
Citation: Ye, J.; Yanagisawa, M.; Shi,

Y. Dataflow Optimization through

Exploring Single-Layer and

Inter-Layer Data Reuse in

Memory-Constrained Accelerators.

Electronics 2022, 11, 2356. https://

doi.org/10.3390/electronics11152356

Academic Editor: Erik Dahlquist

Received: 25 May 2022

Accepted: 25 July 2022

Published: 28 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Dataflow Optimization through Exploring Single-Layer and
Inter-Layer Data Reuse in Memory-Constrained Accelerators
Jinghao Ye 1, Masao Yanagisawa 2 and Youhua Shi 2,*

1 NVIDIA Semiconductor Technology (Shanghai) Co., Ltd., Shanghai 201210, China;
seiko.yo@islab.cs.waseda.ac.jp

2 Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan; myanagi@waseda.jp
* Correspondence: shi@waseda.jp

Abstract: Off-chip memory access has become the performance and energy bottleneck in memory-
constrained neural network accelerators. To provide a solution for the energy efficient processing of
various neural network models, this paper proposes a dataflow optimization method for modern
neural networks by exploring the opportunity of single-layer and inter-layer data reuse to minimize
the amount of off-chip memory access in memory-constrained accelerators. A mathematical analysis
of three inter-layer data reuse methods is first presented. Then, a comprehensive exploration to
determine the optimal data reuse strategy from single-layer and inter-layer data reuse approaches
is proposed. The result shows that when compared to the existing single-layer-based exploration
method, SmartShuttle, the proposed approach can achieve up to 20.5% and 32.5% of off-chip memory
access reduction for ResNeXt-50 and DenseNet-121, respectively.

Keywords: DNN accelerator; dataflow; off-chip memory access; layer fusion; data reuse

1. Introduction

Deep neural networks (DNNs) have been widely used in modern artificial intelligence
tasks such as image recognition and segmentation. The accuracy improvement in these
tasks that is achieved by DNN models such as AlexNet [1], GoogLeNet [2], ResNet [3],
ResNeXt [4], and DenseNet [5] usually comes at the cost of extremely high computational
complexity. These widely used DNN algorithms typically have tens of layers with tens to
hundreds of megabytes (MBs) of parameters and require up to several billions of multiply-
and-accumulate (MAC) computations even for single inference task, which demands both
a large amount of computational hardware resources and considerable storage elements.
Unfortunately, on-chip memory and the available computational resources are very limited
in mobile and wearable devices (it was reported in [6] that the capacity of SRAM is typically
less than 1 MB), which makes it generally impossible to save the parameters and/or the
intermediate results on-chip, even for one layer. It has also been pointed out in [7] that the
data movement is orders of magnitude more energy-consuming than the corresponding
MAC computation. More specifically, the relative energy consumption of a 32-bit DRAM
access in a 45 nm CMOS process is 6400×, 711×, 206×, 173×, and 128× greater than that
of a 32-bit int ADD, a 32-bit float ADD, a 32-bit int MULT, a 32-bit float MULT, and a
32-bit SRAM read operation, respectively, as shown in [8]. In addition, it has also been
reported that the energy consumption of DRAM access can reach up to more than 80% of
the total energy consumption in the well-known DNN accelerators, such as DianNao [9]
and Cambricon-X [10]. Therefore, off-chip memory access has become the performance
and energy bottleneck in DNN accelerators [11,12], and how to maximize the utilization of
the already on-chip data is critical for memory-constrained accelerators.

In the literature, various techniques, such as pruning, compression, data reuse meth-
ods, etc., have been developed to reduce off-chip memory accesses for energy-efficient DNN
processing. Among them, one of the most promising approaches is to leverage on-chip data

Electronics 2022, 11, 2356. https://doi.org/10.3390/electronics11152356 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11152356
https://doi.org/10.3390/electronics11152356
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics11152356
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11152356?type=check_update&version=2

Electronics 2022, 11, 2356 2 of 16

reusability, such as with input feature map reuse (ir) [11], partial sum reuse (pr) [13–15],
and weight reuse (wr) [16,17]. These approaches have shown their advantages; however,
they all consider each layer separately. Thus, no matter how large the on-chip memory is,
the output feature map (ofmap) of each layer should be written to the off-chip memory and
then read back as the input feature map (ifmap) of the next layer. As networks grow deeper,
the amount of this shuttling data increases, leading to significant energy consumption.
On the other hand, layer fusion [12] was proposed to maximize the feature map (fmap)
reuse in consecutive convolutional layers, and its effectiveness on MobileNet is shown
in [18]. The off-chip memory access of the weights, however, might increase. Moreover, it
typically requires large on-chip memory for the storage of cross-layer feature maps, which
makes it difficult to deploy it in memory-constrained designs. SuperSlash [19] adopts
the exploration approach of SmartShuttle [11] and takes the advantage of layer fusion for
off-chip DRAM access reduction. However, it only supports pr in the first layer and ir in
the second layer of two fused layers. Moreover, it cannot support grouped convolutional
layers. Consequently, the effectiveness of SuperSlash is limited in state-of-the-art neural
networks, such as GoogLeNet and ResNeXt.

Although the existing works can effectively reduce the amount of off-chip memory
accesses, as neural network models become more diverse for various applications, how to
maintain high energy efficiency with limited hardware resources for diverse NN models
is still an emerging challenge. To the best of our knowledge, no systematic approach to
exploring the opportunity of both single-layer and inter-layer data reuse for minimizing off-
chip memory access has yet been studied. Therefore, this paper proposes three inter-layer
data reuse methods and a dataflow optimization approach to minimizing the amount of off-
chip memory access in memory-constrained accelerators, with the following contributions:

(1) A mathematical analysis in terms of required off-chip memory access and on-chip
memory capacity for the proposed inter-layer data reuse methods is introduced for
modern neural networks. Unlike most of the existing data reuse methods, in which
only AlexNet and a VGG-like structure are considered, our analysis can be applied
to most of the existing convolutional neural networks, ranging from AlexNet, VGG,
ResNet, and DenseNet to ResNeXt, etc.

(2) A comprehensive exploration to precisely determine the optimal data reuse strategy
from various single-layer and inter-layer-based reuse approaches is proposed for
memory-constrained DNN accelerators. Unlike the single-layer-based SmartShuttle
and the layer-fusion-based SuperSlash, our method can determine the optimal data
flow and the corresponding data reuse strategy along layers; thus, the proposed
method can always achieve minimum DRAM access for accelerators with various
SRAM capacity.

The rest of this paper is organized as follows. Section 2 gives the background. The
mathematical analysis of the inter-layer data reuse methods is introduced in Section 3, and
the optimal dataflow exploration method is illustrated in Section 4. The evaluation results
are presented in Section 5. Finally, Section 6 concludes this paper.

2. Preliminaries
2.1. DNN Accelerators

DNN accelerators have been developed with various design approaches [7–26]. Due
to the data-centric property in recent ASIC-based DNN accelerators, in which a significantly
large amount of data should be processed and transferred in and out of the accelerator
chips, memory plays an important role. The typical on-chip global memory architectures
can be simply classified into two types, i.e., those which use a unified buffer, such as those
in [13,16,26], and those which use separate buffers for input feature maps, filter weights,
and partial sums, such as those in [15,17]. Using a multi-bank-based unified global buffer
can flexibly change the volume of the on-chip ifmaps, weights, and psums in different
layers, while using separated buffers can transact different types of data in parallel.

Electronics 2022, 11, 2356 3 of 16

Recently, a layer-fusion-based DNN accelerator was presented in [18]; it stores the
relevant data of two consecutive layers to support 2-layer fusion, and its architecture is
similar to the unified global buffer-based architecture. Therefore, considering the amount
of off-chip memory access among the layers (i.e., there are typically more fmaps in the
shallow layers while there are more weights in the deeper layers), we adopt the architecture
with a unified buffer for optimal dataflow exploration in memory-constrained accelerators.

2.2. Single-Layer-Based Data Reuse

The technique called dataflow has been widely explored for efficiency improvement
in DNN accelerator designs; it not only includes how to partition a large amount of off-
chip data into small tiles to fit on-chip memory, but also determines how data move in
the memory hierarchy. Off-chip memory access causes significant energy consumption;
therefore, most existing dataflows focus on increasing data reuse efficiency for off-chip
memory access reduction.

Three kinds of data reuse strategies, such as ir, wr, and pr, have been proposed with
the basic idea of maximizing the utilization efficiency of the on-chip data if they are fetched
from off-chip memory. For example, in ir, once an ifmap tile is read, it stays on-chip and
will not be discarded until all the computations related to it are completed. By doing this,
we can maximize the utilization of the loaded ifmap; thus, each ifmap datum only needs
to be fetched once. Similarly, the weights are only read once in wr, while pr focuses on
eliminating the movement of psums. It should be noted that most of the existing methods
conduct data reuse in a layer-based manner, while data reusability in consecutive layers
has not been considered. Therefore, they can be viewed as single-layer-based data reuse.
The tiling of single-layer-based convolution is shown in Figure 1, with the corresponding
description of the network-defined shape parameters and tiling parameters given in Tables 1
and 2, respectively.

Electronics 2022, 11, x FOR PEER REVIEW 4 of 17

e On-chip filters in the second layer

Figure 1. Tiling of single-layer-based convolution.

To move huge amounts of data from a large memory (i.e., off-chip DRAM) into a

small one (i.e., an on-chip global buffer), we typically partition the data into very small

tiles. According to the tiling parameters shown in Table 2, without any data reuse, we

need to read each ifmap tile ⌈𝐷/𝑑⌉ times; each weight tile ⌈𝑊1𝑊2𝐵/𝑎𝑏ℎ⌉ times; and write

each ofmap once in a single-layer-based dataflow. Because psums should be written to the

DRAM and then read back for accumulation, the required amount of DRAM access (DA)

for each ofmap is 2(⌈𝐶1/𝑔⌉ − 1). Therefore, the tiling parameters can be determined ac-

cording to the desired data reuse strategy. For example, if the tiling parameter (𝑑) is cho-

sen to be D (i.e., the corresponding part of all the filters are fetched to on-chip memory),

the off-chip memory access of each ifmap can be reduced to be 1, which indicates that the

ifmap reuse efficiency is maximized.

To determine the optimal data reuse strategy with proper tiling parameters,

SmartShuttle, a layer-wise data reuse exploration method, was proposed in [11]. Unlike

previous approaches [10,13–15], in which all the layers adopt the same data reuse strategy,

SmartShuttle can adaptively select the most suitable data reuse strategy for each layer. In

addition to SmartShuttle, the recent works [24,25,27] also belong to adaptive layer-wise

data reuse approaches. They, however, still fall into the category of single-layer-based

data reuse, in which no matter how large the on-chip memory is, the generated ofmap of

the current layer should be stored to off-chip memory and then read back as the input of

the next layer. As the networks grow deeper, the amount of this shuttling data increases,

leading to larger energy consumption.

Layer fusion was proposed in [12] to maximize the feature map reuse in consecutive

layers, which is suitable for modern networks with networks-in-network and 1 × 1 convo-

lutions. However, a large amount of on-chip memory is generally required; for instance,

the accelerator presented in [18] has 2 MB on-chip memory for MobileNet V1 with 2-layer

fusion. An adaptive weight reuse method for shortcut layer data was proposed in [28],

following from SmartShuttle, but was trying to solve the problem in SmartShuttle in

which the amount of DRAM access cannot be further reduced even with large on-chip

memory. As a result, as with layer fusion [12], significantly large on-chip memory (in sev-

eral MBs) is required, which limits the utilization of these inter-layer reuse-based methods

in low-cost memory-constrained designs. Moreover, few works have been presented with

precise mathematical analysis to obtain the optimal dataflow for layer-fusion-based data

reuse, which motivates us to explore the opportunity of inter-layer data reuse for mini-

mizing off-chip memory access.

3. Inter-Layer Data Reuse

Unlike with single-layer-based data reuse approaches, to improve the efficiency of

data reuse across layers we should carefully study the data dependency in the basic mod-

ule of each network model. Some typical modules in modern networks, such as the normal

CONV layers in AlexNet and VGG, the Inception modules in GoogLeNet, and the

Ifmap

W2,1

C1

D1,1

W1

W2

W1,1 d

ofmap

b1

d
aa1

g

g

S1,1 X S1,1

D1,1

b

B
h

Figure 1. Tiling of single-layer-based convolution.

Table 1. Shape parameters of conv layers.

Shape Parameter Description

W1,i/W2,i Ifmap width/height in the ith layer
W1/W2 Ofmap width/height of last layer

B Batch size
C1 Input channels
C Dimension of Sublayers (Cardinality)

Di,j Filters of the ith layer in the jth sublayer
Si,j × Si,j Filter size of the ith layer in the jth sublayer

Pooli Pooling stride of ith layer
Pi Stride of the ith layer

Electronics 2022, 11, 2356 4 of 16

Table 2. Tiling parameters of dataflow.

Tiling Parameter Description

a,b Weight/height of on-chip ofmap
h On-chip batch size
g On-chip ifmap channels
c On-chip sublayers
d On-chip filters in the first layer
e On-chip filters in the second layer

To move huge amounts of data from a large memory (i.e., off-chip DRAM) into a
small one (i.e., an on-chip global buffer), we typically partition the data into very small
tiles. According to the tiling parameters shown in Table 2, without any data reuse, we
need to read each ifmap tile dD/de times; each weight tile dW1W2B/abhe times; and write
each ofmap once in a single-layer-based dataflow. Because psums should be written to
the DRAM and then read back for accumulation, the required amount of DRAM access
(DA) for each ofmap is 2(dC1/ge − 1). Therefore, the tiling parameters can be determined
according to the desired data reuse strategy. For example, if the tiling parameter (d) is
chosen to be D (i.e., the corresponding part of all the filters are fetched to on-chip memory),
the off-chip memory access of each ifmap can be reduced to be 1, which indicates that the
ifmap reuse efficiency is maximized.

To determine the optimal data reuse strategy with proper tiling parameters, SmartShut-
tle, a layer-wise data reuse exploration method, was proposed in [11]. Unlike previous
approaches [10,13–15], in which all the layers adopt the same data reuse strategy, SmartShut-
tle can adaptively select the most suitable data reuse strategy for each layer. In addition
to SmartShuttle, the recent works [24,25,27] also belong to adaptive layer-wise data reuse
approaches. They, however, still fall into the category of single-layer-based data reuse, in
which no matter how large the on-chip memory is, the generated ofmap of the current layer
should be stored to off-chip memory and then read back as the input of the next layer. As
the networks grow deeper, the amount of this shuttling data increases, leading to larger
energy consumption.

Layer fusion was proposed in [12] to maximize the feature map reuse in consecutive
layers, which is suitable for modern networks with networks-in-network and 1 × 1 convo-
lutions. However, a large amount of on-chip memory is generally required; for instance,
the accelerator presented in [18] has 2 MB on-chip memory for MobileNet V1 with 2-layer
fusion. An adaptive weight reuse method for shortcut layer data was proposed in [28],
following from SmartShuttle, but was trying to solve the problem in SmartShuttle in which
the amount of DRAM access cannot be further reduced even with large on-chip memory.
As a result, as with layer fusion [12], significantly large on-chip memory (in several MBs) is
required, which limits the utilization of these inter-layer reuse-based methods in low-cost
memory-constrained designs. Moreover, few works have been presented with precise
mathematical analysis to obtain the optimal dataflow for layer-fusion-based data reuse,
which motivates us to explore the opportunity of inter-layer data reuse for minimizing
off-chip memory access.

3. Inter-Layer Data Reuse

Unlike with single-layer-based data reuse approaches, to improve the efficiency of data
reuse across layers we should carefully study the data dependency in the basic module of
each network model. Some typical modules in modern networks, such as the normal CONV
layers in AlexNet and VGG, the Inception modules in GoogLeNet, and the Bottleneck blocks
in ResNet and Network-in-Neuron in ResNext, are shown in Figure 2, in which, if two or
more consecutive layers can be fused together, the corresponding off-chip memory access
of the inter-layer feature maps can be eliminated. Moreover, if the input feature maps of
the grouped convolutional layers, such as the Inception module and Network-in-Neuron
shown in Figure 2c,d, can be reused, the off-chip memory access can also be reduced. Thus,

Electronics 2022, 11, 2356 5 of 16

without loss of generality, grouped convolutional layers, such as those in the Inception
module and Network-in-Neuron, are used as the basic module for exploration in our work
as it can be easily transformed to other ones, such as the normal CONV layers in VGG and
the Bottleneck block in ResNet.

Electronics 2022, 11, x FOR PEER REVIEW 5 of 17

Bottleneck blocks in ResNet and Network-in-Neuron in ResNext, are shown in Figure 2,
in which, if two or more consecutive layers can be fused together, the corresponding off-
chip memory access of the inter-layer feature maps can be eliminated. Moreover, if the
input feature maps of the grouped convolutional layers, such as the Inception module and
Network-in-Neuron shown in Figure 2c,d, can be reused, the off-chip memory access can
also be reduced. Thus, without loss of generality, grouped convolutional layers, such as
those in the Inception module and Network-in-Neuron, are used as the basic module for
exploration in our work as it can be easily transformed to other ones, such as the normal
CONV layers in VGG and the Bottleneck block in ResNet.

Figure 2. Typical modules in modern networks: (a) normal CONV layers such as those in AlexNet
and VGG; (b) Bottleneck block in ResNet; (c) Inception module in GoogLeNet; and (d) Network-in-
Neuron in ResNeXt.

According to the discussion on single-layer-based dataflow, the optimal dataflow
problem can be thought of as how to partition ifmaps and weights into small tiles for
efficient data reuse so as to minimize the total amount of off-chip memory access with the
limited capacity of on-chip memory. As with the single-layer-based dataflow shown in
Figure 1, the dataflow of the fused 2-layer (F2L) is shown in Figure 3, in which there are
 sublayers (i.e., Cardinality), and each of them has two layers, indicated as Layer 1 and ܥ
Layer 2. It is worth noting that although this paper mainly discusses data reuse in two
fused CONV layers, the idea of the proposed analysis and exploration can be extended to
the cases with more CONV layers being fused together in a similar way and can also be
applied to be combined with CONV layers with FC layers and pooling layers.

Figure 2. Typical modules in modern networks: (a) normal CONV layers such as those in AlexNet and
VGG; (b) Bottleneck block in ResNet; (c) Inception module in GoogLeNet; and (d) Network-in-Neuron
in ResNeXt.

According to the discussion on single-layer-based dataflow, the optimal dataflow
problem can be thought of as how to partition ifmaps and weights into small tiles for
efficient data reuse so as to minimize the total amount of off-chip memory access with the
limited capacity of on-chip memory. As with the single-layer-based dataflow shown in
Figure 1, the dataflow of the fused 2-layer (F2L) is shown in Figure 3, in which there are
C sublayers (i.e., Cardinality), and each of them has two layers, indicated as Layer 1 and
Layer 2. It is worth noting that although this paper mainly discusses data reuse in two
fused CONV layers, the idea of the proposed analysis and exploration can be extended to
the cases with more CONV layers being fused together in a similar way and can also be
applied to be combined with CONV layers with FC layers and pooling layers.

As shown in Figure 3, in order to generate the W1 ×W2 ofmap values of Layer 2, with
the consideration of zero-padding, the required ifmaps of Layer 2 (i.e., the ofmap of Layer 1)
need to be (P2W1·Pool2 + max(S2,x)− P2)× (P2W2·Pool2 + max(S2,x)− P2), which is repre-
sented as W1,2×W2,2 in the figure, and consequently, the required ifmaps of Layer 1 denoted
as W1,1×W2,1 should be (P1W1,1·Pool1 +max(S1,x)− P1)× (P1W2,1·Pool1 +max(S1,x)− P1). If
these ifmaps can be fetched in an optimal way, the corresponding off-chip memory access
of the inter-layer ofmap/ifmap can be eliminated in F2L. Moreover, because all the sub-
layers have the same ifmap, the ifmap movement can be reduced through exploring the
parallelism of the sublayers under the constraint of the on-chip memory capacity. Because
the off-chip memory access of the ifmap data of Layer 1 depends on the ratio of the total
amount of weights of the layer to the size of the weight tiles, without proper data reuse,
each ifmap and each weight need to be read from the off-chip memory dCD1/cde and
dW1W2B/abhe times, respectively.

Electronics 2022, 11, 2356 6 of 16Electronics 2022, 11, x FOR PEER REVIEW 6 of 17

Figure 3. Tiling and dataflow in inter-layer reuse.

As shown in Figure 3, in order to generate the 𝑊1 ×𝑊2 ofmap values of Layer 2,

with the consideration of zero-padding, the required ifmaps of Layer 2 (i.e., the ofmap of

Layer 1) need to be (𝑃2𝑊1 ∙ 𝑃𝑜𝑜𝑙2 +max(𝑆2,𝑥) − 𝑃2) × (𝑃2𝑊2 ∙ 𝑃𝑜𝑜𝑙2 +max (𝑆2,𝑥) − 𝑃2) ,

which is represented as 𝑊1,2 ×𝑊2,2 in the figure, and consequently, the required ifmaps

of Layer 1 denoted as 𝑊1,1 ×𝑊2,1 should be (𝑃1𝑊1,1 ∙ 𝑃𝑜𝑜𝑙1 +max (𝑆1,𝑥) − 𝑃1) × (𝑃1𝑊2,1 ∙

𝑃𝑜𝑜𝑙1 +max (𝑆1,𝑥) − 𝑃1). If these ifmaps can be fetched in an optimal way, the correspond-

ing off-chip memory access of the inter-layer ofmap/ifmap can be eliminated in F2L. More-

over, because all the sublayers have the same ifmap, the ifmap movement can be reduced

through exploring the parallelism of the sublayers under the constraint of the on-chip

memory capacity. Because the off-chip memory access of the ifmap data of Layer 1 de-

pends on the ratio of the total amount of weights of the layer to the size of the weight tiles,

without proper data reuse, each ifmap and each weight need to be read from the off-chip

memory ⌈𝐶𝐷1/𝑐𝑑⌉ and ⌈𝑊1𝑊2𝐵/𝑎𝑏ℎ⌉ times, respectively.

Unlike the existing layer-fusion-based methods [12,18], in which only fmap reuse is

considered, the proposed strategies for the various data reuse in the fused 2-layer are il-

lustrated in the following. Here, we assume that the ifmap tile of Layer 1 should cover all

the 𝐶1 channels, as shown in Figure 3; thus, the size of an ifmap tile can be expressed as

𝑎1𝑏1𝐶1.

1 Ifmap reuse in fused two layers

We first introduce the accurate mathematical analysis for ifmap reuse in the fused 2-

layer (𝒊𝒓𝟐𝒍). The strategy of 𝒊𝒓𝟐𝒍 is to store as many ifmaps of Layer 1 as possible and to

ensure that the inter-layer feature maps and all the generated psums can be stored in a

global buffer, while the rest of the global buffer can be used to store as many weights as

possible to increase the degree of parallelism and speed up the operation.

As with the existing single-layer-based data reuse schemes, 𝒊𝒓𝟐𝒍 also has four

stages: (1) the ifmaps and weights of Layer 1 are loaded from the off-chip memory (i.e.,

DRAM) to an on-chip global buffer; (2) the ifmaps and weights of Layer 1 are transferred

to a local buffer, and the convolutional computations are conducted by fully reusing the

on-chip ifmaps to generate the ofmap values of Layer 1 (i.e., the ifmap values of Layer 2);

(3) the ofmap of Layer 1 is saved on-chip, and the required weights of Layer 2 for the

generated ofmaps of Layer 1 are read; and (4) the ofmap values of Layer 2 are generated

and written to the off-chip DRAM.

The corresponding pseudo-code of 𝒊𝒓𝟐𝒍 is shown in Figure 4a, where 𝑁𝑇𝑖𝑓𝑚𝑎𝑝 =

𝑊1𝑊2𝐵/𝑎𝑏ℎ. The pseudo-code of 𝒊𝒓𝟐𝒍 contains four loops, and the outermost loop shows

how the ifmaps are reused in two fused layers; this indicates that each ifmap of Layer 1

Sublayer 1

…Ifmap of Layer 1

fmap layer1 to Layer 2

Weight of Layer 1
S1,x X S1,x, stride P1

Weight of Layer 2
S2,x X S2,x, stride P2

W2,1

C1

D1,1

W2,2D

D

D2,1

Sublayer C

D2C

W1
W2

W1,1
d

c

W1,2
d

e

f=c
ab e

C

d

ofmap of Layer 2

D1,C

D2,C

a2

a1

b2

b1

B
h

…
…

f=c

Figure 3. Tiling and dataflow in inter-layer reuse.

Unlike the existing layer-fusion-based methods [12,18], in which only fmap reuse
is considered, the proposed strategies for the various data reuse in the fused 2-layer are
illustrated in the following. Here, we assume that the ifmap tile of Layer 1 should cover
all the C1 channels, as shown in Figure 3; thus, the size of an ifmap tile can be expressed
as a1b1C1.

• Ifmap reuse in fused two layers

We first introduce the accurate mathematical analysis for ifmap reuse in the fused
2-layer (ir2l). The strategy of ir2l is to store as many ifmaps of Layer 1 as possible and to
ensure that the inter-layer feature maps and all the generated psums can be stored in a
global buffer, while the rest of the global buffer can be used to store as many weights as
possible to increase the degree of parallelism and speed up the operation.

As with the existing single-layer-based data reuse schemes, ir2l also has four stages:
(1) the ifmaps and weights of Layer 1 are loaded from the off-chip memory (i.e., DRAM) to
an on-chip global buffer; (2) the ifmaps and weights of Layer 1 are transferred to a local
buffer, and the convolutional computations are conducted by fully reusing the on-chip
ifmaps to generate the ofmap values of Layer 1 (i.e., the ifmap values of Layer 2); (3) the
ofmap of Layer 1 is saved on-chip, and the required weights of Layer 2 for the generated
ofmaps of Layer 1 are read; and (4) the ofmap values of Layer 2 are generated and written
to the off-chip DRAM.

The corresponding pseudo-code of ir2l is shown in Figure 4a, where
NTi f map = W1W2B/abh. The pseudo-code of ir2l contains four loops, and the outermost
loop shows how the ifmaps are reused in two fused layers; this indicates that each ifmap of
Layer 1 needs to be loaded only once, and the ofmaps of Layer 1 (i.e., ifmaps of Layer 2)
are kept on-chip for inter-layer feature map reuse.

In ir2l, an ifmap tile of Layer 1 with the size of a1b1C1h is first read from the DRAM.
After transmitting the ifmap tile into the on-chip global buffer, one filter of the jth sublayer
in Layer 1, with the size of S1,xS1,xC1 where x = j, is fetched. With these ifmaps and
filters, the corresponding ofmap data of Layer 1 (i.e., the ifmap of Layer 2 with the size of
a2b2h) can be generated. Then, the corresponding filers of Layer 2 will be read from the
DRAM. Because only one channel of the imaps of Layer 2 is on-chip, only one channel in
the filter of the jth sublayer in Layer 2 (in size of S2,x × S2,x) is required to be fetched for the
convolutional computations. Consequently, by using the on-chip ifmaps and weights, the
corresponding psum of Layer 2 with the size of abh can be generated and saved on-chip.
Then, by reading only one new channel of the next filter of Layer 2 from the DRAM, another
psum of Layer 2 can be generated by using the already on-chip ifmaps. Finally, the abhD2,j

Electronics 2022, 11, 2356 7 of 16

psums of Layer 2 can be generated in this loop, and the corresponding on-chip buffer should
be reserved for the storage of these psums for further accumulation. When the on-chip
ifmaps of Layer 2 have been completely reused, they are discarded, and new filters of Layer
1 are fetched for the generation of the new ofmaps of Layer 1. After the corresponding
abhD2,j psums of Layer 2 have been fully accumulated, the results are transmitted to the
DRAM as the ofmap tile in the jth sublayer. When the on-chip ifmaps of Layer 1 have been
fully reused, the next ifmap tile is loaded and the above steps are repeated.

Electronics 2022, 11, x FOR PEER REVIEW 7 of 17

needs to be loaded only once, and the ofmaps of Layer 1 (i.e., ifmaps of Layer 2) are kept
on-chip for inter-layer feature map reuse.

In ࢘࢏૛࢒, an ifmap tile of Layer 1 with the size of ܽଵܾଵܥଵℎ is first read from the
DRAM. After transmitting the ifmap tile into the on-chip global buffer, one filter of the jth
sublayer in Layer 1, with the size of ଵܵ,௫ ଵܵ,௫ܥଵ where ݔ = ݆, is fetched. With these ifmaps
and filters, the corresponding ofmap data of Layer 1 (i.e., the ifmap of Layer 2 with the
size of ܽଶܾଶℎ) can be generated. Then, the corresponding filers of Layer 2 will be read
from the DRAM. Because only one channel of the imaps of Layer 2 is on-chip, only one
channel in the filter of the jth sublayer in Layer 2 (in size of ܵଶ,௫ × ܵଶ,௫) is required to be
fetched for the convolutional computations. Consequently, by using the on-chip ifmaps
and weights, the corresponding psum of Layer 2 with the size of ܾܽℎ can be generated
and saved on-chip. Then, by reading only one new channel of the next filter of Layer 2
from the DRAM, another psum of Layer 2 can be generated by using the already on-chip
ifmaps. Finally, the ܾܽℎܦଶ,௝ psums of Layer 2 can be generated in this loop, and the cor-
responding on-chip buffer should be reserved for the storage of these psums for further
accumulation. When the on-chip ifmaps of Layer 2 have been completely reused, they are
discarded, and new filters of Layer 1 are fetched for the generation of the new ofmaps of
Layer 1. After the corresponding ܾܽℎܦଶ,௝ psums of Layer 2 have been fully accumulated,
the results are transmitted to the DRAM as the ofmap tile in the jth sublayer. When the
on-chip ifmaps of Layer 1 have been fully reused, the next ifmap tile is loaded and the
above steps are repeated.

(a) (b)

(c) (d)

Figure 4. Pseudo-code of various data reuse strategies in fused 2-layers: (a) ࢘࢏૛࢒, (b) ࢘࢝૛࢜࢒૚, (c)
 .࢒૛࢘࢖ ૛, and (d)࢜࢒૛࢘࢝

Figure 4. Pseudo-code of various data reuse strategies in fused 2-layers: (a) ir2l, (b) wr2lv1,
(c) wr2lv2, and (d) pr2l.

For efficient ifmap reuse in the fused layers, it is desired that both the required
ifmap data of Layer 1 and the corresponding psum data of Layer2 should be kept on-
chip. Let the ifmap tile of Layer 1 be in the size of a1b1C1 and thus with the consid-
eration of padding a1 × b1 = (P1(P2a·Pool2 + max(S2,x)− P2)·Pool1 + max(S1,x)− P1)×
(P1(P2b·Pool2 + max(S2,x)− P2)·Pool1 + max(S1,x)− P1). It is worth noting that here
max(S1,x) and max(S2,x) indicate the largest filters in Layer 1 and 2, respectively, which is
because the filter size in grouped convolution might be different, as with that in GoogLeNet,
as shown in Figure 2c. As the transaction frequency of the weights depends on the ratio of
the on-chip ifmap data to the total ifmap data of Layer 1, c, d, and e can even be set as 1 for
the saving of the required on-chip resources for the storage of ifmaps and psums.

Assuming that the number of output channels of a sublayer is D2,x and that max(D2,x)
indicates the maximum output channels among all the sublayers, the global buffer must
be large enough to store abh·max(D2,x) psums. In addition, it is necessary to store a1b1C1h
ifmaps, a2b2h inter-layer feature maps (fmaps) from Layer 1 to Layer 2, where
a2b2 = (Pa + max(S2,x)− P)(Pb + max(S2,x)− P) with the consideration of padding, and

Electronics 2022, 11, 2356 8 of 16

the maximum weights of a layer in specific channels among all the sublayers. Therefore, the
total amount of off-chip DRAM access in ir2l (DAir2l) for all the ifmaps/weights/ofmaps is:

DAir2l =
BW1W2

abh

(
C1

C

∑
x=1

D1,xS2
1,x +

C

∑
x=1

D1,xD2,xS2
2,x

)
+

BW1W2C1

ab
a1b1 +

C

∑
x=1

D2,xW1W2B (1)

and the required on-chip global buffer capacity is:

Scir2l = a1b1C1h + a2b2h + abhD2,x + max(C1S2
1,x, S2

2,x) (2)

• Weight reuse in fused two layers

Similarly, weight reuse in the fused 2-layer (wr2l) is also possible. However, the
capacity of the on-chip memory will affect the dataflow, depending on whether the weights
of more than one sublayer can be stored on-chip or not. To store all the weights of more
than one sublayer requires a large amount of global buffer capacity, but if it is possible, the
ofmap values of Layer 2 can be generated by using only the on-chip data, which can help
to save the amount of global buffer used for psum storage. On the other hand, if only a
part of the weights of one sublayer are stored on-chip, more on-chip memory is required
to store the intermediate psums. As networks become more diverse, we cannot expect to
obtain satisfying results by storing all the required weights on-chip, especially for the cases
in the fused layers. Therefore, the accurate analysis and formulation of off-chip memory
access with given on-chip memory capacity are provided in the following.
Case 1: Weights of more than one sublayer can be stored on-chip (wr2lv1)

The points of this data reuse strategy fall into two folds: to store as many weights as
possible in the global buffer and to save as many ifmaps of Layer 1 as possible on-chip. In
this case, if the weights of at least one sublayer are completely stored on-chip, the ofmaps
can be generated by only using the on-chip data. Although the storage of these weights is
required, the total amount of on-chip memory used for the psum storage might be reduced.

The pseudo-code of wr2lv1 is shown in Figure 4b. There are five loops in wr2lv1, and
the outermost loop shows how the weights of the two fused layers are reused, in which
each weight only needs to be fetched once. Initially, the C1 ∑c

x=1 D1,xS2
1,x weights of Layer 1

and the ∑c
x=1 D1,xD2,xS2

2,x weights of Layer 2 are fetched from the off-chip memory. After
that, the a1b1C1h ifmaps of Layer 1 are also fetched. Because the frequency of the data
transaction to read in the ifmaps depends on the on-chip weights and each weight should
be read from the off-chip memory only once in weight-reuse-based dataflow, the parameter
h can therefore be set as small as 1. However, if a and b are too small, W1W2a1b1/ab might
be greater than W1W2, which slightly influences the off-chip memory access, and the saved
on-chip memory can be used to store more weights for further DRAM access reduction.

In general, the global buffer needs to store C1 ∑c
x=1 D1,xS2

1,x weights of Layer 1 and
∑c

x=1 D1,xD2,xS2
2,x weights of Layer 2; a1b1C1h ifmaps of Layer 1; and the a2b2h inter-

layer fmaps. Therefore, the required amount of off-chip memory access of wr2lv1 can be
expressed as

DAwr2lv1 =

(
C1

C

∑
x=1

D1,xS2
1,x +

C

∑
x=1

D1,xD2,xS2
2,x

)
+

BW1W2C1C
abc

a1b1 +
C

∑
x=1

D2,xW1W2B (3)

and the required capacity of the on-chip global buffer is

Sciwr2lv1 = a1b1C1h + a2b2h +

(
C1

c

∑
x=1

D1,xS2
1,x +

c

∑
x=1

D1,xD2,xS2
2,x

)
(4)

Case 2: Weights of less than one sublayer can be stored on-chip (wr2lv2)
The strategy of wr2lv2 is to store as many weights in the global buffer as possible,

while keeping enough storage space for the intermediate generated psums of Layer 2 and
storing as many ifmaps of Layer 1 as possible. In this case, because the on-chip global

Electronics 2022, 11, 2356 9 of 16

buffer only stores weights of less than one sublayer, it needs to keep sufficiently large global
buffer resources to store the corresponding psums to avoid off-chip memory accesses of
the psums. The pseudo-code of wr2lv2 is shown in Figure 4c.

In this case, the global buffer needs to store C1dS2
1,x weights for Layer 1; dD2,xS2

2,x
weights for Layer 2; the a1b1C1h ifmaps; the a2b2h inter-layer fmaps; the and BW1W2D2,x
psums; therefore, the amount of DRAM accesses and the capacity of the global buffer of
wr2lv2 are:

DAwr2lv2 =

(
C1

C

∑
i=1

D1,xS2
1,x +

C

∑
i=1

D1,xD2,xS2
2,x

)
+

BW1W2C1

abd

C

∑
i=1

D1,xa1b1 +
C

∑
x=1

D2,xW1W2B (5)

and
Scwr2lv2 = a1b1C1h + a2b2h + BW1W2D2,x +

(
C1dS2

1,x + dD2,xS2
2,x

)
(6)

• Psum reuse in fused two layers

The psum reuse in fused 2-layer (pr2l) is to maximize the reuse of psums. Storing
the relevant data of the integral sublayers can directly generate ofmaps of Layer 2, which
makes it possible not to store additional psums in a global buffer. Therefore, psum reuse is
only applied for the case in which weights of more than one sublayer can be stored on-chip.
The corresponding pseudo-code of pr2l is shown in Figure 4d.

In pr2l, the C1dS2
1,x weights of Layer 1 and the dD2,xS2

2,x weights of Layer 2 should
be stored in a global buffer; they are read from the off-chip memory W1W2B/abh times.
The amount of on-chip ifmaps is a1b1C1h, and the same ifmaps of Layer 1 need to be read
from the off-chip memory C times. Therefore, in pr2l, no psums need to communicate with
the off-chip memory, while both the weights and the ifmaps need to be read several times.
Thus, the tiling size should be carefully selected for off-chip memory access minimization.
Generally, the global buffer needs to store C1dS2

1,x weights for Layer 1; dD2,xS2
2,x weights

for Layer 2; a1b1C1h ifmaps of Layer 1; a2b2h inter-layer fmaps; and abhD2,x psums. Thus,
the required DRAM access (DApr2l) and on-chip memory capacity (Scpr2l) are:

DApr2l =
BW1W2

abh

(
C1

C

∑
x=1

D1,xS2
1,x +

C

∑
x=1

D1,xD2,xS2
2,x

)
+

BW1W2C1C
ab

a1b1 +
C

∑
x=1

D2,xW1W2B (7)

and
Scpr2l = a1b1C1h + a2b2h + abhD2,x +

(
C1dS2

1,x + dD2,xS2
2,x

)
(8)

4. Optimal Dataflow Exploration for Hybrid Data Reuse

Up till now, the comprehensive mathematical formulation for the inter-layer data
reuse approaches have been derived, which makes it possible for us to conduct a design
space exploration to determine the optimal inter-layer data reuse strategy with the cor-
responding tiling parameters for minimizing off-chip memory access while meeting the
capacity constraint of on-chip memory. The optimization problem for inter-layer data reuse
is formulated as follows:

DA f 2l = min
(

DAir2l , DAwr2lv1, DAwr2lv2, DApr2l

)
subject to


Scir2l ≤ SRAMc

Scwr2lv1 ≤ SRAMc
Scwr2lv2 ≤ SRAMc
Scpr2l ≤ SRAMc

(9)

where DA f 2l and SRAMc represent the minimum off-chip memory access in F2L and the
maximum capacity of the global buffer in a specified DNN accelerator, respectively.

Considering the diversity of neural networks, we extend the exploration space for
further optimization, and the improved formulation to determine the optimal data reuse

Electronics 2022, 11, 2356 10 of 16

strategy from single-layer-based and inter-layer-based data reuse approaches is given as
below, with the concept of this hybrid data reuse approach shown in Figure 5.

DAoptimal = min
(

DA f 2l , DA2sl

)
subject to

{
Sc f 2l ≤ SRAMc

Sc2sl ≤ SRAMc
(10)

where DA f 2l and DA2sl represent the minimum off-chip memory access required in inter-
layer data reuse (i.e., fused 2-layers) and that using the single-layer-based data reuse,
respectively. In the exploration of single-layer-based data reuse approaches, ir, wr, and
pr are explored layer-by-layer; thus, we can adaptively determine the optimal data reuse
strategy for each layer. According to the above formulas, we can determine the optimal
data reuse strategy with the corresponding tiling parameters 〈a, b, c, d, e, g, h〉 from single-
layer-based and inter-layer-based data reuse approaches for DNN accelerators under the
constraint of on-chip storage capacity.

Electronics 2022, 11, x FOR PEER REVIEW 10 of 17

space exploration to determine the optimal inter-layer data reuse strategy with the corre-
sponding tiling parameters for minimizing off-chip memory access while meeting the ca-
pacity constraint of on-chip memory. The optimization problem for inter-layer data reuse
is formulated as follows: 𝐷𝐴௙ଶ௟ = min൫𝐷𝐴௜௥ଶ௟, 𝐷𝐴௪௥ଶ௟௩ଵ, 𝐷𝐴௪௥ଶ௟௩ଶ, 𝐷𝐴௣௥ଶ௟൯

subject to ⎩⎪⎨
⎪⎧ 𝑆௖௜௥ଶ௟ ൑ 𝑆𝑅𝐴𝑀௖𝑆௖௪௥ଶ௟௩ଵ ൑ 𝑆𝑅𝐴𝑀௖𝑆௖௪௥ଶ௟௩ଶ ൑ 𝑆𝑅𝐴𝑀௖𝑆௖௣௥ଶ௟ ൑ 𝑆𝑅𝐴𝑀௖

(9)

where 𝐷𝐴௙ଶ௟ and 𝑆𝑅𝐴𝑀௖ represent the minimum off-chip memory access in F2L and the
maximum capacity of the global buffer in a specified DNN accelerator, respectively.

Considering the diversity of neural networks, we extend the exploration space for
further optimization, and the improved formulation to determine the optimal data reuse
strategy from single-layer-based and inter-layer-based data reuse approaches is given as
below, with the concept of this hybrid data reuse approach shown in Figure 5. 𝐷𝐴௢௣௧௜௠௔௟ = min൫𝐷𝐴௙ଶ௟, 𝐷𝐴ଶ௦௟൯ subject to ቊ𝑆௖௙ଶ௟ ൑ 𝑆𝑅𝐴𝑀௖𝑆௖ଶ௦௟ ൑ 𝑆𝑅𝐴𝑀௖

(10)

where 𝐷𝐴௙ଶ௟ and 𝐷𝐴ଶ௦௟ represent the minimum off-chip memory access required in in-
ter-layer data reuse (i.e., fused 2-layers) and that using the single-layer-based data reuse,
respectively. In the exploration of single-layer-based data reuse approaches, 𝒊𝒓, 𝒘𝒓, and 𝒑𝒓 are explored layer-by-layer; thus, we can adaptively determine the optimal data reuse
strategy for each layer. According to the above formulas, we can determine the optimal
data reuse strategy with the corresponding tiling parameters 〈𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑔, ℎ〉 from sin-
gle-layer-based and inter-layer-based data reuse approaches for DNN accelerators under
the constraint of on-chip storage capacity.

(a) (b) (c)

Figure 5. Concepts of various dataflows: (a) single-layer data reuse, (b) layer fusion in [18], and (c)
proposed hybrid reuse.

In our work, the optimal data reuse strategy with the corresponding tiling parame-
ters are obtained through the optimal dataflow exploration with a brute force search. In
the single-layer-based exploration, in order to minimize the total amount of off-chip
memory access, all the possible data reuse strategies with the corresponding tiling sizes
will be explored. Because the exploration is conducted with the given constraints, the de-
sign space is not large, and the exploration can be finished in seconds. On the other hand,

Figure 5. Concepts of various dataflows: (a) single-layer data reuse, (b) layer fusion in [18], and
(c) proposed hybrid reuse.

In our work, the optimal data reuse strategy with the corresponding tiling parameters
are obtained through the optimal dataflow exploration with a brute force search. In the
single-layer-based exploration, in order to minimize the total amount of off-chip memory
access, all the possible data reuse strategies with the corresponding tiling sizes will be
explored. Because the exploration is conducted with the given constraints, the design
space is not large, and the exploration can be finished in seconds. On the other hand,
with regard to the inter-layer-based data reuse exploration, it will become much more
complex because we need to consider how many, and which, layers can be fused. To reduce
the computation complexity, this work only focuses on the exploration of the optimal
dataflow of two consecutive convolutional layers. Unlike single-layer-based exploration,
inter-layer-based data reuse exploration is conducted in a back-and-forth way; thus, the
computation complexity is reduced.

Figure 5 illustrates the concept difference between the single-layer-based dataflow, the
layer-fusion approach, and the proposed optimal hybrid approach, from which it is clear
that as a more flexible approach, the proposed method promises to outperform the existing
methods with less off-chip memory access.

5. Evaluation and Comparison Results

With all the derived formulations as shown above, the proposed optimal dataflow
exploration method is built in Python, which takes (i) the layer information of a target
neural network and (ii) the memory constraint of a DNN accelerator as inputs. In our work,
the exploration is performed in an exhaustive search manner for minimum DRAM accesses.
As an output, the optimal dataflow with the corresponding tiling configurations will
be generated.

Electronics 2022, 11, 2356 11 of 16

To confirm the effectiveness of the proposed optimal exploration method over the
state-of-the-art exploration methods, we run evaluations by using three popular modern
networks, DenseNet-121 [5], ResNeXt-50 [4], and AlexNet [1]. It is worth noting that
because nonlinear operations, such as ReLU, pooling, and BN, can be performed on-chip,
this work only focuses on the exploration of the optimal dataflow of two consecutive
convolutional layers.

• DenseNet-121

DenseNet was proposed by Huang et al. in [5]. The basic module in DenseNet, the
DenseLayer in each Dense Block, is similar to the traditional modules, such as those in
AlexNet and VGG, except that each layer in DenseNet takes all the outputs of the preceding
layers as its input. Thus, the shape parameter C used in DenseNet is 1. The selection of
DenseNet is due to the high classification accuracy and its dense connection between layers.

As an example, Figure 6 shows the exploration results for the 8th DenseLayer in Dense
Block (2) and the last DenseLayer in Dense Block (4), both of which contain 1 × 1 and 3 ×
3 convolution layers, respectively, with the global buffer capacity ranging from 32 KB to
512 KB.

Electronics 2022, 11, x FOR PEER REVIEW 11 of 17

with regard to the inter-layer-based data reuse exploration, it will become much more
complex because we need to consider how many, and which, layers can be fused. To re-
duce the computation complexity, this work only focuses on the exploration of the optimal
dataflow of two consecutive convolutional layers. Unlike single-layer-based exploration,
inter-layer-based data reuse exploration is conducted in a back-and-forth way; thus, the
computation complexity is reduced.

Figure 5 illustrates the concept difference between the single-layer-based dataflow,
the layer-fusion approach, and the proposed optimal hybrid approach, from which it is
clear that as a more flexible approach, the proposed method promises to outperform the
existing methods with less off-chip memory access.

5. Evaluation and Comparison Results
With all the derived formulations as shown above, the proposed optimal dataflow

exploration method is built in Python, which takes (i) the layer information of a target
neural network and (ii) the memory constraint of a DNN accelerator as inputs. In our
work, the exploration is performed in an exhaustive search manner for minimum DRAM
accesses. As an output, the optimal dataflow with the corresponding tiling configurations
will be generated.

To confirm the effectiveness of the proposed optimal exploration method over the
state-of-the-art exploration methods, we run evaluations by using three popular modern
networks, DenseNet-121 [5], ResNeXt-50 [4], and AlexNet [1]. It is worth noting that be-
cause nonlinear operations, such as ReLU, pooling, and BN, can be performed on-chip,
this work only focuses on the exploration of the optimal dataflow of two consecutive con-
volutional layers.

4 DenseNet-121
DenseNet was proposed by Huang et al. in [5]. The basic module in DenseNet, the

DenseLayer in each Dense Block, is similar to the traditional modules, such as those in
AlexNet and VGG, except that each layer in DenseNet takes all the outputs of the preced-
ing layers as its input. Thus, the shape parameter ܥ used in DenseNet is 1. The selection
of DenseNet is due to the high classification accuracy and its dense connection between
layers.

As an example, Figure 6 shows the exploration results for the 8th DenseLayer in
Dense Block (2) and the last DenseLayer in Dense Block (4), both of which contain 1 × 1
and 3 × 3 convolution layers, respectively, with the global buffer capacity ranging from
32 KB to 512 KB.

(a) (b)

0.75

1.5

3

6

12

24

48

96

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

D
RA

M
 A

cc
es

s (
M

B)

Global Buffer Capacity (KB)

ir2l
pr2l
wr2lv2
wr2lv1
sigle-layer-based data reuse
inter-layer data reuse
hybrid data reuse

0.25

0.5

1

2

4

8

16

32

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

D
RA

M
 A

cc
es

s (
M

B)

Global Buffer Capacity (KB)

ir2l
pr2l
wr2lv2
wr2lv1
single-layer-based data reuse
inter-layer data reuse
hybrid data reuse

Figure 6. DRAM access of DenseNet-121 with various global buffer capacities: (a) the eighth 1 × 1,
3 × 3 convolution layers in Dense Block (2) and (b) the last 1 × 1, 3 × 3 convolution layers in Dense
Block (4).

For the results in Figure 6a, the ofmap size of Layer 2 (W1×W2) is 28× 28; the number
of input channels of Layer 1 (C1) is 336; the number of output channels (D1) of Layer 1
(i.e., the input channels of Layer 2) is 128; and the number of output channels (D2) of
Layer 2 is 32. The filter sizes of Layer 1 and Layer 2 (S1 × S1 and S2 × S2) are 1× 1 and
3× 3, respectively, and the batch size (B) is 3. For the results of the inter-layer data reuse
methods (i.e., ir2l, wr2lv1, wr2lv2, and pr2l), when the size of global buffer is smaller
than 64 KB, ir2l achieves the minimized off-chip memory access; while when the size
of global buffer is greater than 96 KB, wr2lv2 has the best result. This explains that the
proper inter-layer data reuse approach should be adaptively selected under the constraint
of the on-chip memory capacity. On the other hand, when compared to the best results
of single-layer-based data reuse (i.e., ir, pr, and wr), it is obvious that single-layer-based
data reuse always has less off-chip memory access than the inter-layer data reuse methods
when the on-chip memory is small, while the inter-layer data reuse methods have better
results if given a large on-chip memory. Due to the variations of the off-chip memory
access in modern neural networks, this confirms that we need to select the best approach
from the single-layer and inter-layer-based data reuse methods for minimizing off-chip
memory access.

Electronics 2022, 11, 2356 12 of 16

Figure 6b shows the results of the last DenseLayer in Dense Block (4) of DenseNet-121,
in which W1 = W2 = 7, and C1 = 988. Unlike the results shown in Figure 6a, the optimal
single-layer-based data reuse method always outperforms the inter-layer-based data reuse
methods for the cases when the global buffer capacity ranges from 32 KB to 512 KB. In
the case of inter-layer data reuse with two fused layers, for each ofmap value of Layer
2 the required ifmap values of Layer 1 in F2L should be 9× 9× 988, which is because
the filters in the two consecutive layers are 1× 1 and 3× 3, respectively. On the other
hand, in the single-layer-based reuse approaches, the corresponding ifmap size is only
7× 7× 988, as the filter size in Layer1 is 1× 1. Therefore, even though the single-layer-
based reuse approach needs to read and write 7× 7× 128 fmaps from Layer 1 to Layer 2,
the total amount of off-chip memory accesses is smaller than that of the inter-layer-based
methods. This example illustrates that, even though the global buffer is sufficiently large,
inter-layer-based reuse methods cannot always outperform the single-layer-based reuse
approaches. Therefore, it is necessary to perform accurate mathematical analysis on target
DNN models to determine the optimized dataflow (single-layer or inter-layer-based data
reuse strategy with the corresponding tiling parameters) layer by layer for off-chip memory
access minimization in designs with limited on-chip memory capacity.

Figure 7 provides the results on the total amount of off-chip memory access of
DenseNet-121 with k = 32 and θ = 0.5 [4] under the various capacity constraints of
the on-chip global buffer. To gain more insights, the results of the existing single-layer-
based exploration method, SmartShuttle [11], are also provided for comparisons. Consistent
with the results shown in Figure 6a, inter-layer reuse with two fused layers outperforms
single-layer reuse with SmartShuttle when the capacity of the on-chip memory is larger
than 128 KB, while single-layer reuse is suitable for DNN accelerators with small on-chip
memory. Moreover, the proposed hybrid data reuse approach outperforms single-layer
reuse with SmartShuttle and inter-layer reuse with two fused layers in all the cases, espe-
cially in the range that is close to the intersection of the two curves. With a 128 KB on-chip
memory, the hybrid data reuse can achieve 24.3% of off-chip memory access reduction
when compared to the two methods. For the capacity of on-chip memory ranging from
64 KB to 512 KB, the hybrid data reuse approach can achieve up 32.5% and 48.7% of off-chip
memory access reduction when compared to single-layer reuse and inter-layer reuse, re-
spectively. With larger on-chip memory, the benefit of the hybrid reuse over the inter-layer
reuse becomes less because most of the off-chip memory access reduction is achieved by
inter-layer data reuse, while the case shown in Figure 6b occupies only a small proportion.
With 1 MB on-chip memory, the hybrid reuse requires 0.7% less DRAM access than the
inter-layer reuse. It is worth noting that when the capacity of the on-chip memory becomes
large enough, the required amount of DRAM accesses would become saturated; however,
larger memory requires more power consumption.

Electronics 2022, 11, x FOR PEER REVIEW 13 of 17

layer reuse becomes less because most of the off-chip memory access reduction is achieved
by inter-layer data reuse, while the case shown in Figure 6b occupies only a small propor-
tion. With 1 MB on-chip memory, the hybrid reuse requires 0.7% less DRAM access than
the inter-layer reuse. It is worth noting that when the capacity of the on-chip memory
becomes large enough, the required amount of DRAM accesses would become saturated;
however, larger memory requires more power consumption.

Figure 7. DRAM access results of DenseNet-121 with various capacity constraints of on-chip
memory.

Comparison results with recent works such as [24,25] are presented in Figure 8 to-
gether with SmartShuttle [11]. From the figure, it can be observed that with the same
amount of on-chip memory, our method can achieve 46.7% and 51.6% of off-chip memory
access reduction when compared to the recent works [24,25], respectively.

Figure 8. DRAM access comparison of DenseNet-121 with previous works.

5 ResNeXt
The second result is on ResNeXt-50, a DNN model with 32 sublayers (ܥ = 32) and 50

layers [4]. ResNeXt is a homogeneous neural network with the Network-in-Neuron
shown in Figure 2d. Unlike DenseNet, there are 32 groups in the grouped convolution in
ResNeXt.

Figure 7. DRAM access results of DenseNet-121 with various capacity constraints of on-chip memory.

Electronics 2022, 11, 2356 13 of 16

Comparison results with recent works such as [24,25] are presented in Figure 8 together
with SmartShuttle [11]. From the figure, it can be observed that with the same amount
of on-chip memory, our method can achieve 46.7% and 51.6% of off-chip memory access
reduction when compared to the recent works [24,25], respectively.

Electronics 2022, 11, x FOR PEER REVIEW 13 of 17

layer reuse becomes less because most of the off-chip memory access reduction is achieved
by inter-layer data reuse, while the case shown in Figure 6b occupies only a small propor-
tion. With 1 MB on-chip memory, the hybrid reuse requires 0.7% less DRAM access than
the inter-layer reuse. It is worth noting that when the capacity of the on-chip memory
becomes large enough, the required amount of DRAM accesses would become saturated;
however, larger memory requires more power consumption.

Figure 7. DRAM access results of DenseNet-121 with various capacity constraints of on-chip
memory.

Comparison results with recent works such as [24,25] are presented in Figure 8 to-
gether with SmartShuttle [11]. From the figure, it can be observed that with the same
amount of on-chip memory, our method can achieve 46.7% and 51.6% of off-chip memory
access reduction when compared to the recent works [24,25], respectively.

Figure 8. DRAM access comparison of DenseNet-121 with previous works.

5 ResNeXt
The second result is on ResNeXt-50, a DNN model with 32 sublayers (ܥ = 32) and 50

layers [4]. ResNeXt is a homogeneous neural network with the Network-in-Neuron
shown in Figure 2d. Unlike DenseNet, there are 32 groups in the grouped convolution in
ResNeXt.

Figure 8. DRAM access comparison of DenseNet-121 with previous works.

• ResNeXt

The second result is on ResNeXt-50, a DNN model with 32 sublayers (C = 32) and
50 layers [4]. ResNeXt is a homogeneous neural network with the Network-in-Neuron
shown in Figure 2d. Unlike DenseNet, there are 32 groups in the grouped convolution
in ResNeXt.

The result of ResNeXt is shown in Figure 9, which is similar to that of DenseNet shown
in Figure 7. For ResNeXt, the intersection point of single-layer reuse with SmartShuttle and
inter-layer reuse with two fused layers exists when the capacity of the on-chip memory is
256 KB. When the on-chip memory becomes larger, inter-layer reuse outperforms single-
layer reuse, and up to 20.5% of the DRAM access can be reduced. Meanwhile, as with that
in DenseNet, the hybrid reuse can always obtain better results than both the single-layer
reuse with SmartShuttle and the inter-layer reuse with two fused layers. Although hybrid
reuse obtains the same results as inter-layer reuse does when the on-chip memory becomes
larger than 480 KB, for the capacity of on-chip memory ranging from 64 KB to 576 KB, the
hybrid data reuse approach can achieve up to 20.5% and 66.9% of off-chip memory access
reduction when compared to single-layer reuse and inter-layer reuse, respectively.

Electronics 2022, 11, x FOR PEER REVIEW 14 of 17

The result of ResNeXt is shown in Figure 9, which is similar to that of DenseNet
shown in Figure 7. For ResNeXt, the intersection point of single-layer reuse with
SmartShuttle and inter-layer reuse with two fused layers exists when the capacity of the
on-chip memory is 256 KB. When the on-chip memory becomes larger, inter-layer reuse
outperforms single-layer reuse, and up to 20.5% of the DRAM access can be reduced.
Meanwhile, as with that in DenseNet, the hybrid reuse can always obtain better results
than both the single-layer reuse with SmartShuttle and the inter-layer reuse with two
fused layers. Although hybrid reuse obtains the same results as inter-layer reuse does
when the on-chip memory becomes larger than 480 KB, for the capacity of on-chip
memory ranging from 64 KB to 576 KB, the hybrid data reuse approach can achieve up to
20.5% and 66.9% of off-chip memory access reduction when compared to single-layer re-
use and inter-layer reuse, respectively.

Figure 9. DRAM access results of ResNeXt-50 with various capacity constraints of on-chip
memory.

6 AlexNet
The third result is on AlexNet [1], a well-known early neural network that won the

ImageNet Challenge in 2012. Unlike DenseNet and ResNeXt shown above, the architec-
ture of AlexNet is irregular; for example, the first CONV layer has a large filter size (11 ×
11) with a stride of 4, and the 3 × 3 maximum pooling layers with a stride of 2 are added
after the 1st, 2nd, and 5th CONV layers, which makes it difficult for optimal dataflow
exploration. Therefore, to evaluate the applicability of the proposed method to diverse
neural networks, comparison results with SmartShuttle [11] and SuperSlash [19] are given
in Figure 10.

Figure 9. DRAM access results of ResNeXt-50 with various capacity constraints of on-chip memory.

Electronics 2022, 11, 2356 14 of 16

• AlexNet

The third result is on AlexNet [1], a well-known early neural network that won the
ImageNet Challenge in 2012. Unlike DenseNet and ResNeXt shown above, the architecture
of AlexNet is irregular; for example, the first CONV layer has a large filter size (11 × 11)
with a stride of 4, and the 3 × 3 maximum pooling layers with a stride of 2 are added
after the 1st, 2nd, and 5th CONV layers, which makes it difficult for optimal dataflow
exploration. Therefore, to evaluate the applicability of the proposed method to diverse
neural networks, comparison results with SmartShuttle [11] and SuperSlash [19] are given
in Figure 10.

Electronics 2022, 11, x FOR PEER REVIEW 15 of 17

Figure 10. DRAM access results of AlexNet with various capacity constraints of on-chip memory.

In Figure 10, SmartShuttle [11] is used as a baseline for comparison, and all the other
methods are normalized to it. SuperSlash [19] can obtain better results than SmartShuttle
in all the cases, while the proposed methods show significant improvements (up to 17.6%)
over SuperSlash when the global buffer capacity is greater than 480 KB. It should be men-
tioned that with a small global buffer such as one in which the size is less than 224 KB,
SuperSlash performs better than the proposed method with 0.2–9.5% of DRAM access re-
duction. This is because the proposed inter-data reuse method needs to store all the chan-
nels of the ifmaps of Layer 1 and one full channel of the filters of Layer 2, which results in
it having a smaller exploration space than SuperSlash does. Figure 11 shows the corre-
sponding comparison results for AlexNet with batch size = 1. With 288 KB SRAM, our
method can achieve 31.1% and 23.1% of off-chip memory access reduction when com-
pared to the recent works [22,23].

Figure 11. DRAM access comparison of AlexNet with previous works (batch size = 1).

The results of the three modern networks show the effectiveness of the proposed hy-
brid data reuse approach in minimizing off-chip memory access, where hybrid reuse out-
performs single-layer reuse and inter-layer reuse in accelerators with larger and smaller
on-chip memory, respectively. The existing edge devices supporting TinyML typically
contain less than 1 MB SRAM [6], and the on-chip memory capacity of modern DNN

Figure 10. DRAM access results of AlexNet with various capacity constraints of on-chip memory.

In Figure 10, SmartShuttle [11] is used as a baseline for comparison, and all the other
methods are normalized to it. SuperSlash [19] can obtain better results than SmartShuttle
in all the cases, while the proposed methods show significant improvements (up to 17.6%)
over SuperSlash when the global buffer capacity is greater than 480 KB. It should be
mentioned that with a small global buffer such as one in which the size is less than 224 KB,
SuperSlash performs better than the proposed method with 0.2–9.5% of DRAM access
reduction. This is because the proposed inter-data reuse method needs to store all the
channels of the ifmaps of Layer 1 and one full channel of the filters of Layer 2, which
results in it having a smaller exploration space than SuperSlash does. Figure 11 shows the
corresponding comparison results for AlexNet with batch size = 1. With 288 KB SRAM, our
method can achieve 31.1% and 23.1% of off-chip memory access reduction when compared
to the recent works [22,23].

The results of the three modern networks show the effectiveness of the proposed
hybrid data reuse approach in minimizing off-chip memory access, where hybrid reuse
outperforms single-layer reuse and inter-layer reuse in accelerators with larger and smaller
on-chip memory, respectively. The existing edge devices supporting TinyML typically
contain less than 1 MB SRAM [6], and the on-chip memory capacity of modern DNN
accelerators also ranges from 100 KB to 1 MB. Furthermore, it has been indicated by Han
et al. [8] that a common MCU usually has an SRAM smaller than 512 KB (for example,
Cortex M7 STM32H743 (512 KB), STM32F746 (320 KB), and STM32F412 (256 KB)). Therefore,
it is expected that these memory-constrained devices will benefit from the proposed hybrid
reuse approach for more energy efficient DNN processing.

Electronics 2022, 11, 2356 15 of 16

Electronics 2022, 11, x FOR PEER REVIEW 15 of 17

Figure 10. DRAM access results of AlexNet with various capacity constraints of on-chip memory.

In Figure 10, SmartShuttle [11] is used as a baseline for comparison, and all the other
methods are normalized to it. SuperSlash [19] can obtain better results than SmartShuttle
in all the cases, while the proposed methods show significant improvements (up to 17.6%)
over SuperSlash when the global buffer capacity is greater than 480 KB. It should be men-
tioned that with a small global buffer such as one in which the size is less than 224 KB,
SuperSlash performs better than the proposed method with 0.2–9.5% of DRAM access re-
duction. This is because the proposed inter-data reuse method needs to store all the chan-
nels of the ifmaps of Layer 1 and one full channel of the filters of Layer 2, which results in
it having a smaller exploration space than SuperSlash does. Figure 11 shows the corre-
sponding comparison results for AlexNet with batch size = 1. With 288 KB SRAM, our
method can achieve 31.1% and 23.1% of off-chip memory access reduction when com-
pared to the recent works [22,23].

Figure 11. DRAM access comparison of AlexNet with previous works (batch size = 1).

The results of the three modern networks show the effectiveness of the proposed hy-
brid data reuse approach in minimizing off-chip memory access, where hybrid reuse out-
performs single-layer reuse and inter-layer reuse in accelerators with larger and smaller
on-chip memory, respectively. The existing edge devices supporting TinyML typically
contain less than 1 MB SRAM [6], and the on-chip memory capacity of modern DNN

Figure 11. DRAM access comparison of AlexNet with previous works (batch size = 1).

6. Conclusions

A dataflow optimization method through exploring inter-layer data reuse and single-
layer-based data reuse is proposed for modern DNN models. The mathematical analysis of
the three inter-layer reuse strategies can be used to precisely estimate the required amount
of DRAM access in memory-constrained accelerators. The optimal hybrid data reuse
can be determined through exploring the possible single-layer and inter-layer data reuse
approaches for off-chip memory access minimization. The evaluation results show that
when compared to the existing single-layer data reuse exploration method, SmartShuttle,
the proposed hybrid data reuse method can achieve up to 32.5% and 20.5% of DRAM access
reduction on DenseNet-121 and ResNeXt-50, respectively, with the capacity of the on-chip
memory ranging from 64 KB to 576 KB.

Author Contributions: Conceptualization, J.Y. and Y.S.; methodology, J.Y. and Y.S.; software, J.Y.;
validation, J.Y., M.Y. and Y.S.; data curation, J.Y.; writing—original draft preparation, J.Y.; writing—
review and editing, J.Y., M.Y. and Y.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported in part by the KIOXIA Corporation and the Waseda University
Grant for Special Research Projects (Project number: 2021C-147).

Data Availability Statement: All the necessary data are included in the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Proceedings of

the International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012.
2. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12
June 2015.

3. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

4. Xie, S.; Girshick, R.; Dollar, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honululu, HI, USA, 21–26 July 2017.

5. Huang, G.; Liu, Z.; Maaten, L.; Weinberger, K. Densely connected convolutional networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Honululu, HI, USA, 21–26 July 2017.

6. Sze, V.; Chen, Y.-H.; Yang, T.-J.; Emer, J.S. Efficient processing of deep neural networks. In Synthesis Lectures on Computer
Architecture; Morgan & Claypool Publishers: Milton Keynes, UK, 2020.

7. Horowitz, M. Computing’s energy problem (and what we can do about it). In Proceedings of the 2014 IEEE International
Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 9–13 February 2014.

Electronics 2022, 11, 2356 16 of 16

8. Song, H.; Liu, X.; Mao, H.; Pu, J.; Pedram, A.; Horowitz, M.A.; Dally, W.J. EIE: Efficient inference engine on compressed deep
neural network. In Proceedings of the ACM/IEEE Annual International Symposium on Computer Architecture, Seoul, Korea,
18–22 June 2016.

9. Chen, T.; Du, Z.; Sun, N.; Wang, J.; Wu, C.; Chen, Y.; Temam, O. Diannao: A small-footprint high-throughput accelerator for
ubiquitous machine-learning. ACM SIGARCH Comput. Archit. News 2014, 42, 269–284. [CrossRef]

10. Zhang, S.; Du, Z.; Zhang, L.; Lan, H.; Liu, S.; Li, L.; Guo, Q.; Chen, T.; Chen, Y. Cambricon-X: An accelerator for sparse neural
networks. In Proceedings of the IEEE/ACM International Symposium on Microarchitecture, Taipei, Taiwan, 15–19 October 2016.

11. Li, J.; Yan, G.; Lu, W.; Jiang, S.; Gong, S.; Wu, J.; Li, X. SmartShuttle: Optimizing off-chip memory accesses for deep learning
accelerators. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition, Dresden, Germany, 19–23
March 2018.

12. Alwani, M.; Chen, H.; Ferdman, M.; Milder, P. Fused-layer CNN accelerators. In Proceedings of the IEEE/ACM International
Symposium on Microarchitecture, Taipei, Taiwan, 15–19 October 2016.

13. Chen, Y.; Krishna, T.; Emer, J.; Sze, V. Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural
networks. IEEE J. Solid-State Circuits 2017, 52, 127–138. [CrossRef]

14. Cavigelli, L.; Benini, L. Origami: A 803 GOp/s/W convolutional network accelerator. IEEE Trans. Circuits Syst. Video Technol.
2017, 27, 2461–2475. [CrossRef]

15. Pang, W.; Wu, C.; Lu, S. An energy-efficient implementation of group pruned CNNs on FPGA. IEEE Access 2020, 8, 217033–217044.
[CrossRef]

16. Ye, L.; Ye, J.; Yanagisawa, M.; Shi, Y. Power-efficient deep convolutional neural network design through zero-gating PEs and
partial-sum reuse centric dataflow. IEEE Access 2021, 9, 17411–17420. [CrossRef]

17. Park, C.; Park, S.; Park, C.S. Roofline-model-based design space exploration for dataflow techniques of CNN accelerators. IEEE
Access 2020, 8, 172509–172523. [CrossRef]

18. Lin, C.; Cheng, C.; Tsai, Y.; Hung, S.; Kuo, Y.; Wang, P.; Tsung, P.; Hsu, J.; Lai, W.; Liu, C.; et al. A 3.4-to-13.3TOPS/W 3.6TOPS
dual-core deep-learning accelerator for versatile AI applications in 7 nm 5G smartphone SoC. In Proceedings of the 2020 IEEE
International Solid-State Circuits Conference—(ISSCC), San Francisco, CA, USA, 2–6 February 2020.

19. Ahmad, H.; Arif, T.; Hanif, M.A.; Hafiz, R.; Shafique, M. SuperSlash: A unified design space exploration and model compression
methodology for design of deep learning accelerators with reduced off-chip memory access volume. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 2020, 39, 4191–4204. [CrossRef]

20. Deng, C.; Sui, Y.; Liao, S.; Qian, X.; Yuan, B. GoSPA: An energyefficient high-performance globally optimized SParse convolutional
neural network accelerator. In Proceedings of the 2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA), Valencia, Spain, 14–18 June 2021.

21. Kim, S.; Jo, J.; Park, I. Hybrid convolution architecture for energy-efficient deep neural network processing. IEEE Trans. Circuits
Syst. I Regul. Pap. 2021, 68, 2017–2029. [CrossRef]

22. Deng, C.; Liao, S.; Yuan, B. PermCNN: Energy-efficient convolutional neural network hardware architecture with permuted
diagonal structure. IEEE Trans. Comput. 2021, 70, 163–173. [CrossRef]

23. Huang, P.; Wu, I.; Lo, C.; Hwang, W. Energy-efficient accelerator design with tile-based row-independent compressed memory
for sparse compressed convolutional neural networks. IEEE Open J. Circuits Syst. 2021, 2, 131–143. [CrossRef]

24. Zheng, S.; Zhang, X.; Ou, D.; Tang, S.; Liu, L.; Wei, S.; Yin, S. Efficient scheduling of irregular network structures on CNN
accelerators. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2020, 39, 3408–3419. [CrossRef]

25. Cheng, W.; Liu, X.; Wu, H.; Pai, H.; Chung, P. Reconfigurable architecture and dataflow for memory traffic minimization of CNNs
computation. Micromachines 2021, 12, 1365. [CrossRef] [PubMed]

26. Zhang, B.; Gu, H.; Wang, K.; Yang, Y. A novel CONV acceleration strategy based on logical PE set segmentation for row stationary
dataflow. IEEE Trans. Comput. 2022, 71, 1466–1478.

27. Li, C.; Fan, X.; Zhang, S.; Yang, Z.; Wang, M.; Wang, D.; Zhang, M. DCNN search and accelerator co-design: Improve the
adaptability between NAS frameworks and embedded platforms. Integration 2022, 87, 147–157. [CrossRef]

28. Nguyen, D.; Je, H.; Nguyen, T.; Ryu, S.; Lee, K.; Lee, H. ShortcutFusion: From Tensorflow to FPGA-Based accelerator with a
reuse-aware memory allocation for shortcut data. IEEE Trans. Circuits Syst. I Regul. Pap. 2022, 69, 2477–2489. [CrossRef]

http://doi.org/10.1145/2654822.2541967
http://doi.org/10.1109/JSSC.2016.2616357
http://doi.org/10.1109/TCSVT.2016.2592330
http://doi.org/10.1109/ACCESS.2020.3041464
http://doi.org/10.1109/ACCESS.2021.3053259
http://doi.org/10.1109/ACCESS.2020.3025550
http://doi.org/10.1109/TCAD.2020.3012865
http://doi.org/10.1109/TCSI.2021.3059882
http://doi.org/10.1109/TC.2020.2981068
http://doi.org/10.1109/OJCAS.2020.3041685
http://doi.org/10.1109/TCAD.2020.3012215
http://doi.org/10.3390/mi12111365
http://www.ncbi.nlm.nih.gov/pubmed/34832777
http://doi.org/10.1016/j.vlsi.2022.07.003
http://doi.org/10.1109/TCSI.2022.3153288

	Introduction
	Preliminaries
	DNN Accelerators
	Single-Layer-Based Data Reuse

	Inter-Layer Data Reuse
	Optimal Dataflow Exploration for Hybrid Data Reuse
	Evaluation and Comparison Results
	Conclusions
	References

