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Abstract: The application of electroencephalogram (EEG)-based emotion recognition (ER) to the
brain–computer interface (BCI) has become increasingly popular over the past decade. Emotion
recognition systems involve pre-processing and feature extraction, followed by classification. Deep
learning has recently been used to classify emotions in BCI systems, and the results have been
improved when compared to classic classification approaches. The main objective of this study is
to classify the emotions from electroencephalogram signals using variant recurrent neural network
architectures. Three architectures are used in this work for the recognition of emotions using EEG
signals: RNN (recurrent neural network), LSTM (long short-term memory network), and GRU (gated
recurrent unit). The efficiency of these networks, in terms of performance measures was confirmed
by experimental data. The experiment was conducted by using the EEG Brain Wave Dataset: Feeling
Emotions, and achieved an average accuracy of 95% for RNN, 97% for LSTM, and 96% for GRU for
emotion detection problems.

Keywords: brain–computer interface; deep learning; RNN; LSTM; GRU

1. Introduction

An important subfield of human-computer interaction is the brain–computer interface
(BCI) [1]. In brain–computer interface systems, people with disabilities can operate devices
using mental activities. In BCI techniques, electroencephalogram recordings from the brain
are acquired, and the signals are analyzed to infer the subject’s purpose. The application
of EEG-based emotion recognition (ER) to the brain-computer interface (BCI) has become
increasingly popular over the past decade. BCI works by acquiring electroencephalogram
signals from a subject’s brain and uses them to extract knowledge of the subject’s intention.
Every day, emotions affect the way we interact, make decisions, and think. The cognitive
brain–computer interface (BCI) is developed and improved through emotion classification.
Many areas, such as e-health care, EEG-based music playing, e-learning, EEG-based music
therapy [2] and marketing, etc., can be enhanced by EEG-based emotion recognition in real-
time. Various disorders such as stroke, brain tumors, and sleep disorders can be diagnosed
or treated by monitoring EEG activity. From a psychological viewpoint, emotional states
can be modeled using either discrete (joy, fear, anger, happiness, sadness, surprise) or
dimensional (valence and arousal) models.

EEG signals can be analyzed using machine learning (ML) algorithms and deep
learning (DL) algorithms. Traditional ML algorithms generally involve the steps of pre-
processing and feature extraction, followed by classification. Even so, manual extraction
does not cover all hidden features, and the formulas used to extract time and frequency
domain features are often extremely complex [3]. Furthermore, EEG signals can be con-
taminated by electromyography artifacts, causing serious interference in the traditional
machine learning techniques. Based on all these problems, our main purpose is to build a
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low-complexity emotion recognition system with a low error rate and a high classification
rate. Because of the aforementioned circumstances, certain deep learning methods are em-
ployed to overcome these issues. Machine learning allows a system to automatically learn
and improve based on its previous experiences. Deep learning is a type of machine learning
that involves the use of sophisticated algorithms and deep neural networks to train a model.
The importance of deep learning is that it works with both structured and unstructured
data, whereas machine learning only works with organized and semi-structured data. As
the volume of data increases, the performance of machine learning algorithms declines;
therefore, we need a deep learning method to retain the model’s performance.

Deep learning has a wide range of applications in several industries. Although au-
tomating self-driving cars is a risky endeavor, it has lately come a step closer to being
a reality. Deep learning-based models are trained and tested in simulated situations to
evaluate progress on everything from recognizing a stop sign to identifying a pedestrian on
the road. One very familiar deep learning application is virtual assistants. In our daily lives,
we all use virtual assistants, such as Alexa, Microsoft’s Cortana, Apple’s Siri, and Google
Assistant [4]. Deep learning is extremely valuable in pharmaceutical and medical firms for
a variety of reasons, including quick diagnosis and image segmentation [5]. For example,
MRI data, X-rays, and other images can be analyzed using a conventional neural network
(CNN). Deep learning has risen to prominence in practically every industry. It is employed
in a variety of industries, including e-commerce, advertising, chatbots, robotics, visual
recognition, natural language processing, fraud detection, and manufacturing, etc. [6]. The
performance of convolutional and recurrent neural networks for emotion recognition is im-
plemented and analyzed in this study. The motivation to choose deep learning techniques,
which is not possible with conventional ML techniques, is the advantage of automatic fea-
ture extraction. In this study, we investigate the possibility of improving the performance
of convolution and recurrent neural networks with a focus on emotion recognition.

A list of nomenclature used throughout this paper is provided in Table 1 as follows.

Table 1. List of nomenclature used in this paper.

Nomenclature Referred to

EEG Electroencephalogram
BCI Brain–Computer Interface
CNN Convolutional Neural Network
RNN Recurrent Neural Network
LSTM Long Short-term Memory Network
GRU Gated Recurrent Unit
DL Deep Learning
ML Machine Learning
FFNN Feed Forward Neural Network
NLP Natural Language Processing
TP True Positive
TN True Negative
FP False Positive
FN False Negative

This paper is further subdivided into sections. Section 2 explains the methodol-
ogy and the database; Section 3 explains the architecture of recurrent neural networks;
Sections 4 and 5 explain the architecture of long short-term memory networks and gated
recurrent neural networks; Section 6 describes the models used in this work for EEG-based
emotion recognition: RNN, LSTM, and GRU; Section 7 discusses the experimental results;
Section 8 is the comparative analysis; and Section 9 is the conclusion.
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2. Methodology

The complete emotion recognition process involves data pre-processing, automatic
feature extraction, and finally, classification using deep learning models. Figure 1 depicts
the overall structure of this study.
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Figure 1. EEG-based emotion recognition.

Database (EEG Brain Wave Data Set: Feeling Emotions)

The data were collected for 3 min from two members, one male and one female, in
each state—positive, neutral, and negative. Dry electrodes were used to record the TP9,
AF7, AF8, and TP10 EEG placements using a Muse EEG headgear. Six minutes of resting
data were also taken. This dataset was resampled through statistical extraction since waves
must be defined mathematically in a temporal manner [7]. The web link of the database
is below.

https://www.kaggle.com/datasets/birdy654/eeg-brainwave-dataset-feeling-emotions
(accessed on 1 May 2022).

3. Recurrent Neural Networks (RNN)

The feed-forward neural network (FFNN) has a few flaws, which led to the develop-
ment of RNN: sequential data cannot be handled, only the current input is considered, and
prior inputs are not remembered. The RNN is the solution to these difficulties. An RNN
can deal with sequential data by considering both present and the past inputs. Because
of the internal memory, RNNs can memorize past inputs. The variation in the flow of
information between an RNN and an FFNN is depicted in the Figure 2.

Some of the applications of RNN are image captioning [8], time series prediction [9],
machine translation [10], and NLP [11,12], etc. RNNs are divided into four categories: one
to one, many to one, one to many, and many to many [13]. Figure 3 shows the categories of
RNN, and Figure 4 explains simple RNN.

https://www.kaggle.com/datasets/birdy654/eeg-brainwave-dataset-feeling-emotions
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One to One: This type of neural network is used to solve general machine learning
problems that have only one input and output.

Many to One: One single output is generated by this RNN based on the sequence of
inputs. This type of network is used for sentiment analysis, in which a given sentence can
be categorized as positive or negative based on its emotional content.

One to Many: This type of neural network has one input and several outputs. Image
captions are a good example of this.
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Many to Many: A series of inputs produce a series of outputs using this RNN. An
example is the machine translation process.

In the above diagram, x is the input state, s is the hidden state, and O is the out-
put [14,15]. The network’s weights are U, V, and W. The internal architecture of the RNN
cell is explained in Figure 5.
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The formula for calculating the current state is

ht = f(ht−1, Xt) (1)

where xt is the input state, ht is the current state, and ht−1 denotes the previous state.
The formula for calculating the activation function is

ht = tan h(Whh ht−1 + WXh Xt) (2)

where Whh stands for the recurrent neuron weights, and WXh stands for the input neu-
ron weights.

The calculation formula for the output is

Yt = Why ht (3)

Here, Yt denotes the output and Why denotes the output layer weights.
Recurrent neural networks have problems with vanishing gradients and exploding

gradients during back-propagation. An example of vanishing gradients is when a gradient
is too small, so the model stops learning, or takes a long time to learn, because of it.
Exploding gradients occur when the method assigns an absurdly high value to the weights
for no apparent reason. A slightly modified version of RNNs with gated recurrent units
and long short-term memory networks can resolve this issue. The architecture and working
functionality of the LSTM network and GRU networks are explained in the next section.

4. Long Short-Term Memory Networks (LSTM)

A long short-term memory network, also known as LSTM, is an advanced RNN that
can store information for a long period of time. It can handle the vanishing gradient
problem encountered by RNNs. Depending on the data, the network may or may not
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retain the memory. Through its gating mechanisms, the network maintains its long-term
dependencies. In the network, the memory can be released or stored on demand based on
the gating mechanism. Gates are the basic three components of an LSTM cell [16,17]. The
forget gate is the first section, the input gate is the second, and the output gate is the third,
as shown in Figure 6.
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An LSTM, like a simple RNN, contains a hidden state, with Ht−1 representing the
previous timestamp’s hidden state, and Ht representing the current timestamp’s hidden
state. LSTMs also contain a cell state, which is represented by Ct−1 and Ct, respectively, for
past and current timestamps [18,19], as shown in Figure 7.

Electronics 2022, 11, x FOR PEER REVIEW 6 of 21 
 

 

4. Long Short-Term Memory Networks (LSTM) 
A long short-term memory network, also known as LSTM, is an advanced RNN that 

can store information for a long period of time. It can handle the vanishing gradient prob-
lem encountered by RNNs. Depending on the data, the network may or may not retain 
the memory. Through its gating mechanisms, the network maintains its long-term de-
pendencies. In the network, the memory can be released or stored on demand based on 
the gating mechanism. Gates are the basic three components of an LSTM cell [16,17]. The 
forget gate is the first section, the input gate is the second, and the output gate is the third, 
as shown in Figure 6. 

 
Figure 6. LSTM cell with gates. 

An LSTM, like a simple RNN, contains a hidden state, with Ht−1 representing the pre-
vious timestamp’s hidden state, and Ht representing the current timestamp’s hidden state. 
LSTMs also contain a cell state, which is represented by Ct−1 and Ct, respectively, for past 
and current timestamps [18,19], as shown in Figure 7. 

 
Figure 7. LSTM cell with hidden and cell states. 

Here, hidden state refers to the short-term memory, whereas cell state refers to the 
long-term memory. An overview of how LSTM works is shown in Figure 8.  

Figure 7. LSTM cell with hidden and cell states.

Here, hidden state refers to the short-term memory, whereas cell state refers to the
long-term memory. An overview of how LSTM works is shown in Figure 8.
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Forget gate: The forget gate is the first of the gates. If you close it, no previous
memories will be saved. All old memories will pass through if you fully open this gate. It
is actually an element-by-element multiplication. The forget gate equation is as follows:

ft = σ
(

Xt ∗ U f + Ht−1 ∗ W f

)
(4)

If you multiply the old memory with a vector close to 0, you are attempting to erase
the majority of the old memory. If you want to allow the old memory to pass, set the forget
gate to 1.

Ct−1 ∗ ft = 0 i f ft = 0 (5)

Ct−1 ∗ ft = Ct−1 i f ft = 1 (6)

where Xt and Ht−1 are the current timestamp’s input and the previous timestamp’s hidden
state. U f and W f are the weights associated with the input and hidden states.

Input gate: The input gate is the second gate. The second gate determines how much
new input should be allowed in. By adjusting this gate, new and old memories should be
differently affected. The input gate is used to measure the significance of new data carried
by the input. The input gate’s equation is as follows:

it = σ(Xt ∗ Ui + Ht−1 ∗ Wi) (7)

where, Ui and Wi are the weights associated with the current input and previous hid-
den states.

Cell state: The + operator comes next. Piecewise summation is the meaning of this
operator. This action will blend the current input and the old memory. To form St., the
element-wise summation of the old memory and present input are used.

Ct = tanh (Xt ∗ Uc + Ht−1 ∗ Wc) (New information) (8)

Ct = ft ∗ Ct−1 + It ∗ Ct (Updating cell state) (9)
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Output gate: The output for this LSTM unit must be generated. The new memory,
previous output, and current input all control the output gate in this stage. This gate
regulates the amount of new memory that should be sent to the following LSTM unit.

Ot = σ(Xt ∗ UO + Ht−1 ∗ WO) (10)

Because of the sigmoid function, its value will also be between 0 and 1. We will
now utilize the modified cell states Ot and tanh to determine the current hidden state, as
indicated in the equation below.

Ht = Ot ∗ tanh (Ct) (11)

The hidden state turns out to be a function of long-term memory (Ct) and current
output. Apply the SoftMax activation to the hidden state Ht if you need to obtain the
output of the current timestamp.

Output = Softmax (Ht) (12)

5. Gated Recurrent Network (GRU)

GRUs are variants of RNN architecture that utilize gating mechanisms to control
information flow between the cells of a neural network. LSTMs and GRUs operate on the
same concept. In comparison to LSTM, they are quite new. This is why GRUs outperform
LSTMs and have a more straightforward architecture. LSTMs are composed of two very
different states, the cell state and the hidden state, which provide long- and short-term
storage [20].

In GRUs, only one hidden state is transferred from one time step to another. As a
result of the gating mechanisms and computations that the hidden state and input data
undergo, it can simultaneously maintain both long- and short-term dependencies. Some of
the applications of GRU are speech recognition, stock price prediction, machine translation,
and sentiment analysis, etc. Figure 9 shows the structure of the GRU cell. At each timestamp
t, it takes an input Xt and the hidden state Ht−1 from the previous timestamp t − 1. Later
on, it outputs a new hidden state Ht, which is again passed along to the next timestamp.
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GRU Architecture

The gated recurrent unit, in short GRU, has the same workflow as the RNN, but the
gate operations are different. GRU addresses the problem of standard RNN by integrating
two gates: the update gate and the reset gate, which are explained [21]. The internal
architecture of the GRU cell is explained in Figure 10.
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Update gate: The update gate functions similarly to an LSTM’s input and forget gate.
It determines the information that should be discarded or included. Below is the equation
for the update gate that manages long-term memory.

Ut = σ(Xt ∗ Uu + ht−1 ∗ Wu) (13)

The update gate’s weight matrices are Uu and Wu.
Further, this value is compressed using the sigmoid function to maintain the range

from 0 to 1. In this way, the update gate alleviates the problem of vanishing gradients.
Reset gate: Using the reset gate, we can decide how much past data must be ignored;

in simple terms, it decides whether or not the previous cell state is relevant. Below is the
equation for the reset gate that manages the short-term memory.

rt = σ(Xt ∗ Ur + ht−1 ∗ Wr) (14)

The reset gate’s weight matrices are Ur and Wr.
The sigmoid function transforms values in the range of 0 to 1, with values closer to

zero being ignored, and those closer to 1 are further processed.
Candidate hidden state: As a first step, the Hadmard product between the reset gate

and hidden state from the previous timestamp was calculated. This was then fed into the
tanh function to determine the candidate’s hidden state. The formula for the candidate
hidden state is shown below.

h = tan h(Xt Uh + rt � ht−1 Wh) (15)

Current hidden state: Compute the Hadmard product between the update gate and
the hidden state vector from the previous timestamp. Subtract the update gate from one
to create a new vector, and then calculate the Hadmard product of the new vector with
the candidate hidden state. Finally, sum the two vectors to generate the currently hidden
state vector.

ht = Ut � ht−1 + (1 − Ut)� h (16)
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where ht indicates the current hidden state.

6. Architectures Used in This Study

In this study of EEG-based emotion recognition, three architectures are used: RNN
(recurrent neural network), LSTM (long short-term memory network), and GRU (gated
recurrent unit). The experiments were conducted using the EEG Brain Wave Dataset:
Feeling Emotions.

6.1. RNN Architecture

The RNN algorithm used in this work consists of an RNN layer with 128 units, a
flatten layer, and finally a dense layer with softmax activation.

Learning features are determined using the RNN layers, and a dense layer is used to
classify them into emotions from raw EEG signals. Simple RNN is used in this study. It
is a simplified version of the real RNN in Keras. The loss function is a sparse categorical
cross-entropy, and the optimizer used is an Adam optimizer. Figure 11 shows the RNN
model used in this work for EEG-based emotion recognition.
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Table 2 shows the Keras implementation of the RNN architecture and a detailed
explanation of the RNN model with input and output vector shapes, as shown in Figure 12.

Table 2. Keras implementation of the RNN model.

Model: “model”

Layer (type) Output Shape Param #

input_1 (InputLayer) (None, 2548) 0

tf.expand dims (TFOpLambda) (None, 2548, 1) 0

simple rnn (SimpleRNN) (None, 2548, 128) 16,640

flatten (Flatten) (None, 326144) 0

dense (Dense) (None, 3) 978,435

Total params: 995,075
Trainable param: 995,075
Non-trainable params: 0
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6.2. LSTM Architecture

The LSTM algorithm used in this work consists of an LSTM layer with 128 units, a
flatten layer, and finally, a dense layer with softmax activation.

Learning features are determined using the LSTM layers, and a dense layer is used
to classify them into emotions from raw EEG signals. Figure 13 shows the LSTM model
for EEG-based emotion recognition. From the Keras API layers, the LSTM layer and dense
layers are imported. Here, we used the LSTM layer with 128 internal units, and the return
sequence is kept true. For each input time step, return sequences generate the hidden state
output. The loss function is sparse categorical cross-entropy and the optimizer used is an
Adam optimizer.
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Table 3 shows the Keras implementation of the LSTM architecture and the detailed
explanation of the LSTM model with input and output vector shapes, as shown in Figure 14.

Table 3. Keras implementation of the LSTM model.

Model: “model_1”

Layer (type) Output Shape Param #

input_2 (InputLayer) (None, 2548) 0

tf.expand_dims_1 (TFOpLambda) (None, 2548, 1) 0

lstm_1 (LSTM) (None, 2548, 128) 66,560

flatten 1 (Flatten) (None, 326144) 0

dense_1 (Dense) (None, 3) 978,435

Total params: 1,044,995
Trainable param: 1,044,995
Non-trainable params: 0
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6.3. GRU Architecture

The GRU algorithm used in this study consists of a GRU layer with 128 units, a
flatten layer, and finally, a dense layer with softmax activation. Learning features are
determined using the GRU layers, and a dense layer is used to classify them into emotions
from raw EEG signals. Figure 15 shows the GRU model used in this study for EEG-based
emotion recognition.
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Table 4 shows the Keras implementation of the GRU architecture and the detailed
explanation of the GRU model with input and output vector shapes, as shown in Figure 16.

Table 4. Keras implementation of the GRU model.

Model: “model_3”

Layer (type) Output Shape Param #

input_4 (InputLayer) (None, 2548) 0

tf.expand_dims_3 (TFOpLambda) (None, 2548, 1) 0

gru_1 (GRU) (None, 2548, 128) 50,304

flatten 3 (Flatten) (None, 326144) 0

dense_3 (Dense) (None, 3) 978,435

Total params: 1,028,739
Trainable param: 1,028,739
Non-trainable params: 0

With less training data, GRUs perform better than LSTMs, particularly when applied
to language modeling tasks. In cases where additional inputs are needed for the network,
GRUs are easier to modify, and thus are simpler with less code. The GRUs also have fewer
parameters than the LSTM, as evidenced by the model summaries. With 128 internal units,
the total number of parameters for the LSTM model is 1,044,995, and for the GRU model, it
is 1,028,739.
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7. Experimental Results and Discussions

This database has a total of 2132 samples for three emotions: positive (708 samples),
negative (708 samples), and neutral (716 samples). The data were collected for 3 min
durations per state. In this dataset, 1492 samples were used for training purposes and 640
were used for testing purposes. All the implementations use the Keras library with Tensor
flow backend.

7.1. Results of RNN Architecture

Figure 17 shows the data fitting results using the RNN architecture.
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Figure 17. Fitting results by using the RNN architecture.

Figure 18 shows the accuracy and loss of the RNN model. When the number of epochs
changes, the loss and accuracy values also change. Table 5 displays the confusion matrix
for the test data of 640 samples, and Table 6 shows the performance metrics of the model
calculated by using the confusion matrix.
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Table 5. Confusion matrix by using RNN model.

Negative Neutral Positive

Negative 181 1 19
Neutral 0 222 9
Positive 9 2 197

Table 6. Performance measures by using the RNN model.

TP TN FP FN Sensitivity/Recall Specificity Precision F1 Score Accuracy

Negative 181 430 9 20 0.90 0.97 0.95 0.92 0.95
Neutral 222 406 3 9 0.96 0.97 0.98 0.96 0.98
Positive 197 404 28 11 0.94 0.97 0.87 0.89 0.93

Average results 0.93 0.97 0.93 0.92 0.95

The metrics of the model accuracy, specificity, and sensitivity are calculated by using
true positive (TP), false positive (FP), false negative (FN), and true negative (TN) values.

From the above calculations, the F1 score is 0.92 and the accuracy of the model by
using RNN is 95%.

7.2. Results of LSTM Architecture

Figure 19 shows the data fitting results of the LSTM architecture.
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Figure 20 shows the accuracy and loss of the graphs using the LSTM network.
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Table 7 displays the confusion matrix for the test data of 640 samples for the three
emotions of negative, neutral, and positive.

Table 7. Confusion matrix of LSTM model.

Negative Neutral Positive

Negative 194 0 7
Neutral 0 227 4
Positive 8 2 198

Table 8 shows the performance measures of the LSTM model used in this study. The
performance measures are calculated by using TP, TN, FP, and FN values that are taken
from the confusion matrix.

Table 8. Performance measures of the LSTM model.

TP TN FP FN Sensitivity/Recall Specificity Precision F1 Score Accuracy

Negative 194 431 8 7 0.96 0.98 0.96 0.95 0.97
Neutral 227 407 2 4 0.98 0.99 0.99 0.98 0.99
Positive 198 421 11 10 0.95 0.97 0.94 0.94 0.96

Average results 0.96 0.98 0.96 0.95 0.97

From the above calculations, the F1 score is 0.95, and the accuracy of the model by
using LSTM is 97%.

7.3. Results of GRU Architecture

Figure 21 shows the data fitting results by using the GRU architecture.
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Figure 22 shows the accuracy and loss of the graphs by using GRU network.
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Table 9 displays the confusion matrix for the test data of 640 samples for the three
emotions of negative, neutral, and positive.

Table 9. Confusion matrix of the GRU model.

Negative Neutral Positive

Negative 194 0 7
Neutral 0 228 3
Positive 12 4 192

The sensitivity, specificity, precision, F1 score, and accuracy are calculated by using TP,
TN, FP and FN. Table 10 shows the performance measures of the GRU model.
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Table 10. Performance measures of the GRU model.

TP TN FP FN Sensitivity/Recall Specificity Precision F1 Score Accuracy

Negative 194 427 12 7 0.96 0.97 0.94 0.94 0.97
Neutral 228 405 4 3 0.98 0.99 0.98 0.98 0.98
Positive 192 422 10 16 0.92 0.97 0.95 0.93 0.95

Average results 0.95 0.97 0.95 0.95 0.96

From the above calculations, the F1 score is 0.95 and the accuracy of the model by
using GRU is 96%.

8. Comparative Analysis of Recurrent Neural Networks Based Emotion Recognition
with EEG Signals

For EEG emotion detection, the EEG Brain Wave Dataset is used in this work. The
dataset contains a total of 2134 samples for three emotions: positive (708 samples), negative
(708 samples), and neutral (716 samples). In this dataset, 1492 samples are used for training
purposes and 640 are used for testing purposes. Table 11 shows the performance metrics
of RNN, LSTM, and GRU models. The performance measures of sensitivity, specificity,
precision, F1 score, and accuracy are calculated for every model. Performance measures are
calculated using TP, TN, FP, and FN values that are obtained from the confusion matrix.

Table 11. Performance metrics of RNN, LSTM and GRU models.

S. No. Network Sensitivity Specificity Precision F1 Score Accuracy

1 RNN 0.93 0.97 0.93 0.92 0.95
2 LSTM 0.96 0.98 0.96 0.95 0.97
3 GRU 0.95 0.97 0.95 0.95 0.96

RNN has the drawbacks of vanishing and exploding gradients, so compared to the
RNN network, both LSTM and GRU networks achieved a high accuracy. GRU uses fewer
parameters than LSTM [22], so it uses less memory and is faster. However, LSTM is more
accurate in a larger dataset. When dealing with large sequences, the LSTM algorithm is
chosen, but when less memory is required and faster results are desired, the GRU algorithm
may be used. In this study, LSTM achieved 1% more accuracy than GRU. Table 12 shows a
comparative analysis of other existing works for EEG-based emotion recognition.

Table 12. Comparative analysis with other existing works for EEG emotion detection.

Method/Author Average Accuracy Rate (%)

DNN+ Sparse Auto encoder/[23] 96
DCNN/[24] 85

Multi column CNN/[25] 90
3D CNN/[26] 88

9. Conclusions and Future Scope

Three models are developed for EEG signal-based emotion recognition: RNN, LSTM,
and GRU models. The experiments were conducted using the EEG Brain Wave Database.
The accuracy achieved is 95% using the RNN model, 97% using the LSTM model, and
96% using the GRU model. Compared to the RNN model, both LSTM and GRU models
achieved a high accuracy. In this study, LSTM achieved 1% more accuracy than GRU. A
limitation of this study was a lack of datasets, as most of the EEG datasets are not publicly
available. If a greater number of samples is available, it is possible to recognize a higher
number of emotions. In the future, these networks will be implemented for multimodal
datasets and real time data to recognize emotions.



Electronics 2022, 11, 2387 19 of 20

Author Contributions: Literature Search, Figures, Study Design and Data Analysis, M.K.C.; Data
Interpretation and Data Validation, J.A.; Data Interpretation, Data Validation and Supervision, D.J.H.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: “EEG Brain wave Data Set: Feeling emotions” at https://www.kaggle.
com/datasets/birdy654/eeg-brainwave-dataset-feeling-emotions (accessed on 1 May 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ortiz-Echeverri, C.J.; Salazar-Colores, S.; Rodríguez-Reséndiz, J.; Gómez-Loenzo, R.A. A new approach for motor imagery

classification based on sorted blind source separation, continuous wavelet transform, and convolutional neural network. Sensors
2019, 19, 4541. [CrossRef] [PubMed]

2. Liu, Y.; Sourina, O.; Nguyen, M.K. Real-time EEG-based emotion recognition and its applications. In Transactions on Computational
Science XII; Springer: Berlin/Heidelberg, Germany, 2011; pp. 256–277.

3. Sánchez-Reyes, L.M.; Rodríguez-Reséndiz, J.; Avecilla-Ramírez, G.N.; García-Gomar, M.L.; Robles-Ocampo, J.B. Impact of eeg
parameters detecting dementia diseases: A systematic review. IEEE Access 2021, 9, 78060–78074. [CrossRef]

4. Hoy, M.B. Alexa, Siri, Cortana, and more: An introduction to voice assistants. Med. Ref. Serv. Q. 2018, 37, 81–88. [CrossRef]
[PubMed]

5. Lundervold, A.S.; Lundervold, A. An overview of deep learning in medical imaging focusing on MRI. Z. Med. Phys. 2019, 29,
102–127. [CrossRef] [PubMed]

6. Sarker, I.H. Ai-based modeling: Techniques, applications and research issues towards automation, intelligent and smart systems.
SN Comput. Sci. 2022, 3, 158. [CrossRef] [PubMed]

7. Bird, J.J.; Ekart, A.; Buckingham, C.D.; Faria, D.R. Mental emotional sentiment classification with an eeg-based brain-machine
interface. In Proceedings of the International Conference on Digital Image and Signal Processing (DISP’19), Oxford, UK, 23–30
April 2019.

8. Liu, X.; Xu, Q.; Wang, N. A survey on deep neural network-based image captioning. Vis. Comput. 2019, 35, 445–470. [CrossRef]
9. Giles, C.L.; Lawrence, S.; Tsoi, A.C. Noisy time series prediction using recurrent neural networks and grammatical inference.

Mach. Learn. 2001, 44, 161–183. [CrossRef]
10. Singh, S.P.; Kumar, A.; Darbari, H.; Singh, L.; Rastogi, A.; Jain, S. Machine translation using deep learning: An overview. In

Proceedings of the 2017 International Conference on Computer, Communications and Electronics (Comptelix), Jaipur, India, 1–2
July 2017; pp. 162–167.

11. Pattanayak, S. Natural language processing using recurrent neural networks. In Pro Deep Learning with TensorFlow; Apress:
Berkeley, CA, USA, 2017; pp. 223–278.

12. Yin, W.; Kann, K.; Yu, M.; Schütze, H. Comparative study of CNN and RNN for natural language processing. arXiv 2017,
arXiv:1702.01923.

13. Medsker, L.; Jain, L.C. (Eds.) Recurrent Neural Networks: Design and Applications; CRC Press: Boca Raton, FL, USA, 1999.
14. Graves, A. Generating sequences with recurrent neural networks. arXiv 2013, arXiv:1308.0850.
15. Ebrahimi Kahou, S.; Michalski, V.; Konda, K.; Memisevic, R.; Pal, C. Recurrent neural networks for emotion recognition in video.

In Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, Seattle, WA, USA, 9–13 November 2015;
pp. 467–474.

16. Graves, A. Long short-term memory. In Supervised Sequence Labelling with Recurrent Neural Networks; Springer: Berlin/Heidelberg,
Germany, 2012; pp. 37–45.

17. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
18. Sainath, T.N.; Vinyals, O.; Senior, A.; Sak, H. Convolutional, long short-term memory, fully connected deep neural networks. In

Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane,
QLD, Australia, 19–24 April 2015; pp. 4580–4584.

19. Malhotra, P.; Vig, L.; Shroff, G.; Agarwal, P. Long short term memory networks for anomaly detection in time series. In
Proceedings of the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning,
Bruges, Belgium, 22–24 April 2015; Volume 89, pp. 89–94.

20. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv
2014, arXiv:1412.3555.

21. Rana, R. Gated recurrent unit (GRU) for emotion classification from noisy speech. arXiv 2016, arXiv:1612.07778.
22. Yang, S.; Yu, X.; Zhou, Y. Lstm and gru neural network performance comparison study: Taking yelp review dataset as an example.

In Proceedings of the 2020 International Workshop on Electronic Communication and Artificial Intelligence (IWECAI), Shanghai,
China, 12–14 June 2020; pp. 98–101.

23. Liu, J.; Wu, G.; Luo, Y.; Qiu, S.; Yang, S.; Li, W.; Bi, Y. EEG-based emotion classification using a deep neural network and sparse
autoencoder. Front. Syst. Neurosci. 2020, 14, 43. [CrossRef] [PubMed]

https://www.kaggle.com/datasets/birdy654/eeg-brainwave-dataset-feeling-emotions
https://www.kaggle.com/datasets/birdy654/eeg-brainwave-dataset-feeling-emotions
http://doi.org/10.3390/s19204541
http://www.ncbi.nlm.nih.gov/pubmed/31635424
http://doi.org/10.1109/ACCESS.2021.3083519
http://doi.org/10.1080/02763869.2018.1404391
http://www.ncbi.nlm.nih.gov/pubmed/29327988
http://doi.org/10.1016/j.zemedi.2018.11.002
http://www.ncbi.nlm.nih.gov/pubmed/30553609
http://doi.org/10.1007/s42979-022-01043-x
http://www.ncbi.nlm.nih.gov/pubmed/35194580
http://doi.org/10.1007/s00371-018-1566-y
http://doi.org/10.1023/A:1010884214864
http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://doi.org/10.3389/fnsys.2020.00043
http://www.ncbi.nlm.nih.gov/pubmed/32982703


Electronics 2022, 11, 2387 20 of 20

24. Shao, H.-M.; Wang, J.-G.; Wang, Y.; Yao, Y.; Liu, J. EEG-Based Emotion Recognition with Deep Convolution Neural Network. In
Proceedings of the 2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS), Dali, China, 24–27 May 2019;
pp. 1225–1229.

25. Yang, H.; Han, J.; Min, K. A multi-column CNN model for emotion recognition from EEG signals. Sensors 2019, 19, 4736.
[CrossRef] [PubMed]

26. Salama, E.S.; El-Khoribi, R.A.; Shoman, M.E.; Shalaby, M.A.W. EEG-based emotion recognition using 3D convolutional neural
networks. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 329–337. [CrossRef]

http://doi.org/10.3390/s19214736
http://www.ncbi.nlm.nih.gov/pubmed/31683608
http://doi.org/10.14569/IJACSA.2018.090843

	Introduction 
	Methodology 
	Recurrent Neural Networks (RNN) 
	Long Short-Term Memory Networks (LSTM) 
	Gated Recurrent Network (GRU) 
	Architectures Used in This Study 
	RNN Architecture 
	LSTM Architecture 
	GRU Architecture 

	Experimental Results and Discussions 
	Results of RNN Architecture 
	Results of LSTM Architecture 
	Results of GRU Architecture 

	Comparative Analysis of Recurrent Neural Networks Based Emotion Recognition with EEG Signals 
	Conclusions and Future Scope 
	References

