scenario. The task assigned to
Kirobot requires only behaviors related to moving: goto_place, move_floor_using_elevator,
and goto_place_through_doorway. Moreover, the goal of the task is converted using the
isLocatedAt property. For the metric comparison, we set the goal to corridor11 when the
robot was located at corridor32. This case took 280 ms to query for the on-demand database,
430 ms to generate the problem file, and 36 ms for task planning. The behavior sequence
had 7 behaviors, and the total time was 172 s.

5.3.3. Surveillance

We assigned a surveillance scenario that can have multiple goals to inspect sequentially
to NRLab02. The task can have multiple goals to inspect sequentially. To complete the task,
we define an inspection behavior with the parameters (?r - robot ?p - place) that can be
generated using the task goal. For the behavior, we implemented an action that detects
people while rotating. Unlike other scenarios, we set the goals as “inspect corridor38 and
39, then come your initial place” without moving floors. The result of the task planner
contains the inspection behavior between moving behaviors (goto_place). The planner took
285 ms for querying, 442 ms for the problem file, and 42 ms for task planning. The result
has 12 behaviors and a total of 259 s.
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5.3.4. Patrol

The final scenario is a patrol task assigned to SmartCookie for outdoors. The goal
of the task is to check all leaf places inside of outdoor1. We devise a checking behavior
for the task with the predicate (check ?r - robot ?p - place). Based on the predicate, the
goals are represented as a set of predicates with queried individuals. We set the robot’s
initial location as road1 and included (smartcookie1 isLocatedAt road1) in the goal state for
return. The planner took 122 ms and 184 ms for querying and the problem file. Because the
outdoors has roads connecting many roads at once, the patrol task can be performed in
various behavior orders. Therefore, the task planner took 1120 ms to find the best sequence
with 53 behaviors and a total of 626 s.

5.3.5. Comparison

We compare the experiments using the metrics of four scenarios (delivery, guidance,
surveillance, and patrol) in Figure 9.

(a) (b)

Figure 9. Comparison of four scenarios: delivery, guidance, surveillance, and patrol. (a) Query time
for the on-demand database (blue), generating the problem file time (orange), and task planning time
(gray). (b) The number of behaviors (blue) and the sum of times for the sequence (orange).

Figure 9a illustrates each scenario’s time spent querying the semantic database (blue),
generating the problem file (orange), and task planning (gray). Recall the on-demand
database for each robot, described in Table 5. Because building1 had more individuals
and relationships than outdoor1, the patrol scenario took less time when querying and
generating the file than other scenarios. This means that the times for querying and
generating are proportional to the size of the on-demand database. On the other hand,
since the patrol task could be solved using several sequences, the task planner took the
longest to find the best sequence; the total times spent were 1019 ms, 746 ms, 769 ms, and
1426 ms for the order of scenarios.

Figure 9b compares the results of the task planner for each scenario. The behavior
sequence for the delivery and guidance task consists of moving and using elevator be-
haviors; the surveillance has moving and inspecting behaviors; the patrol has moving
behaviors only. We specified the duration of goto_place by dividing the distance between
places by the robot’s velocity; we set the duration of inspect_place to 60 s. In the case of
move_floor_using_elevator, since we cannot predict the duration, we assumed the duration
as 60 s. Accordingly, the total times for the behavior sequences were 563 s, 172 s, 259 s, and
626 s. The time of the patrol task was relatively short compared to others because of the
robot’s speed.

We evaluated the framework’s reliability using the delivery scenario by changing the
robot’s initial and goal place. The task success was determined by whether the robot arrived
at the destination accurately. We achieved a 96.7% success rate in a total of 30 experiments.
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Most of the experiments were successful, but one experiment failed when communication
to open the door was lost inside the elevator.

5.4. Changing the Environmental Domain

We validated the scalability and effectiveness for various environments by applying
the proposed framework to the corporate collaboration center at Sungkyunkwan University
(SKKU). The building, consisting of seven floors, has a cafe on the first floor; three elevators
connect each floor, and outdoor roads connect the first floor. We selected the first and the
seventh floor for the coffee delivery scenario. The semantic database for the environment
has 20 objects, 62 places, 1 robot, 826 asserted object properties, and 531 asserted data
properties. Figure 10 visualizes the environment’s semantic database.

We set the robot’s start and goal as corridor717 on the seventh floor. The robot must
stop by cafe1 on the first floor to bring a coffee to complete the task. Therefore, the robot
should take the elevator twice. In this scenario, querying for the on-demand database
took 232 ms, generating the problem file took 368 ms, and task planning took 73 ms. The
behavior sequence had 14 behaviors, and the total sequence duration time was 412 s.

Figure 10. The explicit model-based visualization of the generated semantic map for the corporate
collaboration center at Sungkyunkwan University (SKKU).

6. Discussion

The development of semantic navigation frameworks for robots has been advanced in
recent years. The semantic knowledge enables robots to become intelligent, to realize the
world and act in a human way. However, their abilities can be further improved in various
applications. Therefore, we suggest several future research directions with associated
open issues.

Executing complicated tasks. Nowadays, robots are applied for many tasks, such as
surveillance, guidance, delivery, and disinfection. However, these tasks consist of behaviors
that can be implemented without complex behavior knowledge. The final goal of using
semantic knowledge is beyond completing simple repetitive works. For complicated
tasks, knowledge of each task should be defined and utilized. Beetz et al. presented the
KNOWROB 2.0 framework [24] for complex manipulation tasks (e.g., making pizza and
setting tables). To increase the capabilities of robots’ manipulation skills, they defined the
task knowledge about them. Consequently, designing more sophisticated task models will
enable the robots to execute various tasks, such as doing the laundry.

Improving recognition skills. State-of-the-art methods to recognize environments have
achieved remarkable performance in many domains. However, the current recognition
methods using only sensory inputs are insufficient for complex decisions in numerous
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situations. For example, when a robot is guarding a particular area, there are counter-
measures for each case, such as specific domain knowledge. Therefore, we believe that
improving recognition skills based on semantic knowledge in various situations is needed
for reasonable determinations.

Standardization of semantic knowledge. There are several semantic knowledge repre-
sentation approaches in [1]. Each approach defines semantic knowledge for its specific
domain. However, to share and accumulate semantic knowledge, semantic knowledge
representations should be standardized. Schlenoff et al. discussed the IEEE-RAS working
group, entitled Ontologies for Robotics and Automation (ORA WG), that developed a
standard ontology for knowledge representation [44]. They have tried to unify the format
of entire knowledge representation terminologies. Their works proposed a Core Ontology
for Robotics and Automation (CORA), described in [45–48]. Furthermore, the RoboEarth
project [49] was aimed at presenting a system for sharing knowledge between robots. The
project was the first implementation of a World Wide Web for robots. They demonstrated
that sharing knowledge between robots can accelerate the speed of learning. Further re-
search on the standardization of semantic knowledge will offer a basis for robot knowledge.

7. Conclusions

In this work, we presented the TOSM-based semantic navigation framework. We
expanded the previous framework to accommodate robots with varying kinematics and
tasks in indoor and outdoor environments by defining semantic knowledge based on
the TOSM, OWL, and PDDL. We also generated a semantic map including asserted and
inferred semantic knowledge using SWRL and the reasoner. The on-demand database
generated by considering each robot’s class allowed the robots to execute tasks according
to their characteristics. The hierarchical planning and re-planning strategy made the
framework reliable even in unexpected situations. Moreover, we maintained the semantic
map by adding and updating processes whenever the robots worked. The experiments
on four scenarios (deliver, guidance, surveillance, and patrol) and four different robots
demonstrated that our framework could be used for various robots, environments, and
scenarios. Our future work will focus on handling the issues described in the discussions
and extending the framework to a multi-robot system.
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