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Abstract: The usage of techniques of the artificial neural networks (ANNs) in the field of microwave
devices has recently increased. The advantages of ANNs in comparison with traditional full-wave
methods are that the prediction speed when the traditional time-consuming iterative calculations are
not required and also the complex mathematical model of the microwave device is no longer needed.
Therefore, the design of microwave device could be repeated many times in real time. However,
methods of artificial neural networks still lag behind traditional full-wave methods in terms of
accuracy. The prediction accuracy depends on the structure of the selected neural network and also
on the obtained dataset for the training of the network. Therefore, the paper presents a systematic
review of the implementation of ANNs in the field of the design and analysis of microwave devices.
The guidelines for the systematic literature review and the systematic mapping research procedure, as
well as the Preferred Report Items for Systematic Reviews and Meta-Analysis statements (PRISMA)
are used to conduct literature search and report the results. The goal of the paper is to summarize
the application areas of usage of ANNs in the field of microwave devices, the type and structure
of the used artificial neural networks, the type and size of the dataset, the interpolation and the
augmentation of the training dataset, the training algorithm and training errors and also to discuss
the future perspectives of the usage of ANNs in the field of microwave devices.

Keywords: artificial neural networks; microwave devices; analysis; syntheses; computer-based
modeling

1. Introduction

The microwave industry is evolving rapidly in order to meet the modern needs
of today [1–3]. There are presented many new structures of antennas [4–6], antenna
arrays [7,8], filters [9,10], phase shifters [11,12], different resonators [13], delay lines [14],
sensor arrays [15] and others. The main research directions are usually considered to be
reconfigurability or tenability and miniaturization by searching for new constructions [16]
or materials [17]. The miniaturization is especially important for the growing network of
internet of things (IoT) devices [18,19].

The growing research in the field of microwave devices is also increasing the need to
search for the new modeling techniques [20,21], which could be divided into the methods
of synthesis [22,23] and analysis [24]. The conventional currently used methods are based
on the usage of different forms of Maxwell’s equations. The most accurate results could be
obtained by using analytical methods. The calculations are fast with analytical methods. On
the other hand, it is usually quite difficult or impossible to create an accurate mathematical
model of the desired microwave devices and the method solves only a partial case of a
microwave device with certain exceptions [25]. Numerical methods are more universal.
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Usually, the commercial software packages are used, which allows to create the 3D models
of the microwave devices, but the calculations are time consuming. Calculations can take
hours or even days when the structure of a microwave device is complex [26,27].

The possible migration from conventional methods to the methods based on the
ANNs in the field of microwave devices was started to be investigated based on the
disadvantages, which are mentioned above [28,29]. The usage of ANNs seems promising
because ANNs are already successfully used in other fields, such as image processing [30],
sound processing [31], and the forecasting of financial markets [32]. The advantage of
artificial neural networks (ANNs) in this case is the speed of prediction. ANNs do not
perform any calculations, but predict the results. The prediction is usually very fast.
Therefore, the procedure of analysis or synthesis of microwave devices is performed
significantly faster [33,34]. The prediction could be performed thousands of times faster
than calculations by the conventional methods [35]. Therefore, methods based on the the
ANNs could be used in real-time systems for solving complex problems. Additionally,
these complex problems can be solved in embedded systems in real time [36,37].

On the other hand, it is also necessary to mention that before prediction, the ANN
should firstly be trained [38]. The training could be with or without the supervisor and
classified into supervised [39], semi-supervised [40] and unsupervised networks [41]. It
depends on the type of the network and training dataset [42]. There are many different
types of networks, starting from the simple one-layer perceptron network and continuing
until convolutional networks [43]. All the ANNs address two challenges, which could
be divided into the task of function approximation (regression) or pattern recognition
(classification). The function approximation is used in the field of microwave devices [44].

The review of different types and structures of ANNs, transition algorithm from full-
wave methods to the ANN-based methods, training datasets and applications areas of
ANNs in the field of microwave devices is presented in this paper. Overall, the review
consists of 113 articles. Forty-four articles substantiate the introduction. The principles
of ANNs are discussed using three articles. The transition algorithm is discussed in all
articles. The discussion of different types of ANNs, which could be used in the modeling of
microwave devices, is included in 32 articles. The training types are discussed in 12 articles.
Fuzzy logic is mentioned in 10 articles. The future perspectives are outlined in the end of
the presented articles.

2. Research Methodology

The guidelines for systematic literature review and the systematic mapping research
procedure, as well as the Preferred Report Items for Systematic Reviews and Meta-Analysis
statements (PRISMA) [45], were used to conduct and report the reviews. This systematic
review is based on a well-planned research method that assures a thorough and unbiased
selection of all peer-reviewed publications connected to published research material. This
methodology is used to collect relevant articles from trustworthy scientific sources, which
are then sorted and mapped into numerous categories to indicate the current level of
research in the use of failure detection technologies. This research map will be extremely
helpful to practitioners and researchers in identifying cutting-edge areas and subjects for
future study.

As a result, it is critical to stress that the goal of this review is to understand not
only the use cases or applications of ANNs in the field of the microwave devices, but
also the limitations and constraints of applying suitable methodologies. Furthermore, the
most recent trends in technological techniques, processes, and concepts employed in the
execution of these methods are discussed.

2.1. Research Design

The present research needs are provided in this subsection by identifying the pre-
liminary research results based on the research question and keywords connected to the
research topic.
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2.1.1. Literature Review Questions

Machine-learning-based solutions for the efficient and dynamic design of microwave
devices have taken a long time to develop. Over the years, several procedures, approaches,
and strategies have been created to characterize the aspects involved in the growth of
microwave devices. As a result, the following issues are addressed in this research:

RQ1 What types of neural networks can be applied to the design of microwave devices?

RQ2 What are the applicable transition algorithms from full-wave methods to the neural
networks methods?

RQ3 What are the applications and direction in microwave design using machine learning?

2.1.2. Research Process

Several bibliographic databases were used to look for and acquire publications for this
investigation. These sources were chosen based on their track record of success. Table 1
shows the origins of the publications used as references in this study. This database can
give the most significant papers and conferences pertinent to acoustical failure detection,
as well as their entire text.

Table 1. Online databases.

Database URL
IEEE Xplore http://ieeexplore.ieee.org/ (accessed on 6 June 2022)
Science Direct http://sciencedirect.com/ (accessed on 6 June 2022)
Springer Link http://link.springer.com/ (accessed on 6 June 2022)
Wiley http://onlinelibrary.wiley.com/ (accessed on 6 June 2022)
ACM http://dl.acm.org/ (accessed on 6 June 2022)

2.1.3. Search Terms

After executing the initial search phase in the research databases by inputting key-
words, an extra scanning step was performed to confirm the correctness of the research
process and that the selection of studies related to the present research topic and task fit
the requirements. Search engines were also used in this study to aid in the search for
related research.

1. “Artificial neural network microwave devices" OR "computer based modelling mi-
crowave devices”;

2. “Design microwave devices”;
3. “Modeling microwave devices”;
4. “Application microwave devices”;
5. “Synthesis microwave devices”;
6. “Microwave devices”.

2.2. Review Conduction

This section explains the methods used to create the systematic literature review
procedure. The SLR search process is influenced by the guidelines and frameworks used to
create this article.

2.2.1. Selection of Relevant Papers

After acquiring exploratory research studies relevant to the study objectives, the ob-
tained articles should be appraised for relevancy. As a consequence, a second evaluation
was conducted in order to establish the relevance of the chosen first study. Furthermore,
following the first screening, a random systematic review of the selected papers was per-
formed to confirm the consistency of the inclusion and exclusion criteria. The research
selection approach for the current systematic review is depicted in Figure 1, following the

http://ieeexplore.ieee.org/
http://sciencedirect.com/
http://link.springer.com/
http://onlinelibrary.wiley.com/
http://dl.acm.org/
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Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method-
ology [45].

References Identified
Through Database
Searching (N=1102)

References Excluded
based on Title (N=804)

Record Screened (N=298) References Excluded
based on Abstract (N=133)

Full-text articles assessed
for eligibility (N=161)

Full-text exluded based
on defined Exclu-

sion Criteria (N=58)

Full-text articles el-
igibile for Prelimi-

nary Studies (N=113)

Figure 1. Procedure of research selection for the present schematic review based on PRISMA method-
ology [45].

The following steps were taken to identify relevant research studies:

1. Use the provided terms to search the database and locate prior works linked to
the research.

2. Ignore documents that do not meet the supplied search parameters.
3. Exclude papers with no evident link between title and abstract.
4. Read the articles in their entirety before evaluating them.
5. Assess the bibliography.
6. Perform the preliminary research.

2.2.2. Inclusion and Exclusion Criteria

Exclusion criteria include research publications that are unrelated to machine-learning-
based microwave design or are based on traditional design methodologies, and so fall
beyond the scope of this research study. This study focuses on SLR research publications
pertinent to this topic. Furthermore, the study excluded similar studies on the same issue.
As a consequence, the inclusion and exclusion criteria used in writing the SLR are shown
in Table 2.

Table 2. Inclusion and exclusion criteria.

Inclusivity criteria
1 Peer-reviewed original articles
2 Articles proposing an neural network based microwave design
3 Articles that utilize other machine learning based microwave design methods
3 Articles that present application of machine learning based microwave designs
5 Recency of articles in case of multiple repeated studies

Exclusivity criteria
1 Articles that are not written in English
2 Studies with invalidated techniques and algorithms
3 Articles that utilize neural network design on other purposes
4 Articles that not utilize microwave design
5 Articles that do not clearly mention microwave in the title
6 Articles providing unclear results or findings
7 Duplicated studies
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2.2.3. Data Extraction

During the data extraction procedure, relevant information was collected from the
articles and entered into a database. This database is made up of the elements in Table 3 [46].

Table 3. Data item extraction (following [46]).

Data Item Description
Title Article title
Year Year of publication

Author(s) The article author(s)
Publication type Journal, Proceeding, etc.

Publication medium The medium via which the article is published
Country Researchers’ affiliation country

Contribution The major contribution of the article
Summary Summary of the article from our perspective

3. Transition from Full-Wave Methods to the Neural Networks Based Methods

To start with, artificial neural networks are the computer models of biological neural
networks in the human brain. An ANN is a collection of linked artificial neurons that may
impact each other’s behavior. The detailed information about the structure of the single
neuron, weights between the single neurons, possible activation functions is provided
in [47]. There are several types of activation functions that may be used to adapt to diverse
nonlinear real-world tasks. This is significant since the majority of real-world input is
nonlinear and there is a need for neurons to learn nonlinear representations [48].

Individual neurons are then linked to neural networks, which can have a variable
number of layers and neurons in each layer, starting from the single-layer perceptron
network without the back propagation until the complex networks, such as convolution
or deep neural networks, which all could be used in the field of modeling of microwave
devices [49].

The transition procedure of the modeling of microwave devices from calculations
using the full-wave methods to the prediction using ANNs methods consists overall of four
stages. First of all, it is necessary to investigate the microwave devices using the full-wave
methods in the first stage. The analytical methods or the numerical methods could by used
in the first stage. The analytical methods require to make the mathematical model of the
microwave device and to make the calculation by yourself. It requires a lot of experience
and time in order to make the mathematical model every time the microwave device is
modified. Numerical methods are usually used with commercial software packages such as
Sonnet©, CST Microwave Studio©, HFSS© and others. Numerical methods usually require
a lot of time and computer resources.

The review of the newest articles showed that usually the 3D model with a specific set
of geometrical and physical parameters is selected in the first stage (1.1 block). The model
is drawn in the commercial software package (1.2 block). The S parameters are obtained for
the analysis (1.3 block) (Figure 2) [50].

The modeling is repeated many times in order to obtain a significant amount of data
for training with the different sets of parameters.

The obtained data are divided into the testing dataset (2.1 block) and training dataset
(2.2 block) in the second stage. It is very important to separate the data correctly. Usually
about 70% of data is used for training and only 30% of data is used for the testing. It is
very important to use unique unused data for the testing in order to obtain correct and
accurate information about the training of the neural network. It is also very important
that the values of important parameters from the training and test datasets are distributed
throughout the relevant range of values. Neural networks have the property of getting lost
when receiving datasets from an unseen range of values. It is also very important to select
the correct structure of the neural network in order to have accurate predictions (2.3 block).
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Figure 2. Stages of transition procedure of microwave devices modeling from calculations using the
full-wave methods to the artificial neural networks based methods.

The training should be performed in the third stage of the transition algorithm. The
mean squared error (MSE) is calculated during the training procedure in order to know the
quality of training (3.1 block). The trained surrogate model is obtained when the network
is trained and the MSE is less than the desired threshold (3.2 block).

The model of the trained neural network is tested with the testing dataset in the fourth
stage of the transition algorithm (3.3 block). The model of ANN is considered final and
can be used for the prediction of the parameters of the microwave device if accuracy with
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the testing dataset is appropriate. If the MSE is higher than the desired threshold, it is
necessary to go back to the second or even first stage and modify the structure of the neural
network or to collect additional data for training [51].

4. Different Fields of Usage

ANNs are used for the design and analysis of different microwave devices: anten-
nas [52], antennas arrays [53], filters [54], phase shifters [55], resonators [56], microwave
circuits [57], traveling wave tubes [58], delay lines and others [59]. The application areas
of ANNs are discussed in this section. The discussion is presented by taking into account
the following factors: the model of the microwave device, the application area, the type
and structure of ANN, the type and size of the training dataset, the interpolation and
augmentation of the dataset, the training algorithm and training errors, and the accuracy
of training and prediction.

4.1. Antennas

Antennas are one of the largest and rapidly evolving groups of microwave devices. For
example, the substrate-integrated waveguide patch antenna, which works in the 12–18 GHz
frequency range, is presented in [60]. The resonant frequency of the antenna is equal to
16.10 GHz. The return losses are less than −10 dB to −19 dB in the working frequency
range. The overall dimensions of the antenna are equal to 24 × 15.4 mm2. The thickness of
the substrate is equal to 0.95 mm. The dielectric with er = 3.2 is used for the substrate with
a δ = 0.0018 tangent loss.

Vilovich et al. [61] sought to investigate neural network capabilities in designing the
rectangular patch (width and length) of a microstrip antenna. Their comparison analysis
revealed that the neural-network-generated antennas performed better.

The multilayer perceptron (MLP) network with the back-propagation algorithm was
used for the optimization of the dimensions of the presented patch antenna. The structure
of the MLP network consists of three layers. The input layer has two neurons for the input
of parameters of return loss S11 and resonant frequency f 0. The network has predicted
dimensions of the width W of microstrip line, diameter D of the patch, inner radius R1 and
outer radius R2. The hidden layer consists of 15 neurons. The neural network allowed
optimizing the initial set of dimensions of the patch antenna.

Another example of the microstrip patch antenna is presented in [62]. This time, the
antenna had an elliptical form. The dimensions of the three ellipses were constructed
in order to resonate at 2.4 GHz. The overall dimensions of the substrate of the elliptical
antenna were equal to 100 × 60 mm2. The similar feed-forward back-propagation ANN
(FFBP-ANN) along with the Levenberg–Marquardt optimization algorithm was used to
model the antenna design. The structure of the network was equal to 3-10-2. The network
predicted the return loss S11 and gain of the antenna while changing the radius geometrical
parameters in the input. The overall 160 combinations of the input parameter with the
corresponding return loss and gain were collected using the CST©EM simulation. A total
of 100 combinations were used for the training. Then, 60 combinations were left for the
testing. Results showed good agreement between the results obtained with CST© and the
results predicted with the MLP network.

The rectangular microstrip patch antenna for the terahertz applications is presented
in [63]. The gallium arsenide er = 12.9 material was used for the substrate. The overall
dimensions of the substrate were equal to 0.06 × 0.035 mm2. The structure of the feed-
forward MLP network was equal to 3-20-2. The parameters of frequency f (0.3–3 THz),
dielectric constant e (10.2–12.9) and height h (0.005–0.3 mm) were submitted to the input
of the network. The return loss S11 and bandwidth W were predicted in the output of the
network. The Levenberg–Marquardt training algorithm was used for the training. The
136 samples were collected using the HFSS©EM simulation.

All three earlier mentioned examples used the MLP network. The first example solved
the synthesis optimization task when the desirable electrical parameters were known and
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it was necessary to optimize the geometrical dimensions of the antenna starting from the
initial selected dimensions. The second and third examples solved the analysis task when
it was necessary to find the S parameters for the description of the antenna.

The optimization procedure of the aperture coupled single and multilayer microstrip
planar antennas is described in [64]. The calculation of microstrip planar antenna parame-
ters using traditional full-wave methods is time consuming. Therefore, the optimization
technique using ANNs is presented. Several different structures of the feed-forward neu-
ral network were used for the investigation. The input-hidden-output (3-20-2) network
topology was used for the single layer planar antenna. The inputs of the network were of a
dielectric constant er, height of substrate h and resonant frequency f r. The parameters of
the scattering matrix were predicted in the output layer. The input-hidden-hidden-output
(7-20-20-2) network topology was used for the multilayer planar antenna. The parameters
of frequency of operation, slot length, slot width, stub length, patch offset, patch width
and feed width were given to the input of the network in order to predict the same param-
eter of the scattering matrix. The two hidden layers were selected because of the bigger
non-linearity between the input and output parameters. The nonlinear sigmoid transfer
function was used for the hidden neurons. The linear function was chosen for the input and
output neurons. The error back-propagation algorithm was selected for the training. The
number of neurons in the hidden layers was selected iteratively by increasing the number
of neurons from a small number until the acceptable error was received.

Datasets for training were generated using the full-wave simulators. The presented
model of neural network was able to predict the resonant length of the aperture coupled
antenna in approximately 33 ms, while the computations with full-wave methods took
about 20 s.

The main goal of the paper [65] was to improve the slip-ups in the radiation case
of the antenna using ANN framework estimations. The T-shaped planar antenna for the
5G faraway application at 38 GHz was used in the investigation. This presented antenna
is suitable for the millimeter wave rehash. The feed-forward neural network with back
propagation was used in the investigation.

The main goal in [66] was to increase the efficiency of the modeling of two models of
the multi-band PIFA planar antennas. Both models had a similar structure when the two
folded inverted-L monopoles were printed on the plastic substrate er = 2.9. The initial data
for the training of the neural network were obtained with the HFSS©software package. The
feed-forward multi-layer perceptron neural network (2-32-32-1) was used for the prediction.
The frequency and the scattering |S11| values of the standalone antenna were considered
input parameters. The |S11| value of the antenna in real mobile was considered the
desired output. The prediction with MLP neural network allowed to reduce the processing
time from several hours to 1.5 s. The prediction errors were equal to 3.43% and to 4.7%,
respectively. The presented comparison of the S11 was in the range of 0–2.5 GHz frequency.

The radial basis function (RBF) neural network was chosen in order to accurately pre-
dict the resonant frequency of the adjustable circular microstrip antenna while varying the
patch radius, relative permittivity of the upper dielectric substrate, the air gap separation
and thickness of the upper dielectric substrate [67]. The radial basis activation functions
with a Gaussian form was used in every single neuron of the hidden layer. The overall
4 × 1200 samples dataset was collected for the neural network training and validation. The
results, which were predicted with RBF and calculated with traditional full-wave methods,
do not vary more than 100 MHz.

Ali et al. [68] presented a closed-loop antenna with an interdigital capacitor to enhance
the electric field fringing at the patch core as part of wearable devices with little back
radiation toward the human body. To maximize the suggested antenna performance in the
desired frequency band, a neural network was used. The error percentage attained was
fewer than 4.4 percent.

A completely different solution is presented in [69]. The parametric modeling of the
ultra-wideband notched antenna was performed using the model of the convolutional
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neural network (CNN). The main difference in this case is that the inputs to the neural
network were not the geometrical parameters of the antenna but images with different
topologies of the antenna. The overall dimensions of the used antenna were equal to
30 × 35 mm2. The working frequency range of the presented antenna was adjusted by
changing the overall four parameters of the size and the position of the coupling strip.
The performance of the antenna was investigated in the 2–12 GHz frequency range. The
presented CNN consisted of four convolutional layers and two fully connected layers.
Every convolutional layer consisted of convolutional and detector stages. The rectified
linear unit (ReLU) was used in the detector stage, and batch normalization was employed at
each layer. The inputs of the CNN were the cross-sectional binary images. Each value of the
separated pixel represented different material. The substrate was represented by 0, while
the coupling strip was represented by 1. The image with the coupling strip was partitioned
into 415 × 214 grids. Overall, there were collected 64 training samples and 49 samples
for testing purposes. The samples were collected using the commercial HFSS©software
package. The initial smaller number of samples was increased using the data augmentation.

4.2. Antennas Arrays

Antenna arrays is another field of microwave devices in which the usage of intelligent
methods grows rapidly. The ANNs are usually used in order to solve the tasks of beamform-
ing, finding the angle of arrival (AoA), real-time analysis while saving the computational
resource, defective elements determination, and fault finding in antenna arrays.

The innovative approach of beamforming of the phased antenna array using a con-
volutional neural network is presented in [70]. The position of a beam is crucial for beam
synthesis, and the neural network’s phase output must be sensitive to the spatial location
of the desired beam in the input. Using the desired radiation pattern as input, the convolu-
tional neural network is trained to compute phases of patch antennas in the 8 × 8 patch
antenna array. The presented neural network consists of eight layers: four convolutional
layers and four fully connected layers. The CNN beamformer receives a two-channel
radiation pattern as input. The first and second channels show the actual gain in linear or
dBi scales.

The leaky rectified linear unit (ReLU) was employed for the activation of all layers.
There was no activation at the output layer because this was a regression problem rather
than a classification one. The Adam optimization technique was utilized in order to up-
date the network weights. The loss function was used in order to calculate the mean
squared error (MSE). The flattened output of the final convolution layer had 82,800 neurons.
ANSYS HFSS©software was used in order to collect the data for training and verifica-
tion. The network was trained using 165,000 samples. The validations were made with
40,000 unique samples.

The beamforming design based on the deep learning neural network is presented
in [71]. The presented beamforming neural network (BFNN) allowed to significantly
improve the performance of beamforming in comparison with traditional beamforming
algorithms. The improvement of beamforming was understood as the maximization of
the spectral efficiency (SE), while having hardware limitation and imperfect channel state
information (CSI). The authors also proposed the two-stage design approach to make the
BFNN robust to imperfect CSI. The BFNN learned how to approach the ideal SE during the
first offline training stage. The BFNN adapted itself to imperfect CSI and achieved robust
performance to the channel estimation errors in the second online deployment stage.

For the 64 element linear antenna array, the authors used the deep neural network
consisting of five layers: input layer, three dense layers and the final lambda layer. The
self-defined Lambda layer was added at the end of the BFNN in order to ensure that
the output of the BFNN was a complex-valued vector satisfying the constant modulus
constraint. The reLu activation function was used in the first to dense layers. The sigmoid
activation function was used in the third dense layer.



Electronics 2022, 11, 2360 10 of 21

The usage of the model of the multilayer direct distribution neural network for the
beamforming and calibration applications in the linear omnidirectional antenna array is
presented in [72]. The antennas were positioned at a half wavelength from each over
without the interaction between the emitters. The main discussed arising issues were
the problem of possible non-identical characteristics of the antenna channels and drift of
characteristics over time.

The authors provided slightly different models of direct distribution neural network
in order to solve the beamforming and calibration problems. The number of inputs of the
first layer was equal to the number of antenna elements of the aperture in the beamforming
example. The models of the digital signal from the ADC output were formed as input
data to the network. The main important parameters were presented as relative location,
frequency, waveform of the signal’s source, the interference source and the noise level. The
authors used the network topology with one hidden layer. The digital beam signals were
created in the output. The beamforming output spectrum components and pilot signals
must also be fed into the input of neural network additionally in the case of the antenna
array calibration problem. The supervised training was carried out during both cases.

The determination of the angle of arrival (AoA) is another use area for antenna arrays.
The measuring of the direction from which a received signal is emitted is known as radio
direction finding. The mapping of the connections between the properties of received
signals and their incidence direction is the basis of radio direction finding. Radio direction
finding is an inverse task of signal reception from a given direction. It is critical to be able to
efficiently track the intended consumers. Traditional strategies are inefficient for achieving
a super resolution AoA estimate in real time. As a result, machine learning approaches are
typically used in order to increase the efficiency of direction finding, such as the processing
speed, and the resolution of the angle [73].

Usually the problem appears to be working with practical antenna arrays, which have
nonuniform elements. The arising problem could be solved with ANNs which approximate
the mapping from received signals to AoAs with high estimation accuracy. An example of
a practical antenna array with 30 elements is considered in [74].

The uniqueness of [75] is the nonlinear mapping of outputs of the receiving antennas
with the associated direction of arrival (DoA) by using the combination of the detection
network and the DoA estimation ANNs that allow to estimate the DoA. The detection
network allowed to reduce the size of the training dataset and to individually train several
deep neural networks that correspond to the different sectors of possible position.

The detection network was used in order to divide the search area of the antenna array
into different position sectors and to detect signals radiating from sources in each sector.
The MLP-based network was used for both the detection and DoA estimation networks.
The similar network optimization problem of antenna array is also presented in [76].

Artificial neural network can be used also for the specific tasks in the antenna arrays.
The reconstruction of the complex excitation of antenna elements is presented in [77].
Complex excitation is one of most important parameter that describes radiation properties
of a phased antenna. The properties of degradation of antenna array can be expressed
by the deviation of practical element excitation’s from the ideal ones. The defects were
simulated in antenna array in [77] with the hypotheses that 20% of total elements may
contain defects. In comparison, the authors of [78] suggested an MTM antenna with a
downsized profile MTM with circularly polarized increased gain performances, measuring
the electromagnetic characteristics of the INP substrates and the printing method based on
the KNN algorithm. The suggested antenna was determined to have adequate accuracy
at the tested frequencies when bending effects were used to compare the results to the
flat case.

4.3. Phase Shifters

According to Huang et al. [79], in order to optimize the throughput benefit of intelligent
reflecting surface (IRS), the base station (BS) must acquire both the traditional direct channel
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between the BS and the user equipment (UE) and the IRS reflected channel. The channel
state information (CSI) of direct and IRS reflected connections is widely assumed to be
completely understood at the BS. In practice, obtaining accurate CSI is challenging since
the size of the IRS reflected channel grows with the number of reflecting parts.

IRS data rate deterioration is caused by both the large pilot overhead and the channel
estimate mistakes. The authors of [80] presented a deep learning (DL)-based technique for
determining the IRS phase shift while optimizing the data rate of IRS-aided communication
systems. The advancement was made possible by using a deep neural network to establish
a nonlinear link between the noisy estimated channel and the IRS phase changes.

The next several articles solve the problem of the complex control of dual active bridge
(DAB). Challenges arise due to many non-linearly changing parameters which affect the
operation of the DAB. Authors from [81] proposed the triple-phase shift control (TPSC)
method, which allowed to significantly decrease the current amount that flows through
the high frequency (HF) transformer. This was achieved by replacing the generally used
lookup table with a neural network model. The main idea was that the look-up table stores
the optimized modulation parameters, which are discrete. Neural networks allowed to
estimate the nonlinear predictor function for the TPS associate. As a result, the efficiency
was increased to 99%. The investigation was made in Simulink Matlab©. The feed-forward
neural network was used for the investigation. The investigated optimal size of the hidden
layers was equal to 10. The same problem of optimal power efficiency was also investigated
in [82]. This time, the authors used the deep neural network, which allowed to figure out
the connections between modulation parameters and power loss.

Another example is presented in [83]. This time, the convolution neural network is
used in order to make the nonlinear phase shifter independent from the changing baud rate.

Thus, it can be seen that the field of application of ANNs is wide, ranging from the
synthesis task to model the phase shifter itself until the error detection and optimization.

4.4. Other Applications

The large application areas of the modeling of microwave devices using ANNs are
discussed in detail. Of course, these are clearly not all application areas of microwave
devices. A few more options are discussed. The transmission lines are another group of
microwave devices. It could be also the traveling wave tubes, delay lines and waveguides.
In this section, we try to discuss the more exotic examples, where more complicated types
of networks or more complicated structures or materials of the microwave devices are used.

The [84] presents the example of the waveguides construction optimization task, which
should work in the X-band frequencies. The optimal geometrical parameters were obtained
using the neural network-biased genetic algorithm.

Hu et al. [85] described the use of physics informed neural networks (PINNs) to
address rectangular waveguide difficulties. In order to discover solutions for electric and
magnetic fields, partial differential equations (PDEs) were substituted by PINN. PDEs
may be naturally encoded into the loss function using PINNs, whereas partial derivatives
with respect to input variables can be generated using automated differentiation (AD)
incorporated into recent deep learning packages.

The more exotic variant of the usage of ANNs for the analysis and synthesis of
waveguides is presented in [86]. Instead of using the conventional dielectric materials, the
rectangular waveguide with metamaterials was used. The investigated waveguide was
designed to work in the infrared wavelength λ telecommunication spectrum (1200 nm to
1700 nm), where long propagation length and high confinement of the fields are desirable.
The MLP network was used in order to calculate the main device propagation properties,
such as the propagation length L and the penetration depth dp. The two hidden layers
were used for the analysis task and one hidden layer for the task of synthesis. The best
configurations were obtained using 28 and 14 neurons for L estimation, 42 and 28 neurons
for dp estimation and 15 neurons for the task of synthesis. The activation functions in all
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cases were tangent hyperbolic for the hidden layers and the linear one in the output layer,
respectively. The training process was carried out with the Levenberg–Maquardt algorithm.

The usage of ANNs for the modeling of delay lines was presented in [87]. Delay lines
are used in many different microwave circuits for signal synchronization. Authors wanted
to increase the simulation speed while keeping the same accuracy. Therefore, the ANNs
were used. The ANN allowed to speed up the analysis 2000 times while keeping high 99.5%
accuracy. The MLP network was used for the prediction.

The time delay neural network (TDNN) is presented in [88]. This type of network is
the modified multilayer perceptron neural network. Therefore, the comparison of both
networks is presented in this paper. Authors advise to use TDNN when the nonlinear and
dynamic effects become significant and when it is necessary to have the possibility to build
the more general models without building proper equivalent circuit models.

GaAs metal-semiconductor-field-effect transistor (MESFET) and GaAs high-electron
mobility transistor (HEMT) samples were used to validate the TDNN example. These two
examples show that the suggested TDNN is a viable and efficient method for simulating
many types of nonlinear microwave devices. For example the training and test errors of
the MLP were equal to 31.13% and 33.68%. Respectively, TDNN results were 6.41% and
6.58% with one delay buffers and 1.49% and 1.86% with seven delay buffers. The number
of neurons was the same and equal to 40 in both MLP and TDNN networks.

5. Neural Networks Classification According to the Learning Type

All previously presented ANNs examples are usually trained using the supervised
training method. Supervised training allows to obtain usually desirable accuracy but also
has its disadvantages. As already was told, the success of neural network training depends
directly on the size and quality of the training dataset. Sometimes it is not available to collect
a huge dataset of training samples. In addition, the collection of training samples using the
conventional full-wave methods takes a lot of time. There are already investigations that
analyze the ways of extracting the desirable features from huge wireless data streams [89]
and also how to automate the collection of the training datasets [90] that is especially
important for the training and analysis of microwave devices. Mishra et al. [91] stated
in their review study that neural networks are excellent for DOA estimation and beam
shaping, due to their nonlinear nature, capacity to manage enormous parallel operations,
capability of universal approximation, accuracy, and speed. For smart antenna design,
neural network approaches outperform print numerical techniques. The study finds that in
the construction of smart antennas, a hybrid neural network model with an appropriate
combination of different types of neural networks may be beneficial. The arising issues of
the collection of the training datasets could be also solved by using semi-supervised and
unsupervised learning (Figure 3).

Figure 3. Neural networks classification by the learning type.

The authors from [92] proposed the semi-supervised training method, which consists
of the initial training and the self-training. Using this proposed method, only the small
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initial training dataset is required, which is usually obtained using the full-wave simulation.
After the first initial training, the presented model produces the unlabeled training dataset
and the model trains itself until the testing accuracy is satisfied. In comparison with the
usual training technique, which collects the training dataset from full-wave EM simulations,
the suggested model only uses a limited number of labeled samples.

Authors from [92] presented two application examples of the usage of the semi-
supervised training network. In the first example, the analysis of the microstrip-to-
microstrip vertical transition model is presented. The input vector consists of six geo-
metrical parameters of lengths and widths of different sectors of the microstrip. The output
vector consists of real and imaginary parts of the S11 parameter. The HHFS©software pack-
age was used for the collection of the initial training dataset. The investigated range was
from 0 to 15 GHz. First of all, the initial training was performed with 15 randomly selected
labeled samples when the self-training process started, which overall had 17 iterations.
Despite the training period, the major advantage of this self-training model was that it
required far less optimization time than the full-wave EM simulations.

Musumeci et al. [93] provided another example of the use of semi-supervised neural
networks. This time, machine learning (ML) was applied for autonomous failure diagnosis
in microwave networks based on real-world data. Various problems contribute to connec-
tion outages. The authors had data on six types of failure in microwave networks. The
authors employed autoencoder-like ANNs to blend knowledge from a small amount of
manually labeled data with a big amount of unlabeled data.

Yang et al. [94] provided an example of a deep semi-supervised learning approach
from the perspectives of model creation and unsupervised loss functions. Zhang et al. [95]
described a technique for spectrum sensing in a real radio environment based on a semi-
supervised deep neural network (SSDNN). SSDNN was used to extract characteristics of
signal from a limited number of labeled samples. Unlabeled samples were utilized in the
self-training procedure. The network was retrained using the expanded dataset. On a
dataset of 124,800 samples, several tests were conducted. Only 18% of the data was initially
labeled. The reached classification with SSDNN was higher than 90%.

The sampling approach also has a significant influence on the learning accuracy of
ANNs. In reference to Xiao et al. [96], for example, a semi-supervised radial basis function
neural network with a new sampling method was presented to decrease the nonuniform
error distribution and sluggish convergence caused by the uncertainty of sample selection
in the training process. This new sample technique enabled us to maintain the same level
of training and testing accuracy over the whole sampling zone.

The main reasons for using the unsupervised learning are the model building and
the dimensionality reduction [97]. As it is written in [98], the unsupervised learning is
the key component in the 6G systems. The future wireless technologies heavily depend
on the artificial intelligence that could be trained, unsupervised, because the amounts of
important information increase rapidly. In particular, it will be popular in the optimization
procedures [99].

The example of unsupervised learning in the field of microwave devices and com-
munication was provided in [100]. The hybrid beamforming architecture with antenna
selection allows the system to be flexible and have hardware efficiency. It is regarded as a
critical technology for fifth-generation wireless communication networks (5G). The selec-
tion network was the ASNet, and the hybrid beamforming network was the BFNet. ResNet
was used in both networks to extract features from the channel matrix. The unlabeled
samples were chosen, using the authors’ suggested deep probabilistic subsampling method
for ASNet and a specifically constructed quantization function for BFNet. The authors
also introduced a configurable loss function, which allows a phased unsupervised training
technique to efficiently train the combined network.

K-means, hidden Markov model (HMM), auto encoders (AEs), self-organizing maps
(SOMs), fuzzy C-means and other unsupervised algorithms are examples of successful
application in this area. According to Schmarje et al. [101], unsupervised machine learning
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may be used to improve the performance of deep learning (DL) algorithms, such as
convolutional neural networks (CNNs) and long short-term memory (LSTM) algorithms.

6. Fuzzy Logic

Fuzzy logic techniques are also used in the design and analysis of microwave de-
vices [102]. Starting from the design of microwave transistors [103], continuing in the field
of microwave circuits [104] and ending with completed microwave devices, such as waveg-
uides [105], antennas [106], power amplifiers [107], power converters [108] and others [109].
The fuzzy logic techniques help not only in the design and analysis of microwave devices,
but also in the procedure of the manufacture of microwave devices as it is presented in [110].
The control of technological process of induction soldering is significantly complicated,
and the presented mathematical model together with intelligent methods, one of which is
fuzzy logic, allowed to improve the quality of the induction heating process, which is an
important part of the soldering process.

In general, fuzzy logic is a technique which allows to represent and manipulate with
uncertain information. Fuzzy logic can be assigned to the group of low-level artificial
intelligence. It is used in the lower-level machine control, so-called fuzzy controllers. Fuzzy
logic is an extension of conventional logic in which a concept’s degree of truth can range
from 0.0 to 1.0 [111].

For example, fuzzy logic was used in [112] in order to achieve better operation param-
eters of two-way symmetrical Doherty power amplifiers. Authors claimed that where was
no solution to achieve more than 60% fractional bandwidth using the continuous-mode
technique for the design of Doherty power amplifiers. Authors achieved a 15% increment
in fractional bandwidth and reached up to 66.7% by using the technique, which was based
on fuzzy logic. The fuzzy logic allowed to speed up and simplify the continuous-mode
based technique. Authors used the combination of the K-means unsupervised learning
clustering algorithm and a modeled continuous-mode technique. This combination allowed
not only to extend the fractional bandwidth, but also to improve other important param-
eters, such as efficiency, output power and gain. The proposed technique also allowed
automating the calculation of optimum characteristic impendances and electrical lengths
of the transmission lines of the two-way symmetrical Doherty power amplifier.

Another example of the usage of fuzzy logic was presented in [113]. The authors
presented the concept to evaluate the performance of the antenna, which is based on the
fuzzy logic. The monopole, dipole, inverted f and helix antennas were designed in Matlab©
using the antenna design toolbox. The directivity, VSWR, reflection coefficients parameters
of each antenna were analyzed in order to evaluate the performance of each antenna. The
conventional mathematical techniques could not describe the complex decision-making
rules for the evaluation of the performance of the antennas with regards to these vary-
ing parameters. Fuzzy logic allowed to solve the task. The fuzzy decision system was
developed using the fuzzy logic toolbox in Matlab©.

According to these two examples above, it is possible to summarize that fuzzy logic
allows to think not only about the two possible values, such as logical low and logical high,
but also about the whole range of values between the logical low and logical high. All the
steps are described in Figure 4.

First of all, it is necessary to convert the main crisp values of the parameters of
the microwave devices into the fuzzy logic values using the fuzzifier. These results are
described in terms of the degree of membership of the fuzzy sets. Secondly, the “If and Then”
sets of rules will be used for the decision making. Third, the defuzzification procedure
will convert data back to specific real values. The same stages were performed in the
above papers.
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Figure 4. Steps of the usage of fuzzy logic in the design and analysis of microwave devices.

7. Discussion and Future Perspectives

According to the discussed examples, it is clear that ANNs are widely used in the
field of synthesis and analysis of microwave devices. The main application areas of ANNs
are discussed, which are antennas, antennas arrays, phase shifters, filters, waveguides,
traveling wave tubes and others. ANNs usually replace the traditional full-wave methods
while performing the synthesis or analysis of microwave devices.

There are many different types and structures of ANNs starting from simple MLP
network in order to solve the regression task till the more complex deep ANNs or con-
volutional ANNs, which could solve more complicated classification tasks. The learning
algorithm and training dataset has also a very important role in order to have accurate
prediction results with ANNs. The training dataset can even influence the selection of the
type and structure of the neural network.

Due to their widespread use, the usage of ANNs is expected to grow significantly in
the future. On the other hand, there are still many challenges to apply ANNs in practical
engineering problems. One of the most important challenges is a very huge and still
increasing amount of training samples, which cause difficulties in the practical training
of ANNs. The field of microwave devices requires collecting big amount of samples for
training in order to have high learning and test accuracy. The calculations with traditional
full-wave methods take a lot of time. Additionally, the field of wireless communication
in the microwave frequency range streams a large amount of data, which all should be
analyzed and used for training. Therefore, the future perspective is to use the semi-
supervised or unsupervised training of ANNs, which could itself extract the main features
from obtained signals and learn during the operation.

When it is difficult and time consuming to collect the training dataset, a good future
perspective could be the augmentation of the training samples. It is already widely used
in other fields such as image processing and others. After collecting the small dataset of
samples with traditional full-wave methods, the training data could be augmented by
using intelligent and automated augmentation methods usually also based on ANNs.

Finally, there is the issue of data dependency, which cannot be completely resolved
because neural networks learn from examples and researchers label the training data so
that the network knows “what is what”. As it was already mentioned, unsupervised and
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semi-supervised networks exist. However, these networks are more complex. In unlabeled
data, an unsupervised network attempts to minimize ladder patterns, differences, and sim-
ilarities. Semi-supervised networks act as a bridge between supervised and unsupervised
training by training an initial model with labeled data and then applying iteratively to label
unlabeled data with a set of tolerances. It appears that semi-supervised and unsupervised
networks might enhance the process of collecting and training using datasets, although this
is not a foolproof strategy. Because of its structure, unsupervised networks are employed
when a vast amount of data is acquired. For example, there are fewer networks to search
for abnormalities in the field of microwave devices. Semi-supervised neural networks are
used to solve classification and regression issues. However, according to the researchers,
this can assist to enhance the learning rate, but can also make it worse. Again, a tailored
strategy is necessary. Adapting for the field of microwave devices is not always possible.
Issues with summarizing training data cannot be resolved automatically. Every application
requires its own network topology and training dataset. The difficulties arise from the time
required to acquire data using full-wave approaches. When the researcher already has the
training dataset, labeling it is required and it is a time consuming process. There is no way
to bypass these phases.

8. Conclusions

The usage of artificial neural networks in the field of the synthesis and analysis of
microwave devices is reviewed and discussed in this article. The study was conducted
by discussing and summarizing individual examples from separated articles. Overall, the
review consisted of 113 scientific articles.

The main focus while discussing every article was on the application areas of artificial
neural networks in the field of microwave devices, the type and structure of the used
artificial neural networks, the type and size of the dataset, the interpolation and automated
augmentation of the training dataset and the training algorithm. The summary of the
reviewed methods is presented. The future trends are also discussed. It is likely that more
research will be conducted in order to automate the collection of training datasets by using
different techniques of interpolation and data augmentation.

The situation in the field of microwave devices and artificial neural networks is
changing significantly; therefore, we will aim to track research and publish an update to
this review paper as the situation changes.
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