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Abstract: Considerable research has been conducted to obtain translations that reflect contextual
information in documents and simultaneous interpretations. Most of the existing studies use concate-
nation data which merge previous and current sentences for training translation models. Although
this corpus improves the performance of the model, ignoring the contextual correlation between the
sentences can disturb translation performance. In this study, we introduce a simple and effective
method to capture the contextual correlation of the sentence at the document level of the current
sentence, thereby learning an effective contextual representation. In addition, the proposed model
structure is applied to a separate residual connection network to minimize the loss of the beneficial
influence of incorporating the context. The experimental results show that our methods improve
the translation performance in comparison with the state-of-the-art baseline of the Transformer in
various translation tasks and two benchmark machine translation tasks.

Keywords: BERT; cardinality residual connection; context-aware machine translation; document-level
neural machine translation; sentence embedding; similarity measurement; Transformer

1. Introduction

The neural machine translation (NMT) model [1,2] has been extended to obtain trans-
lated texts that reflect contextual information. Recently, the development of language
models learned through abundant language resources has improved the ability to recog-
nize contexts. Pretrained language models have shown superior performance and have
attracted attention for use in various natural language processing tasks. Most existing
models [3–7] for document-level machine translation use two encoders to model source
sentences and document-level context. The standard Transformer model is extended with
a new context encoder, and the encoder for the source sentences is conditioned on this
context encoder [3,4,8,9]. In addition, large-scale pretrained language models, such as
BERT [10], have been used as context encoders for document-level machine translation
models [6,7]. However, in an environment with more parameters than in BERT, these
models have an underfitting problem because the optimal model cannot be obtained with-
out transfer learning on the pretrained NMT model. To address these problems, in this
study, a separate residual connection network called cardinality is used for each multihead
attention module. Cardinality [11,12] refers to the number of network block groups and is
a powerful operation for reducing the computational cost and number of parameters while
maintaining a similar (or slightly better) performance. Thus, when training a model with a
large number of parameters, the reduction in the error rate achieved is much better than
that in other models with a deep and broad width. This notion leads to the understanding
that cardinality has a positive effect on model learning of context representation when the
number of parameters is increased with BERT. In addition, there are some problems with
machine translation in the document-level context. NMT ignores the connections between
sentences and other valuable contextual information. To address these problems, various
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context-aware machine translation and document-level NMT models have been proposed
to extract contextual information from neighboring sentences [13–15], focusing on using a
few previous sentences as context for document-level machine translation. More recently,
studies on document-level machine translation [6,7,16] have used multiple sentences as
input data into a multiencoder. A commonly used representation of the input data is the
concatenation of previous and current sentences. However, it cannot be confirmed with
certainty that the two sentences are contextually close or are perfectly connected with the
data. Ignoring contextual correlation between sentences can limit further improvements in
translation performance. In a recent study, the index of similarity and unifying statistical
theory of translation [17,18], based on communication theory, such as the signal-to-noise
ratio (SNR), were proposed to assert mutual linguistic mathematical relationships. The
statistical and linguistic features of a text depend not only on the particular language,
mainly through a linear relationship, but also on the particular translation task. The
communication channel used as the “sentences channel” [17,18] compares the number of
sentences in any couple of texts for an equal number of words by considering the average
relationships and their correlation. This motivates us to propose a simple and effective
mathematic method to exploit document-level context. Similarity measures are used to
capture sentences with highly relevant contextual information in the current sentence. This
way, contextual document-level data are built to train the document-level NMT model.

This study demonstrates that an optimal embedding and similarity measurement
can have a high translation performance for each data point, and the proposed model
structure provides an advantage in document-level translation. The experimental results
show that our simple and effective method improves the translation performance over the
state-of-the-art baseline of the Transformer for IWSLT tasks and two benchmark machine
translation tasks. In addition, an additional study was conducted to examine the ability
of our method to capture document-level context information as well as to define the
characteristics of the corpus.

The remainder of this paper is organized as follows. In Section 2, the background
knowledge supporting the proposed approach and the existing document-level machine
translation research is explained. In Section 3, the proposed method, which can im-
prove the context-aware ability of document-level translation, is described. Finally, in
Sections 4 and 5, details of the experiments and results are presented, respectively, fol-
lowed by a conclusion in Section 6.

2. Related Work
2.1. Sentence Embedding
2.1.1. Universal Sentence Encoder

The universal sentence encoder (USE) [19] model encodes textual data into high-
dimensional vectors known as embeddings, which are numerical representations of the
textual data. USE was trained on a variety of data sources to learn from a wide variety
of tasks such as text classification, semantic similarity, and clustering with the sources
consisting of Wikipedia, web news, web question–answer pages, and discussion forums.
The input was a variable-length English text, and the output was a 512-dimensional
sentence embedding. Because the embedding works on multiple generic tasks, it captures
only the most informative features and discards noise.

2.1.2. Sentence BERT

Sentence-BERT (SBERT) [20] is a modification of the BERT network that uses Siamese
and triplet network structures to derive semantically meaningful sentence embeddings.
SBERT is a twin network that allows two sentences to be processed simultaneously in
the same manner. SBERT adds a pooling operation to the output of BERT and robustly
optimized BERT (RoBERTa) to derive fixed-size sentence embeddings. The classification
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objective function concatenates the sentence embeddings u and v with the element-wise
difference |u− v| and multiplies it with the trainable weight Wt:

o = softmax(Wt(u, v|u− v|)) (1)

2.2. Similarity Measures
2.2.1. Cosine Similarity

Cosine similarity measures the similarity between two nonzero vectors through the
inner product space. Two vectors with the same orientation have a cosine similarity of 1,
and two vectors at 90◦ have a similarity of 0. In contrast, the two vectors diametrically
opposed to each other have a similarity of −1, independent of their magnitude. Cosine
similarity is used particularly in a positive space, where the outcome is neatly bounded
between 0 with 1. One of the reasons for the popularity of cosine similarity is that it is
highly efficient in the evaluation of sparse vectors. The cosine similarity between A and B
is defined as

sim(A, B) = cos(θ) =
A·B

‖ A ‖‖ B ‖ (2)

2.2.2. Euclidean Distance

In mathematics, the Euclidean distance between two points in Euclidean space is the
length of a line segment. This can be calculated using the Pythagorean theorem, which
is also known as simple distance. This is the best proximity measure when the data are
dense or continuous. Formulas are used to compute the distance between different types of
objects, such as the distance from a point to a line. The Euclidean distance between A and
B is given by:

dis(A, B) =
√

∑k
i=1 (Ai − Bi)

2 (3)

2.2.3. Manhattan Distance

The Manhattan distance is a metric in which the distance between two points is
calculated as the sum of the absolute differences in their Cartesian coordinates. Simply
stated, it is the total sum of the differences between the x and y coordinates. To calculate
the Manhattan distance between two points A and B, how these two points, A and B, vary
along the X- and Y-axes must be determined. Mathematically, the Manhattan distance
between two points is measured along the axes at right angles and is represented as

dis(A, B) =‖ A− B ‖1= ∑n
i=1|Ai − Bi| (4)

2.2.4. Signal-to-Noise Ratio Distance

In statistical theory, the standard definition of signal-to-noise ratio (SNR) is the ratio
of signal variance to noise variance, thus, the SNR between anchor feature A and compared
feature B is

SNR =
Signal
Noise

SNRA,B =
var(A)

var(A− B)
, (5)

where var(a) = ∑k
i=1 (a− µ)2/n denotes the variance of a, and µ is the mean value of a.

The variance in information theory reflects informativeness. More explicitly, signal
variance measures useful information, whereas noise variance measures useless informa-
tion. Therefore, increasing the SNR can improve the ratio of useful information to useless
information, which indicates that the compared feature can be more similar to the anchor
feature. In contrast, decreasing the SNR can increase the proportion of noise information,
leading to a greater difference between the two features. Therefore, the values of the SNR
distance can be used to measure the difference in a pair of features reasonably, which is
essential for constructing a distance metric.



Electronics 2022, 11, 2390 4 of 18

Based on the definition of the SNR, the distance of the signal-to-noise ratio is given by
1/SNR. The SNR distance features follow a zero-mean value and can be represented as

dis(A, B) =
1

SNRA,B
=

∑k
i=1 (Ai − Bi)

2

∑k
i=1 (Ai)

2 . (6)

2.3. Attention Layer of the Transformer

The Transformer consists of an encoder and decoder. The input of the encoder com-
prises source sentences, and the output of the encoder is the context matrix of the source
language. The decoder takes the target tokens and the context matrix of the source lan-
guage as input and provides the probability of the next word in the target language. Both
the encoder and decoder are composed of multiple layers. For the encoder, every layer
has a self-attention sublayer and position-wise feed-forward sublayer. For the decoder,
every layer has a self-attention sublayer, an encoder–decoder attention sublayer, and a
position-wise feed-forward sublayer. The self-attention and encoder–decoder attention
sublayers have the same attention mechanisms. The attention mechanism is expressed
as follows:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V. (7)

Let Attention (Q, K, V) describe the attention layer, where Q, K, and V indicate the
query, key, and value, respectively. The difference between self-attention and encoder–
decoder attention is a parameter for calculating attention. In the self-attention sublayer of
the encoder, Q, K, and V are calculated by multiplying the input vector X = [x1, . . . , xn]
by the weight matrices that are learned during training. In [x1, . . . , xn], x is a token vector
in the source sentence and n is the length of the source sentence. Similar to an encoder,
the self-attention of the decoder, Q, K, and V are calculated by multiplying the input
vector Y = [y1, . . . , ym] with the weight matrices that are learned during training. In
[y1, . . . , ym], y is the token vector of the target sentence, where m is the length of the
target sentence. In the encoder–decoder attention of the decoder, Q is calculated from
[y1, . . . , ym]. K and V are calculated from [x′1, . . . , x′n], where x′ is the token vector of the
last layer of the encoder. After calculating the attention sublayer, each layer has a residual
connection followed by layer normalization.

2.4. Cardinality Residual Connection

Convolutional neural networks (CNN) [21] have emerged as the dominant algorithms
in computer vision, and the development of recipes for their design has received consid-
erable attention. By stacking convolution layers deeply, the power of the model can be
strengthened, leading to performance improvement. However, stacking multiple layers
causes problems such as excessive computation or increased learning instability. To mini-
mize the error from the deeper layers during the learning process, the residual connection
network (ResNet) [22] was proposed in which a skip connection is added to the existing
CNN layer, such that in the resulting structure, the input is added to the stack of two
convolutional networks. Although the depth of the CNN increases, it can solve the problem
of the gradient loss that occurs during the learning process. This can be expressed as

H(x) = F(x) + x (8)

ResNeXt [11] presents a simple structure that adopts the strategy of repeating lay-
ers [22] and uses the concept of cardinality, which refers to the size of a group of transfor-
mations. Even under the restriction of maintaining complexity, increasing cardinality can
improve classification accuracy and is more effective than going deeper or wider when
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the capacity is increased. The network is constructed by repeating a building block that
aggregates a group of transformations. This can be expressed as (9).

H′(x) = ∑C
i=1 Fi(x) + x (9)

Following (8), the residual unit obtains F(x) by processing x using two weight layers;
subsequently, x is added to F(x) to obtain H(x). As H(x) = F(x) + x, obtaining the desired
H(x) depends on obtaining perfect F(x).

The aggregated transformation in Equation (9) serves as a residual function. Fi(x) can
be an arbitrary function analogous to a simple neuron: Fi projects x onto an embedding and
then transforms it, and C is the number of cardinalities. A module in this network performs
a set of transformations, each on a low-dimensional embedding, thereby aggregating the
outputs by summation. This can compensate for the enhanced training speed under large-
scale parameter settings. In training a model with a large parameter, the use of a cardinality
residual connection has proven to be better than other models with a deep width.

2.5. Document-Level Neural Machine Translation

Developing a document-level NMT model is important in generating more consistent
and coherent translations. To integrate document-level contextual information into the
NMT model, a cache was used to selectively memorize the most relevant information in the
document context [23,24]. In other studies, the previous sentence of the current sentence
was used to extract the partial document context [3,5–7,25]. Single-encoder models [26–29]
exploit the concatenation of multiple sentences as the NMT input data, whereas multien-
coder models [8,13,16] integrate an additional encoder to leverage contextual information
in NMT systems. Two different hierarchical attention models have also been used to encode
an entire document using a selective attention network [4,5,15]. BERT was used to under-
stand contextual representations by initializing the parameters of the document-level NMT
model encoder [26,27,29]. By leveraging knowledge distillation, the knowledge acquired
from BERT was transferred to NMT [30,31]. In [6], they exploited the representation from
BERT, integrating it into the encoder and decoder of a Transformer model. Although these
approaches have achieved some success in document-level machine translation, they suffer
from incomplete document context. Moreover, the BERT-fused model has the underfitting
problem, which occurred in training settings without transfer learning. The reason why
original linguistic relationships have been lost and texts mathematically have been dis-
torted in many languages and translations was found [14,15]. Because this theory addresses
linear regression lines, the concepts of SNR [17,18,32] and likeness index [17] can be used
to reasonably measure the difference in a pair of features. Based on this background, we
benchmark the SNR method [17,18,32] and propose cosine similarity, Euclidean distance,
and Manhattan distance, which are simple and effective mathematical methods, to exploit
document-level context. Similarity measures are used to capture sentences with highly
relevant contextual information in the current sentence. The proposed methods can help
the translation model better understand document-level contextual representations.

3. Context Sentence and Context-Aware NMT Model
3.1. Document-Level Sentences of Corpus by Similarity Measures

Formally, let X = {x1, x2, . . . , xK} denote the source document with K sentences and
Y = {y1, y2, . . . , yK} denote the target document sentences, such that (xk, yk) is assumed
to be a parallel-sentence pair. Following [3], the target-side document-level context, Y<k
can be omitted because the source-side document-level context X<k conveys the same
information as Y<k. To generate yk, source document X can be divided into three parts.
First, the k-th source sentence is X=k = xk. Second, the source-side document-level context
on the left is X<k = x1, . . . , xk−1. Finally, the source-side document-level context on the
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right is X>k = xk+1, . . . , xK. Therefore, the document-level translation probability can be
approximated as

P(Y|X) ≈∏K
k=1 P(yk|xk; X<k; X>k) (10)

As document-level contexts often include several sentences, it is important to capture
long-range dependencies and identify relevant contextual information. In this study, a sen-
tence similarity measure is proposed to identify sentences with highly relevant contextual
information in the current sentence. As shown in Figure 1, all K sentences in the document
were converted into embedding vectors using a universal sentence encoder or Sent-BERT.
The embedding vector is represented by X̂ = {x̂1, . . . , x̂K}. The similarity score of the
current sentence xk was then measured with respect to all the other sentences (X<k, X>k)
in the document. The similarity score metrics consisted of cosine similarity, Euclidean
distance, and Manhattan distance. The result of similarity x̆k in k-th source sentence is
denoted by,

x̃k,n = sim(x̂k, x̂n)
x̆k =

{
x̃k,1, . . . , x̃k,n, . . . , x̃k,N

} (11)

where x̆k is a 1×K matrix of similarity scores; excepting the score obtained for the same
sentence, the highest measured score was used to select the most similar sentence as the
document-level context sentence xcontext

k , according to

xcontext
k = max(x̆k) (12)

Figure 1. Process of finding the context sentence using the similarity score.
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After the context sentences were selected for each sentence, both xk and its similar
sentence xcontext

k were concatenated for the input format expressed as [CLS] xk [SEP] xcontext
k

[SEP], where [CLS] and [SEP] are special tokens generated during the tokenization process
of BERT.

3.2. Incorporating Contexts into NMT Model

In this section, we introduce the use of multiple document-level sentences as input for
BERT and the incorporation of the context encoder with the NMT model. The structure of
the model is shown in Figure 2.

Figure 2. Incorporating a context encoder into the Transformer model by applying the cardinality
residual connection.

The BERT context representation HB was integrated into both the encoder and decoder
of the Transformer model using multiencoder approaches [3,6,8].

In the encoder, the first attention is on multihead self-attention. The second attention
model is context attention, which incorporates BERT document-level context into the
encoder; Q is the input to the previous output of the hidden layer of the encoder; and K and
V are the outputs of the last hidden layer of BERT, denoted by HB. This can be represented
as attnB+E

(
hl−1

i , HB, HB

)
. The two points of attention are as follows:

attnE

(
hl−1

i , Hl−1
E , Hl−1

E

)
(13)

attnB+E

(
hl−1

i , HB, HB

)
(14)
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Similar to the encoder layer, the first attention of the decoder is the multihead encoder–
decoder attention. The second attention model incorporates BERT into the decoder atten-
tion. Q is the output of the hidden self-attention representation in the decoder. The key
and values are the last hidden layers of BERT. This is denoted by attnB+D

(
sl−1

t , HB, HB

)
.

These two types of attention are expressed as

attnE+D

(
sl−1

i , HL
E , HL

E

)
(15)

attnB+D

(
sl−1

i , HB, HB

)
(16)

The outputs of each attention are not combined immediately, but only after each
attention passes through an additional normalization layer and residual connection. This is
motivated by the cardinality concept, which is the structure used to calculate the residual
connection separately. Let h̆l

i denote the residual connection from the perspective of a BERT
encoder. Let ĥl

i denote the residual connection of the self-encoder attention. Then hl
i is

denoted by the i-th element in Hl
E, which is the hidden representation of the l-th layer in

the encoder. Then, h̃l
i is the result of summing both attentions in half. After computing

the residual connection, the two results are summed in half. Thus, the output value h̃l
i

is obtained
h̃l

i =
1
2

(
ȟl

i + ĥl
i

)
+ hl−1

i

ȟl
i = attnB+E

(
hl−1

i , HB, HB

)
+ hl−1

i

ĥl
i = attnE

(
hl−1

i , Hl−1
E , Hl−1

E

)
+ hl−1

i

(17)

where h̃l
i is inserted into the feed-forward network. Each attention was calculated using

the residual connection and normalization. The encoder then outputs Hl
E from the last

layer. The decoder architecture is similar to that of the encoder. Let sl
t denote the hidden

representation from self-attention in the decoder preceding time step t. This is the value
obtained after positional encoding before self-attention. Positional encoding is embedded
and added to the decoder inputs to indicate the position of each word. Let s̆l

i denote the
residual connection from the BERT-decoder attention function.

s̃l
t =

1
2

(
s̆l

t + ŝl
t

)
+ sl

t

šl
t = attnB+D

(
sl

t, HB, HB

)
+ sl

t

ŝl
t = attnE+D

(
sl

t, Hl
E, Hl

E

)
+ sl

t

(18)

Let s̆l
i denote the residual connection from the encoder–decoder attention function,

whereby s̃l
t is input into the feed-forward to obtain sl

t. Finally, sl
t passes through a linear

layer and softmax layer to obtain the t-th predicted target word. The decoding process
continues until the end of the sentence token. Because the parallel structure operation is
performed on two attentions, the cardinality can be defined as Equation (9). As shown in
Figure 3b,c, to minimize the loss resulting from the beneficial influence of incorporating
context, a separate residual connection network [11] was used for each multihead attention
of the encoder and decoder. Thus, more attention is paid to context representation. In
addition, it is noted that the reduction in the error rate is much better than that in the other
models, even with an increasing number of parameters.
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Figure 3. Differences among residual connections. The residual connection is denoted by the red line.
In (a), it do not use a separate residual connection. In (b,c), we use a separate residual connection
structure for each attention layer of encoder and decoder.

4. Experiments

Document-level approaches were evaluated using several publicly available datasets.
For English↔German (En↔De) and English↔Spanish (En↔Es), it was the IWSLT’14
(https://wit3.fbk.eu/home (accessed on 24 June 2022)) [33]. Evaluation campaigns were
used as the training data. The data were partially extracted from the training set for
validation. For the test set, dev2010, dev2012, and tst2010–2012 were concatenated in
En↔De, and dev2010 and tst2010–2012 were concatenated in En↔Es. For English↔French
(En↔Fr), IWSLT’17 [33] was used. The validation data and test set were merged from
dev2010 and tst2010–2015. Following a previous study [4], the two English→German
(En→De) benchmark datasets were used: TED and news commentary (https://opus.nlpl.
eu/News-Commentary.php (accessed on 24 June 2022). The processed datasets were
obtained from [4] so that the results could be compared with those of previous studies. For
SNR distance, only 0.1 M sentences were used as a training set in the IWSLT’14 En→De
model. The details of all datasets are listed in Table 1. Byte pair encoding [34] was used
to segment all sentences and lowercase words. The merge operations for each dataset are
listed in Table 2. The evaluation metric was BLEU [35].

Table 1. Statistics of document-level machine translation datasets.

Type Dataset #Sent Avg. #Sent

IWSLT’14

En↔De 0.16 M/7 K/6.7 K -
En→De 0.1 M/7 K/6.7 K -

En↔Es 0.17 M/8 K/5.5 K -

IWSLT’17 En↔Fr 0.22 M/9.9 K/9 K -

Maruf et al. (2019)
TED 0.21 M/9 K/2.3 K 121/96/99

News 0.24 M/2 K/3 K 39/27/19

https://wit3.fbk.eu/home
https://opus.nlpl.eu/News-Commentary.php
https://opus.nlpl.eu/News-Commentary.php
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Table 2. Merge operation of each dataset.

Type Dataset Merge Operation

IWSLT’14
En↔De 10,000
En↔Es 10,000

IWSLT’17 En↔Fr 10,000

Maruf et al. (2019)
TED

30,000News

The design of the BERT model was specific to the source language. BERT-base-
uncased was used for the model in which the source language was English, and BERT-base-
multilingual-uncased was used for Spanish and French as source languages. The models
were created by Google. We used the BERT-base-german-cased model [36] in IWSLT’14
De-En, where the source language is German. BERT was trained using the latest German
Wikipedia dump (6 GB), OpenLegalData dump (2.4 GB), and news articles (3.6 GB). It was
created by Deepset, which is the company behind the Haystack NLP framework. For our
model (https://github.com/ChoiGH/CATSBY (accessed on 24 June 2022)), we used the
Fairseq [37] implementation of transformer network. All experiments are run on a dual
NVIDIA TITAN X GPU with 24 GBs of memory. It takes about 18 h to train the IWSLT’14
En→De model. The batch size was 4096 tokens per GPU and model configuration is the
same as was used in [4]. The batch size was 4000 tokens. The hidden size was 512, and the
feed-forward network layer dimension was l024. The embedding size was 512; the number
of attention heads was four; and the dropout rate [38] was 0.3. The number of layers for the
encoder and decoder was six, and the Adam [39] optimizer was used with momentums
β1 = 0.9 and β2 = 0.98. The same learning rate schedule strategy as in [2] was applied
with 4000 warmup steps for label smoothing of the cross-entropy loss with a smoothing
rate of 0.1.

5. Results and Discussion

In this paper, we propose a new BERT-Transformer model using the distributed resid-
ual connection structure inspired by the concept of cardinality and a method for defining
contextual data through sentence embedding and similarity measurement. The proposed
model structure is very different from previous study [6] in that it does not transfer-learning
pretrained NMT. The model [6] without transfer learning has an underfitting problem,
but the proposed model with distributed residual connection can reflect contextual fea-
tures to model without the underfitting problem. In addition to the advantages of the
proposed model structure, the optimal data structure for document-level translation task
is also proposed. The input of BERT is used not only as a single sentence but also as a
dual sentence. To make dual sentence form, previous studies define adjacent sentences of
sentence as context, but they cannot be sure that sentences are perfectly related [3,5–7]. In
order to solve this problem, we propose a mathematical method to utilize document-level
contextual information. The similarity measurement is used to detect sentences containing
high contextual relevance in current sentence. Through the experiment, we prove the
superiority of the proposed model compared with previous studies. In particular, it proves
that the similarity measurement reflects the contextual relevance of data better than other
methods. Finally, when defining the context sentence according to the range of a document,
we present a new discovery that it can be different for each characteristic of the data.

5.1. The Reason for Using Similarity Measurment

SNR theory can be explained by supporting the use of our similarity measurement
method. This motivated us to use three similarity measurement methods. In our method
using sentence embedding, the SNR distance [32] is used to find the context sentences.
However, the SNR distance requires considerable computing power; therefore, we had
to reduce the size of the corpus and use only USE sentence embedding. The IWSLT’14

https://github.com/ChoiGH/CATSBY
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English–German corpus was used to prove the effectiveness of the similarity measurement
method. Table 3 shows that the similarity measurement methods are superior to that of
previous studies. We compare the method of Context [3,4,6,7], which is represented by the
surrounding sentences of the source sentence. The BLEU score of the SNR distance is higher
than that of Context. Based on this result, we propose three similarity measurement methods
as a manner of building a context-aware document-level corpus for a training model.

Table 3. BLEU scores of IWSLT’14 English to German model by type of context.

Type of Context Context Similarity

Sentence
Embedding - Universal Sentence Encoder

Similarity
Measurement

Method
- SNR Cosine Euclidean Manhattan

BLEU score 27.95 28.19 28.64 28.58 28.4

5.2. Best Combination for Document-Level Data

In this section, an embedding method and similarity measurement are defined to
generate optimal context-aware data for each model. As shown in Figure 4, a heatmap
graph matrix can be created by measuring the similarity between the sentences. IWSLT’14
En→Es is used as an example. In this state, BERT embedding and cosine similarity are
applied. The matrix indicates the degree of similarity between sentences. Based on the
similarity score, the sentence with the higher similarity scores, except one, was chosen as
the context sentence. The similarity within the range of each training, validation, and test
dataset was measured.

Figure 4. Heatmap matrix of the scores assigned to each sentence after measuring the similarity. Only
20 sentences were extracted.
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Table 4 shows the BLEU score of the model trained on data to which two embed-
ding methods and three similarity measurement methods were applied. For En↔De, the
use of a universal sentence encoder and cosine similarity outperformed the other meth-
ods. Sentence-BERT and cosine similarity outperformed the other methods in En↔Es
and En→Fr. In Fr→En, Sentence-BERT and the Euclidean measure outperformed other
methods. Methods optimized for the translation model could be determined. In general,
the cosine similarity measure scored a high BLEU for most models. Based on these results,
the embedding and similarity measure method with the highest score was used for each
translation model to build the data for the next experiment.

Table 4. BLEU scores of the models. Best embedding and similarity measure for each model.
“Cos”, “Euc”, and “Manh” indicate the cosine similarity method, Euclidean distance, and Manhattan
distance, respectively.

Model
Transformer

(Vaswani et al., 2017)

USE BERT

Cos Euc Manh Cos Euc Manh

IWSLT’14 En→De 28.59 30.85 29.99 30.09 30.29 30.2 30.05

IWSLT’14 En→Es 37.36 39.59 39.17 39.36 39.67 39.23 39.06

IWSLT’17 En→Fr 40.54 43.68 43.51 43.49 43.91 43.4 43.26

IWSLT’14 De→En 34.4 35.92 35.2 34.9 35.69 35.81 35.56

IWSLT’14 Es→En 40.99 40.66 40.2 40.08 42.14 41.73 41.95

IWSLT’17 Fr→En 41.00 42.09 41.55 41.46 42.03 42.36 42.09

5.3. Effect of the Proposed Methods on Document-Level Translation

The results of the experiments compare seven context-aware NMT models consisting
of the document-aware Transformer [3], selective attention NMT [4], hierarchical attention
NMT [5], query-guided capsule network [31], flat-Transformer [27], the flat-Transformer
initialized using the BERT encoder, BERT-fused [6], and BERT-fused applied to the context
gate [7]. Most of the results of previous studies are from [7]. The proposed model was
compared with the aforementioned baseline methods. Table 5 summarizes the results of
these models. The results show that our model obtained BLEU scores of 27.23/27.98 on the
two datasets and significantly outperformed the other models listed in the table, achieving
state-of-the-art performance.

Table 5. BLEU scores of two document-level machine translation benchmarks.

Model TED News

RNN (Bahdanau et al., 2015) 19.24 16.51
HAN (Werlen et al., 2018) 24.58 25.03
SAN (Maruf et al., 2019) 24.62 24.84
QCN (Yang et al., 2019) 25.19 22.37

Transformer (Vaswani et al.,2017) 23.28 22.78

Flat-transformer (Ma et al., 2020) 24.87 23.55
+ BERT (Ma et al., 2020) 26.61 24.52

BERT-fused model (Zhu et al., 2020) 25.59 25.05
+ Context gate (Zhiyu et al., 2021) 26.23 26.55

Our model 27.23 27.98

5.4. Capturing the Contextual Information

To investigate whether our method can capture contextual information in the BERT
context encoder, the experimental settings in [16], referred to as Context, were adopted.
This implies the concatenation of previous and current sentences. In addition, two types
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of contexts were presented as inputs for the context encoder. One is Similarity, which is
our methodology, and the other is Same, which concatenates the current sentence to the
current sentence. This experiment is to check whether the main cause is to improve the
quality of data by our proposed method rather than simply to increase the amount of infor-
mation in the data. Three types of inputs were provided to the BERT context encoder, and
experiments were conducted on the IWLST’14 and IWSLT’17 datasets. As shown in Table 6,
the performance of our method was better than those of the other methods. A corpus that
does not consider context does not achieve significant performance improvement over
the proposed method. Although the previous sentence is sometimes contextually similar
to the current sentence, this situation is not always guaranteed. Furthermore, the use of
contextually incorrect sentences results in a significant performance penalty.

Table 6. BLEU scores of models with three types of context.

Model
(IWSLT)

Type of Context

Similarity Context Same

En→De 30.85 30.12 29.45
En→Es 39.67 37.09 37.21
En→Fr 43.91 41.32 41.37
De→En 35.92 35.13 35.13
Es→En 42.14 41.83 41.46
Fr→En 42.36 41.69 41.6

5.5. What If the Data Created by Measuring the Similarity within Diverse Talk Ranges in Data
Are Used?

In the above experiments, a similarity measure was used for the entire corpus. There
are several TED talks within the corpus, as listed in Listing 1, where the original file contains
the talk information provided between the tags. We used this feature to select context
sentences, experimenting with two methods to choose context sentences by measuring their
similarity within diverse talk ranges. First, the talks in the IWSLT corpus were separated,
thereby extracting context sentences within the range of each talk and checking whether the
document-level training data would change the translation performance. It was assumed
that if sentences in the same domain were combined, they would have the potential to be
the features of a document. After extracting the data using talkid tags, context sentences
can be chosen using similarity measurements. Table 7 shows the differences in context
sentences extracted by the range of talk. A point to verify is that there are cases in which
the results are the same as those calculated using the similarity in all talks. Clearly, these
sentences are very similar in all cases. Second, it is difficult to find a contextual sentence
near the beginning of the talk within the range of the lecture. An example is a greeting
or a background explanation before starting the main story. Therefore, a hybrid method
is proposed to extract contextual sentences at the beginning of a conversation. Table 8
shows an example of extracting the context sentences from the four sentences previously
uttered at the beginning of the entire talk. It is observed that the contextual sentences
extracted from the entire talk are closer in context than those extracted from the range of
one talk. These data were used to train the model. The performance of the models was
then checked with respect to the context sentence extraction range. The IWSLT’14 En→De,
En→Es, and IWSLT’17 En→Fr were used in the experiments. In the second experiment,
context sentences were extracted differently from the beginning of the talk to the 2nd to
10th sentences. Table 9 shows the BLEU scores of the models trained with the data extracted
using the context sentence selection methods used thus far. The values in the column with
“All talks” are the results of Section 5.2. Surprisingly, the methods that obtained the highest
BLEU scores differed among the models. In the English-to-German model, a high BLEU
score was recorded when a context sentence was defined over the entire data range. In the
English-to-Spanish model, a high BLEU score was recorded when the six sentences from the
beginning of the talk were defined in the entire data range as contextual sentences. In the
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English-to-French model, a high BELU score was recorded when a contextual sentence was
defined for each talk. Thus, it can be proven that even if a context sentence is defined in the
same domain, it does not always provide a good effect for all corpora. We were also able to
understand the characteristics of this corpus. The English–German corpus has contextually
similar sentences that are evenly distributed over the entire range of the document. It can
be inferred that the English–Spanish corpus tends to have a weak relationship with the
main content of the talk at the beginning of each talk. Finally, the English–French corpus
tends to have a strong contextual relationship in each talk. This experiment confirmed that
there is an appropriate method for defining context sentences based on the characteristics
of the corpus.

Table 7. Differences in the context sentence extracted within the range of the talk.

Sentence
Context Sentence

Extracted in All Talks Extracted in One Talk

it can be a very complicated
thing, the ocean.

and it can be a very
complicated thing, what

human health is.

and it can be a very
complicated thing, what

human health is.
and it can be a very

complicated thing, what
human health is.

health studies from the region
are conflicting and fraught.

it can be a very complicated
thing, the ocean.

and bringing those two
together might seem a very
daunting task, but what i’m

going to try to say is that even
in that complexity, there’s
some simple themes that i

think, if we understand, we
can really move forward.

well, right, it is a good thing
to do, but you have to think
what else you could do with

the resources.

but in fact, if you look around
the world, not only are there
hope spots for where we may
be able to fix problems, there

have been places where
problems have been fixed,

where people have come to
grips with these issues and
begun to turn them around.

and those simple themes
aren’t really themes about the

complex science of what’s
going on, but things that we

all pretty well know.

and the answer is not
complicated but it’s one which

i don’t want to go through
here, other than to say that the

communication systems for
doing this are really pretty

well understood.

that’s a good thing for this
particular acute problem, but
it does nothing to solve the

pyramid problem.

and i’m going to start with
this one: if momma ain’t

happy, ain’t nobody happy.

now, if your mother ever
mentioned that life is not fair,
this is the kind of thing she

was talking about.

and if we just take that and we
build from there, then we can
go to the next step, which is
that if the ocean ain’t happy,

ain’t nobody happy.

Table 8. Examples of four sentences extracted using the hybrid method.

Sentence
Context Sentence

Hybrid Method Extracted in One Talk

it can be a very complicated
thing, the ocean.

and it can be a very
complicated thing, what

human health is.

and it can be a very
complicated thing, what

human health is.
and it can be a very

complicated thing, what
human health is.

health studies from the region
are conflicting and fraught.

it can be a very complicated
thing, the ocean.
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Table 8. Cont.

Sentence
Context Sentence

Hybrid Method Extracted in One Talk

and bringing those two
together might seem a very
daunting task, but what i’m

going to try to say is that even
in that complexity, there’s
some simple themes that i

think, if we understand, we
can really move forward.

well, right, it is a good thing
to do, but you have to think
what else you could do with

the resources.

but in fact, if you look around
the world, not only are there
hope spots for where we may
be able to fix problems, there

have been places where
problems have been fixed,

where people have come to
grips with these issues and
begun to turn them around.

and those simple themes
aren’t really themes about the

complex science of what’s
going on, but things that we

all pretty well know.

and the answer is not
complicated but it’s one which

i don’t want to go through
here, other than to say that the

communication systems for
doing this are really pretty

well understood.

that’s a good thing for this
particular acute problem, but
it does nothing to solve the

pyramid problem.

and i’m going to start with
this one: if momma ain’t

happy, ain’t nobody happy.

and if we just take that and we
build from there, then we can
go to the next step, which is
that if the ocean ain’t happy,

ain’t nobody happy.

and if we just take that and we
build from there, then we can
go to the next step, which is
that if the ocean ain’t happy,

ain’t nobody happy.

Table 9. BLEU scores of methods that define the context sentence within a limited range of talks.

Model

Talk Range for Similarity Measurement

All Talks Each Talk
Hybrid The Nth Sentence from the Front)

N = 2 3 4 5 6 7 8 9 10

IWSLT’14
En→De 30.85 30.29 30.49 30.44 30.44 30.53 30.48 30.75 30.41 30.55 30.52

IWSLT’14
En→Es 39.67 39.55 39.72 39.71 39.65 39.57 39.83 39.79 39.7 39.73 39.52

IWSLT’17
En→Fr 43.91 44.05 43.55 43.88 43.67 43.63 43.69 43.58 43.82 43.76 43.73

5.6. View of the Similarity Measure

When building a document-level corpus using similarity measures, we did not apply it
to a large-scale corpus. To calculate the similarity score between the number of n sentences,
it is necessary to create an n× n matrix, which requires considerable computing power in
memory. The largest dataset used in our experiment was approximately 250 K sentences
merged with training and validation. An excess of this leads to out-of-memory problems.
Therefore, we believe that sentence-similarity measures are appropriate for low-resource
language pairs. Measuring similarity using a large-scale corpus is the next challenge.
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Listing 1. Appearance of the original file. There are many talks separated by tags.
<doc docid=“535” genre=“lectures”>
<description>TED Talk Subtitles and Transcript: At TED2009, Al Gore presents updated slides
from around the globe to make the case that worrying climate trends are even worse than
scientists predicted, and to make clear his stance on “clean coal.”</description>
<talkid>535</talkid>
<title>Al Gore: What comes after An Inconvenient Truth?</title>
<reviewer></reviewer>
<translator></translator>
<seg id=“1”> Last year I showed these two slides so that demonstrate that the arctic ice cap,
which for most of the last three million years has been the size of the lower 48 states, has shrunk
by 40 percent. </seg>
<seg id=“2”> But this understates the seriousness of this particular problem because it doesn’t
show the thickness of the ice. </seg>
<seg id=“3”> The arctic ice cap is, in a sense, the beating heart of the global climate system.
</seg>
. . .
<seg id=“90”> If you want to go far, go together.” </seg>
<seg id=“91”> We need to go far, quickly. </seg>
<seg id=“92”> Thank you very much. </seg>
</doc>
<doc docid= “531” genre=“lectures”>
<description>TED Talk Subtitles and Transcript: In this short talk from TED U 2009, Brian Cox
shares what’s new with the CERN supercollider. He covers the repairs now underway and what
the future holds for the largest science experiment ever attempted.</description>
<talkid>531</talkid>
<title>Brian Cox: What went wrong at the LHC</title>
<reviewer></reviewer>
<translator></translator>
<seg id=“1”> Last year at TED I gave an introduction to the LHC. </seg>
<seg id=“2”> And I promised to come back and give you an update on how that machine worked.
</seg>
<seg id=“3”> So this is it. And for those of you that weren’t there, the LHC is the largest scientific
experiment ever attempted – 27 km in circumference. </seg>
. . .

6. Conclusions, Limitations, and Future Research

In this study, we proposed a distributed residual connection that can utilize the
contextual understanding ability of BERT more effectively in the NMT model. It was
demonstrated that the performance of context-specific language model can be improved
when the language comprehension ability of each attention is strengthened by applying
independent residual connection to the two attention layers. In addition, a context data
augmentation using similarity measurement method was proposed to obtain a translation
result reflecting the context information of the document domain in the document-level
translation. It was confirmed through experiments that the model learned using the corpus
constructed in this way showed improved results compared with the existing research
results. Finally, we can prove that the data augmentation method that defines the context
sentence using the distributed residual connection method and the similarity measurement
method is the optimal method to implement the NMT model that understands the context in
translation tasks. In particular, experiments on two benchmark corpora demonstrated that
our proposed method can significantly improve document-level translation performance
compared with several document-level NMT baselines. In addition, the characteristics of
the corpus were confirmed using a model trained on a corpus created by setting different
ranges for the similarity measure.

Although contextual sentences defined using similarity measure and contextual un-
derstanding of BERT were improving the NMT model, the supplemented contextual
information is not fully reflected in the decoder. Because the context features generated
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by BERT are reflected only on the exposed training data in the NMT training process, the
context to be reflected in the sentence cannot be created as intended.

To solve our limitations, we will try to improve the ability of the decoder’s language
generation by self-supervised learning using a target monolingual corpus. As a way to help
the decoder understand the context feature, combining the GPT language model based on
the transformer’s decoder should be considered. Through this, not only the understanding
of the context in the encoder but also the research on generating the translation word
reflecting the context phenomena in the decoder should be conducted. Moreover, instead
of the similarity method, a method of extracting context features based on the data of the
vocabulary and phrase unit suitable for the document-level can be proposed. It is necessary
to develop a model that is dependent on the domain area of the document and can be
extended. Additionally, the problem of incorrect translation generation that can be caused
by knowledge that is not covered by the domain should be continuously considered.
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