
Citation: Li, S.; Dohi, T.; Okamura, H.

A Comprehensive Analysis of

Proportional Intensity-Based

Software Reliability Models with

Covariates. Electronics 2022, 11, 2353.

https://doi.org/10.3390/

electronics11152353

Academic Editors: Juan M. Corchado,

Stefanos Kollias and Javid Taheri

Received: 12 June 2022

Accepted: 23 July 2022

Published: 28 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Comprehensive Analysis of Proportional Intensity-Based
Software Reliability Models with Covariates
Siqiao Li , Tadashi Dohi * and Hiroyuki Okamura

Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8511, Japan;
rel-siqiao@hiroshima-u.ac.jp (S.L.); okamu@hiroshima-u.ac.jp (H.O.)
* Correspondence: dohi@hiroshima-u.ac.jp

Abstract: This paper focuses on the so-called proportional intensity-based software reliability models
(PI-SRMs), which are extensions of the common non-homogeneous Poisson process (NHPP)-based
SRMs, and describe the probabilistic behavior of software fault-detection process by incorporating the
time-dependent software metrics data observed in the development process. The PI-SRM is proposed
by Rinsaka et al. in the paper “PISRAT: Proportional Intensity-Based Software Reliability Assessment
Tool” in 2006. Specifically, we generalize this seminal model by introducing eleven well-known
fault-detection time distributions, and investigate their goodness-of-fit and predictive performances.
In numerical illustrations with four data sets collected in real software development projects, we
utilize the maximum likelihood estimation to estimate model parameters with three time-dependent
covariates (test execution time, failure identification work, and computer time-failure identification),
and examine the performances of our PI-SRMs in comparison with the existing NHPP-based SRMs
without covariates. It is shown that our PI-STMs could give better goodness-of-fit and predictive
performances in many cases.

Keywords: software reliability models; proportional intensity model; non-homogeneous Poisson
process; time-dependent covariate; maximum likelihood estimation; goodness-of-fit performance;
predictive performance

1. Introduction

Over the almost last five decades, hundreds of stochastic models, known as the soft-
ware reliability models (SRMs), have been widely developed in the literature [1–3], to
investigate and describe software fault-detection phenomena from the viewpoints of math-
ematical approaches. Among these models, non-homogeneous Poisson process (NHPP)-
based SRMs have been identified as the most traditional but important SRMs, which
have attracted extensive attention from the software reliability community in describing
the stochastic behavior of the software fault-detection. The relevant investigations also
validated their superiority in the goodness-of-fit performance with software fault count
data compared to the other SRMs. In fact, most of the existing NHPP-based SRMs in the
literature have been developed by assuming representative probability distributions to
represent the time-to-fault detection, including exponential distribution [4], gamma distri-
bution [5,6], pareto distribution [7], truncated-logistic [8], and log-logistic [9] distributions,
truncated-normal distribution [10], log-normal distribution [10,11] and the extreme-value
distributions [12]. These NHPP-based SRMs are characterized by the mean value functions
or the cumulative distribution functions (CDF) of software fault-detection time. Hence,
they can qualitatively represent the typical software reliability growth phenomena and the
software debugging scenarios during the software testing phase. In other words, the above
approach is categorized into a black-box approach, where the software fault-detection time
distribution is estimated with only the fault count data and does not depend on the knowl-
edge/learning effects of the software product, test resources, and the process information. It

Electronics 2022, 11, 2353. https://doi.org/10.3390/electronics11152353 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11152353
https://doi.org/10.3390/electronics11152353
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-5275-673X
https://orcid.org/0000-0001-6881-0593
https://doi.org/10.3390/electronics11152353
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11152353?type=check_update&version=2

Electronics 2022, 11, 2353 2 of 18

should be noted that the common NHPP-based SRMs are quite simple in software reliability
measurement and fault prediction but miss out on several software development/testing
metrics of data collected throughout the software development process.

As an extension of the common NHPP-based SRMs, this paper summarize the so-called
proportional intensity-based software reliability models (PI-SRMs) by Rinsaka et al. [13],
and describe the probabilistic behavior of the software fault-detection process by incorporat-
ing the time-dependent software metrics data observed in the development process. In the
subsequent paper, Shibata et al. [14] develop a software reliability assessment tool, PI-SRAT,
to automate the parameter estimation and quantify the software reliability. Specifically, we
generalize the seminal PI-SRM in [13] by introducing several well-known fault-detection
time distributions because the work in [13] limited a few kinds of software fault-detection
time distributions. The advantage of PI-SRMs is to combine a regression formula to repre-
sent the dependence of software metrics data with a stochastic counting process to represent
the software fault count. Similar to the well-known software reliability assessment tool in
SRATS [15], we introduce eleven parametric models (baseline intensity functions) in the
PI-SRM and comprehensively evaluate the potential performances, including the goodness-
of-fit performance and predictive performance for the PI-SRMs. In numerical illustrations
with four data sets collected in real software development projects, we apply the maximum
likelihood estimation to estimate model parameters with three time-dependent covariates
(software metrics), test execution time (CPU hr), failure identification work (person hr),
and computer time-failure identification (CPU hr), then examine the performances of our
PI-SRMs in comparison with the existing NHPP-based SRMs without covariates. Further-
more, we investigate the dependence of software metrics in the software fault count process
by checking the contribution of each software metric in the resulting regression coefficient.

The remainder of this paper is organized as follows. In Section 2, we provide a
summary of the related works on PIM-based software reliability modeling approach.
Section 3 summarizes the well-known NHPP-based SRMs and the maximum likelihood
estimation for estimating model parameters. In Section 4, we give the definition of PI-SRMs
and introduce the piecewise continuous mean value function to represent the cumulative
and non-cumulative software development/test effect. Section 5 focuses on numerical
experiments to facilitate our analysis effects of respective software metrics on the software
fault count process. Finally, the paper is concluded in Section 6.

2. Related Works

It has been known that there is a strong correlation between software quality and
some kinds of software development metrics. McCabe [16] presented various software
engineering metrics that serve as units of measurement for the development of human
resources, software products, and processes. Halstead [17] also emphasized the importance
of software science and developed deterministic equations for estimating the quantity
of residual faults in software as a function of programming effort. Putnam [18] and
Takahashi and Kamayachi [19] demonstrated empirical relationships between the software
product development environmental factors (programming language, coding techniques,
reusability of existing code, programmer skill, etc.), and software fault characteristics. With
numerous metrics data, Pillai and Nair [20] described an estimation problem of software
cost and development effort. The methodologies mentioned above, on the other hand, are
basically deterministic and cannot account for the uncertainty of software fault-detection
mechanisms in the testing.

In general, it is known that software metrics can be divided into four categories;
product metrics, development/test metrics, deployment/usage metrics, and software-
hardware configurations metrics. Therefore, when both the software metrics and fault-
detection data are utilized in the software reliability analysis, it can be expected that
the assessment of the software reliability accurately will be more plausible and can be
improved. Khoshgoftaar and Munson [21] and Khoshgoftaar et al. [22–24] introduced
linear and non-linear regressions into the predictive modeling approaches to quantify the

Electronics 2022, 11, 2353 3 of 18

software quality with software complexity metrics data. Schnieidewind [25,26] also used
regression models to quantify the software maintenance process. For the prediction of
the field defect-occurrence rate, Li et al. [27] considered a defect-occurrence projection
(metrics-based) method based on the exponential smoothing and classical moving average.
Khoshgoftaar et al. [28] used the pure and zero-inflated Poisson regression approaches to
develop software fault prediction models to predict the rank-order of software modules.
Amasaki et al. [29] utilized the rank correlation coefficient and the logistic regression model
to identify the fault data trend and evaluate the software quality, which is quantified by the
number of detected faults after shipping. Unfortunately, these models [21–24,27–29] fail to
deal with both the time series metrics data and the regression data simultaneously.

Ascher [30,31], Bendell [32], Evanco and Lacovara [33], Evanco [34] and Nishio and
Dohi [35] used the proportional hazard model (PHM) or Cox regression model [36] to
integrate the software development metrics and/or environmental factors and defined
the software fault-detection time distribution by taking the time-series metrics data into
account as the covariate [37,38]. Pham [3] investigated a dynamic variant of PHM and
constructed an enhanced PHM based on a continuous-time Markov chain. However, since
the covariates representing the development effort were composed of 0-1 binary values
in their modeling, the resulting PHM-based modeling approach lost its validation if the
cumulative effect of software development/testing effort reported in [39] was analyzed.
By observing the behavior of myopic software debugging phenomena, Shibata et al. [40]
introduced the discrete-time PHM into the cumulative Bernoulli trial process and proposed
a software metrics-based modeling approach. Okamura et al. [41] assumed the logistic
regression instead of the Cox regression and proposed a different discrete-time multi-
factor modeling framework. Kuwa and Dohi [42,43] further extended the metrics-based
SRMs with the logistic and Cox regressions to improve both goodness-of-fit and predictive
performances. Nagaraju et al. [44] applied the discrete-time Cox-regression-based SRMs to
an optimal test activity allocation problem.

It is worth mentioning that the discrete-time metrics-based SRMs in [40–43] were
quite convincing in modeling because both the logistic and Cox regression approaches
were consistently taken into consideration. However, the discrete-time metrics-based
SRMs depend on the discrete fault-detection time distribution. In general, it is known
that handling the continuous probability distributions is much easier than the discrete
probability distributions. In fact, in the references [40–43], the authors dealt with very few
discrete probability distributions, such as the geometric distribution, negative binomial
distribution, and discrete Weibull distribution. On one hand, the PI-SRMs in [13] are based
on the continuous probability distribution and can represent many software fault-detection
patterns in the framework. The basic idea of PI-SRMs has come from the proportional
intensity model (PIM) by Lawless [45], which is an extension of the common PHM in terms
of time series analysis. However, it is worth noting that the PIM in [45] is not directly
applicable to the non-decreasing cumulative data such as the software fault count. Hence,
Rinsaka et al. [13] proposed a modified NHPP-based SRM with piecewise continuous mean
value function with monotone increasing property to apply the PIM to the software fault
count data analysis.

3. NHPP-Based Software Reliability Modeling

From the viewpoint of modeling and statistical estimation, suppose the stochastic
counting process with the following four conditions:

(i) N(0) = 0;
(ii) {N(t), t ≥ 0} has independent increment;
(iii) Pr{N(t + ∆t)− N(t) ≥ 2} = o(∆t);
(iv) Pr{N(t + ∆t)− N(t) = 1} = λ(t)∆t + o(∆t),

Electronics 2022, 11, 2353 4 of 18

where N(t) denotes the total number of events that occurred up to and including time t,
λ(t) is a continuous (deterministic) function of time t, called the intensity function, and
o(∆t) is the higher-order term of infinitesimal time ∆t satisfying:

lim
∆t→0

o(∆t)
∆t

= 0. (1)

Then the stochastic counting process {N(t), t ≥ 0} can be regarded as the non-
homogeneous Poisson process (NHPP). Since NHPP is a typical Markov process with
a time-dependent transition rate, the probability mass function (PMF) of NHPP is given by:

Pr{N(t) = n} = {H(t)}n

n!
exp(−H(t)), (2)

where:

H(t) =
∫ t

0
λ(x)dx = E[N(t)] (3)

is the mean value function of NHPP with H(0) = 0. It denotes the expected cumulative
number of software faults detected by time t.

In software reliability engineering, two commonly used modeling assumptions are
made:

(i) Software faults are detected at independent and identically distributed (i.i.d.) random
times with the non-degenerate cumulative distribution function (CDF), F(t; α), where
α is a free parameter vector.

(ii) The total number of software faults remaining in software before testing, say, at time
t = 0, is a Poisson random variable with parameter ω (> 0).

Under the above two assumptions, it can be confirmed that the software fault-detection
process N(t) follows an NHPP with mean value function H(t; θ) = ωF(t; α), where θ =
(ω, α) and limt→∞ H(t; θ) = ω(> 0). The resulting bounded mean value function implies
that the initial number of residual faults in software is finite.

The key idea in the traditional software reliability modeling was to determine the
mean value function H(t; θ) or the fault-detection time CDF F(t; α), to fit the software
fault count data. In the software reliability assessment tool on the spreadsheet (SRATS),
Okamura and Dohi [15] implemented the NHPP-based SRM with eleven representative
software fault-detection time CDFs belong to the generalized exponential distribution
family and the extreme-value distribution family. All of them have been developed in
the heavily cited references [4–12]. We apply these eleven NHPP-based SRMs to our PI-
SRMs. More specifically, Table 1 presents the eleven CDF’s associated abbreviations and
intensity functions.

Before closing this section, we summarize the maximum likelihood estimation for
the common NHPP-based SRMs. Suppose that the cumulative number of software faults
detected by each testing time tk (k = 1, 2, . . . , n), measured in calendar time, is denoted by
yk. For the time interval (group) data (tk, yk) (k = 1, 2, . . . , n), the likelihood function and
log-likelihood function with unknown parameter θ are given by:

L(θ) = exp(−H(tn; θ))
n

∏
k=1

{H(tk; θ)− H(tk−1; θ)}yk−yk−1

(yk − yk−1)!
(4)

and,

LLF(θ) =
n

∑
k=1

ln[H(tk; θ)− Ht(tk−1; θ)](yk − yk−1)− H(tn; θ)

−
n

∑
k=1

ln[(yk − yk−1)!], (5)

Electronics 2022, 11, 2353 5 of 18

respectively, where (t0, y0) = (0, 0). Note that almost all software fault count data observed
in practice are the group data, because the software debugging is often made in the
distributed testing environment, and that the measurement of execution time to detect each
software fault, which is measured by CPU time, is almost impossible in industry. Finally,
we can obtain the maximum likelihood (ML) estimate θ̂ by maximizing Equation (5) with
respect to θ.

Table 1. The existing NHPP-based SRMs.

Models λ(t; θ) & F(t; α)

Exponential distribution
(exp) [4]

λ(t; θ) = ωbe−bt

F(t; α) = 1− e−bt

Gamma distribution
(gamma) [5,6]

λ(t; θ) = ω
e−

t
c (t

c)
b−1

cΓ(b)

F(t; α) =
∫ t

0
cbsb−1e−cs

Γ(b) ds

Pareto distribution
(pareto) [7]

λ(t; θ) =
ωbc(c

c+t)
b−1

(c+t)2

F(t; α) = 1− (b
t+b)

c

Truncated normal distribution
(tnorm) [10]

λ(t; θ) = ωe
− (c−t)2

2b2
√

2πb
(

1− 1
2 er f c

(
c√
2b

))
F(t; α) = 1√

2πb

∫ t
−∞ e−

(s−c)2

2b2 ds

Log-normal distribution
(lnorm) [10,11]

λ(t; θ) = ωe
− (c−log(t))2

2b2√
2πbtt

F(t; α) = 1√
2πb

∫ t
−∞ e−

(s−c)2

2b2 ds

Truncated logistic distribution
(tlogist) [8]

λ(t; θ) = ωe−
t−c

b

b
(

1− 1
ec/b+1

)(
e−

t−c
b +1

)2

F(t; α) = 1−e−bt

1+ce−bt

Log-logistic distribution
(llogist) [9]

λ(t; θ) = ωe−
log(t)−c

b

bt
(

e−
log(t)−c

b +1
)2

F(t; α) = (bt)c

1+(bt)c

Truncated extreme-value maximum distribution
(txvmax) [12]

λ(t; θ) = ωe−
t−c

b −e
− t−c

b

b
(

1−e−ec/b
)

F(t; α) = e−e−
t−c

b

Log-extreme-value max maximum distribution
(lxvmax) [12]

λ(t; θ) =
ωce−(

t
b)
−c
(t

b)
−c−1

b
F(t; α) = e−(

t
b)
−c

Truncated extreme-value minimum distribution
(txvmin) [12]

λ(t; θ) = ωe−
−c−t

b −e
− −c−t

b +ec/b

b

F(t; α) = e−e−
t−c

b

Log-extreme-value minimum distribution
(lxvmin) [46] λ(t; θ) = ωe−

−c−log(t)
b −e

− −c−log(t)
b

bt
F(t; α) = e−e− t−c

b

(ω > 0, b > 0, c > 0).

4. Proportional Intensity Model
4.1. Model Description

In this section, we introduce a PI-SRM compatible with the maximum likelihood
estimation and incorporate several testing-effort factors observed on respective testing
dates. Suppose that l types of software metrics data, xk = (xk1, · · · , xkl) (k = 1, 2, . . . , n),
are observed at each testing time tk (= 0, 1, 2, . . . , n). For the analytical purpose, we assume

Electronics 2022, 11, 2353 6 of 18

that each software metric xk is dependent on the cumulative testing time tk, and can be
considered as a time-dependent function, denoted by xk(tk). In fact, this sort of parameter
is referred to as a time-dependent covariate [37,38] in statistics and has been widely investi-
gated in the context of the Cox regression-based proportional hazard model (PHM). We
define the intensity function for our PI-SRM by:

λx(tk, xk; θ, β) = λ0(tk; θ)g(xk; β), (6)

with the regression coefficients β = (β1, . . . , βl) and the baseline intensity λ0(tk; θ) (>0),
and the covariate function g(xk; β) (>0). When g(xk; β) = 1 for any xk, the PI-SRMs are
reduced to the NHPP-based SRMs with the baseline intensity λ0(t; θ). Based on the idea of
common Cox regression PHM, it is appropriate to assume the following exponential form
for the covariate function:

g(xk; β) = exp(xkβ). (7)

In the literature [36–38], the above form is widely accepted to make the analysis easy
and flexible. Lawless [45] also analyzed the event count data in actual medical applications
with the same exponential covariate function. Note that the time-independent covariates
considered by Lawless [45] were the binary data taking 0 and 1. Rinsaka et al. [13] proposed
an intuitive but reasonable model to deal with the effect of the cumulative number of
software faults and the software metrics in the covariate function. Define the mean value
function for the given data (tk, yk, xk) (k = 1, 2, . . . , n) by:

Hp(t1; θ, β) =
∫ t1

0
λ0(u; θ) exp(x1β)du, (8)

Hp(t2; θ, β) =
∫ t2

t1

λ0(u; θ) exp(x2β)du + Hp(t1; θ, β), (9)

...

Hp(tk; θ, β) =
k

∑
i=1

exp(xiβ)
∫ ti

ti−1

λ0(u; θ)du

=
k

∑
i=1

exp(xiβ)× [H0(ti; θ)− H0(ti−1; θ)], (10)

where H0(ti; θ) =
∫ ti

0 λ0(u; θ)du. It is seen again that the PI-SRM can be reduced to the
common NHPP-based SRM when β j = 0 for all j (= 1, 2, · · · , l). By introducing Hp(t; θ, β),
we confirm that the monotone property of the mean value function with respect to testing
time r can be guaranteed. Substituting the intensity function in Table 1 in to the baseline
intensity λ0(t; θ), we obtain the eleven PI-SRMs corresponding to the NHPP-based SRMs
in SRATS [15].

4.2. Maximum Likelihood Estimation

We also utilize the maximum likelihood estimation to estimate the parameter vectors θ
and β of PI-SRM. For the fault count data (tk, yk) and software metrics data xk = (xk1, · · · ,
xkl) (k = 1, 2, . . . , n), we define the likelihood function by:

L(θ, β) =
n

∏
k=1

{Hp(tk; θ, β)−Hp(tk−1; θ, β)}yk−yk−1

(yk − yk−1)!
exp(−Hp(tn; θ, β)), (11)

so that the log-likelihood function of PI-SRM can be written as:

LLF(θ, β) =
n

∑
k=1

ln
[
Hp(tk; θ, β)− Hp(tk−1; θ, β)

]
(yk − yk−1)

−
n

∑
k=1

ln[(yk − yk−1)!]− Hp(tn; θ, β). (12)

Electronics 2022, 11, 2353 7 of 18

By maximizing Equation (12) with the Newton–Raphson method, we obtain the
maximum likelihood estimates (θ̂, β̂) of PI-SRM.

5. Numerical Examples

In our numerical examples, four software fault count data with software metrics
are used, where these data are measured in the real-time command and control system
development projects [39]. Details are shown in Table 2, in which three software metrics
data: failure identification work, execution time, and computer time-failure identification,
are involved in addition to the cumulative number of software faults detected at each
testing time (calendar week in [39]). We quantitatively evaluate the goodness-of-fit perfor-
mances of eleven PI-SRMs and evaluate the predictive performances via the above four
time-dependent metrics data as the covariates. In the following discussion, we consider two
patterns in dealing with software metrics. One is to input the software metrics as the cumu-
lative xk = (xk1, · · · , xkl), the other as the difference xk =

(
xk1 − x(k−1)1, · · · , xkl − x(k−1)l

)
,

where l is the number of time-dependent metrics data in each data set and k = 0, 1, 2, · · · , n.
The main concern here is to investigate the effects of cumulative values of software metrics
on the contribution to the software fault count. For instance, we examine the difference
between the cumulative length of test execution time by the present testing time and the
test execution time spend at the same testing time.

Table 2. Data sets.

Data No. Faults Testing Days

GDS1 136 21

GDS2 54 17

GDS3 38 14

GDS4 53 16

Metrics Data: Failure identification work, Execution time, Computer time-failure identification.

5.1. Goodness-of-Fit Performance

For our PI-SRMs, we assume eleven baseline intensity functions in Table 1 and compare
them to investigate the effects of each time-dependent software metric data on the stochastic
behavior of the cumulative number of software faults detected in the testing phase. We
calculate the maximum likelihood estimates (θ̂, β̂) of covariate g(xk; β) = exp(xkβ) for all
combinations of software metrics data in Table 2 and consider a total of 7 combinations,
as shown in Table 3. By deriving the corresponding log-likelihood (LLF), the Akaike infor-
mation criterion (AIC) and mean squared error (MSE) are used to evaluate the goodness-of-
fit performances of our PI-SRMs, where:

AIC = −2 LLF(θ̂, β̂) + 2π, (13)

and,

MSE =
1
n

√
n

∑
k=1

(yk − Hp(tk; θ̂, β̂))2. (14)

π represents the number of free parameters. The lower the AIC/MSE, the better SRM in
terms of goodness-of-fit to the fault count data.

Electronics 2022, 11, 2353 8 of 18

Table 3. Combination of covariates g(xkl ; β).

g(xkl ; β)(l = 1, 2, 3)

Combination I exp(β0 + xk1β1)

Combination II exp(β0 + xk2β2)

Combination III exp(β0 + xk3β3)

Combination IV exp(β0 + xk1β1 + xk2β2)

Combination V exp(β0 + xk1β1 + xk3β3)

Combination VI exp(β0 + xk2β2 + xk3β3)

Combination VII exp(β0 + xk1β1 + xk2β2 + xk3β3)

xk1 : Execution time, xk2 : Failure identification work.
xk3 : Computer time-failure identification.

In Figure 1, we plot the cumulative number of detected software faults in GDS1 and
the estimated mean value functions in the best-fitted SRMs, where we select the best model
with the minimum AIC for the common NHPP-based SRMs without software metrics
(orange curve) in SRATS [15], PI-SRM with cumulative software metrics (red curve), and PI-
SRM with non-cumulative software metrics (blue curve), among eleven intensity functions.
At first glance, it can be seen that the three curves exhibit similar behavior, but a closer
look reveals that our PIMs can show more complex behaviors than existing NHPP-based
SRMs without software metrics. Figure 2 illustrates the behavior of the estimated number
of detected fault counts at each testing time interval in GDS1, where the same models as
Figure 1 are used for comparison, and the orange bar-chart represents the actual number of
software faults in each testing week. The result explains that our two PI-SRMs could show
better goodness-of-fit performances than the existing NHPP-based SRM without software
metrics and could catch up with the detailed trend on the software fault count.

● ● ● ● ● ● ●

●

● ●

● ●

●

●

●

●

●

●
●

● ●

NHPP (tlogist)

Propotional intensity SRM

(txvmin)

(non-cumulative metrics data)

Propotional intensity SRM

(tlogist)

(cumulative metrics data)

● Actual data

0 5 10 15 20

0

20

40

60

80

100

120

140

Test time

C
u
m
u
la
ti
v
e
n
u
m
b
e
r
o
f
fa
u
lt
s

Figure 1. Behavior of estimated cumulative number of software faults in GDS1.

To compare our PI-SRMs with the common NHPP-based SRMs without software
metrics more precisely, we present the best AIC results for four time-dependent metrics
data in Table 4. By comparing our two PI-SRMs with cumulative/non-cumulative metrics
values, we investigate how to deal with the software metrics data in software fault data
analysis. From the results in Table 4, it is found that our PI-SRMs are more appealing in
software reliability modeling and outperform the existing NHPP-based SRMs without
software metrics in terms of goodness-of-fit. In the comparison of two patterns with
cumulative/non-cumulative metric data, it is seen that the non-cumulative software metrics

Electronics 2022, 11, 2353 9 of 18

tend to show better fitting results except in GDS4. Note that the difference of AIC between
cumulative/non-cumulative metric patterns is minimal and negligible. Therefore, our
conclusion on the goodness-of-fit performance is that the PI-SRM with non-cumulative
software metric data should be better. Furthermore, in Table 4, it is observed that both
the execution time and failure identification work could contribute to the goodness-of-fit
performance in the PI-SRMs. Hence, the measurement of test execution time and failure
identification work can help understand the software fault count in the testing phase more
accurately and is useful to monitor the software testing progress.

Propotional intensity SRM

(non-cumulative metrics data)

Propotional intensity SRM

(cumulative metrics data)

NHPP-based SRM (tlogist)

(no metrics data)

5 10 15 20

5

10

15

20

Figure 2. Behavior of estimated number of software faults in each time interval in GDS1.

Table 4. Goodness-of-fit performance based on AIC.

(i) Best proportional intensity model (cumulative metrics data)

Model AIC MSE β̂

GDS1 tlogist-VI 110.114 0.470 β̂0 = −2.5903, β̂2 = −0.0805, β̂3 = 0.0277

GDS2 tlogist-III 69.785 0.282 β̂0 = 1.7326, β̂3 = 0.1406

GDS3 txvmin-II 57.281 0.289 β̂0 = −3.7048, β̂2 = 1.2197

GDS4 exp-I 81.059 0.612 β̂0 = 4.6132, β̂1 = −0.1659

(ii) Best proportional intensity model (non-cumulative metrics data)

GDS1 txvmin-II 109.015 0.721 β̂0 = 2.9503, β̂2 = 0.0206

GDS2 llogist-II 67.352 0.261 β̂0 = −0.4155, β̂2 = 0.0447

GDS3 gamma-II 50.696 0.221 β̂0 = 0.6061, β̂2 = 1.1493

GDS4 exp-VI 81.131 0.450 β̂0 = 3.8840, β̂2 = −0.2963, β̂3 = 0.8060

(iii) Best SRATS (no metrics data)

GDS1 tlogist 116.891 0.820 -

GDS2 llogist 73.053 0.501 -

GDS3 lxvmax 61.694 0.481 -

GDS4 txvmin 79.761 0.530 -

5.2. Predictive Performance

Next, we are concerned with investigating the predictive performances of our PI-SRMs.
In each observation point n′ (1 ≤ n′ < n) when 50% or 80% of the whole data are available,
we predict the future behavior of the cumulative number of software faults. To assess

Electronics 2022, 11, 2353 10 of 18

the predictive ability, we apply the prediction squared error (PMSE) as the predictive
performance measure, where:

PMSE =
1

n− ń

√√√√ n

∑
k=ń+1

[
yk − Hp(tk; θ̂, β̂)

]2
. (15)

The smaller the PMSE, the better the prediction performance of the model. As expected,
when we predict the number of software faults detected in the future, both the software met-
rics xk (k = 1, 2, . . . , n) and the regression coefficient β must be estimated. The regression
coefficients are available by applying the plug-in estimates (maximum likelihood estimates)
with the past observation. However, the difficulty when the PI-SRMs are used arises
since we have to predict the software metrics themselves in the future. In our numerical
experiments, we consider the following three cases:

Case I: All the test/development metric data are completely known through the testing
phase in advance, so the software testing expenditures are exactly given in the testing.

Case II: The test/development metrics data do not change from the observation point in
the future.

Case III: The test/development metrics data experienced in the future are regarded as
independent random variables and predictable by any statistical method.

Case I corresponds to the case where the software test plan is established and there
is no confusion in the software testing phase. Case II implicitly assumes that the obser-
vation point is regarded as the release point of software because no testing effort will be
spent in the operational phase. Case III would be the most plausible case in software
testing. In this case, we are requested to introduce any statistical model to investigate the
test/development metrics data. We employ two elementary regression methods, linear
regression and exponential regression to predict the future software metrics data. More
specifically, we assume that the metric data xk before the observation point n′ and the
corresponding time point tk have been observed with k = 1, 2, . . . , n′. Next, our goal is to
calculate the predictive value of the metric data x̂k between a given time period (tn′+1, tn),
by introducing the independent variable T = {tn′+1, tn′+2, ...tn} into the linear regression
equation:

x̂k = δ1 + δ2tk (16)

with intercept δ1 and coefficient δ2 can be derived by:

δ1 =

(
∑n′

k=1 xk

)(
∑n′

k=1 tk
2
)
−
(

∑n′
k=1 tk

)(
∑n′

k=1 tkxk

)
n′
(

∑n′
k=1 tk

2
)
−
(

∑n′
k=1 tk

)2 (17)

and,

δ2 =
n′
(

∑n′
k=1 tkxk

)
−
(

∑n′
k=1 tk

)(
∑n′

k=1 xk

)
n′
(

∑n′
k=1 tk

2
)
−
(

∑n′
k=1 tk

)2 (18)

respectively. Similar to the linear regression method, we can also obtain the predictive val-
ues of the metric data x̂k by importing variable T = {tn′+1, tn′+2, ...tn} into the exponential
regression equation:

x̂k = δ3δ4
tk , (19)

where the coefficients δ3 and δ4 are given by:

δ3 = exp


(

∑n′
k=1 ln xk

)(
∑n′

k=1 tk
2
)
−
(

∑n′
k=1 tk

)(
∑n′

k=1 tk ln xk

)
n′
(

∑n′
k=1 tk

2
)
−
(

∑n′
k=1 tk

)2

 (20)

Electronics 2022, 11, 2353 11 of 18

and,

δ4 = exp

n′
(

∑n′
k=1 tk ln xk

)
−
(

∑n′
k=1 tk

)(
∑n′

k=1 ln xk

)
n′
(

∑n′
k=1 tk

2
)
−
(

∑n′
k=1 tk

)2

 (21)

respectively. Note that with Equations (20) and (21), it can be easily found that the expo-
nential regression is not appropriate for making the prediction when the non-cumulative
metric data in PI-SRMs are used, because the variable may take 0, and the correlation
coefficient may not be calculated theoretically. Therefore, we totally consider seven patterns
of estimated development/test metrics data in the future phase in the above three cases,
and investigate the predictive performances of our PI-SRMs.

Figures 3 and 4 depict the prediction results of the cumulative number of software
faults in GDS1 at 50% observation and 80% observation, respectively. It is not difficult
to find that our two PI-SRMs could show a completely different predictive trend than
common NHPP-based SRMs. However, we can recognize that the closer increasing trend to
the underlying software fault count data, no matter whether the prediction length is long or
short, especially in the testing phase after 50% and 80% observation points. The quantitative
comparison in terms of predictive performance is investigated in Tables 5 and 6, where
we present the PMSE in four data sets at 50% observation point and 80 % observation
point, respectively. Here we select the best SRMs with the smallest PMSE in PI-SRMs with
cumulative/non-cumulative software metric data in CASE I, CASE II, and CASE III, and the
existing NHPP-based SRMs. From these results, it is immediate to see that our PI-SRMs
could still outperform the existing NHPP-based SRMs in all the data sets. We also find that
utilizing the estimated metrics data in Case II, i.e., when the test/development metrics data
do not change in the future tends to give better predictive performances than the other two
cases in many cases (GDS1 50%, GDS2 50%, GDS3 50%, GDS4 50%, and GDS4 80%). So in
5 out of 8 (GDS2 50%, GDS4 50%, GDS2 80%, GDS3 80%, and GDS4 80%); our PI-SRMs
with non-cumulative metric data could provide the minimum PMSE. More specifically,
Combination II of software metrics in Table 3 gives the minimum PMSEs in GDS1 80%,
GDS3 80%, and GDS4 80% data sets with non-cumulative software metric data and GDS1
50%, GDS2 50% with cumulative software metric data, respectively. The remaining three
minimum PMSEs were given in the PI-SRMs with Combinations V, VI, and VII in Table 3.
Finally, by carefully checking the prediction results in Tables 4 and 5, we conclude that the
failure identification work is the most important development metric in prediction and
leads to improving the software fault prediction accurately.

Table 5. Predictive performance based on PMSE at 50% observation point.

GDS1

Best model PMSE

Case I (cumulative) tlogist-III 6.409

Case I (non-cumulative) tlogist-II 4.014

Case II (cumulative) lxvmax-II 2.160

Case II (non-cumulative) txvmax-IV 4.931

Case III (cumulative): Linear regression exp-IV 4.146

Case III (cumulative):
Exponential regression txvmin-V 19.213

Case III (non-cumulative): Linear regression txvmax-II 3.916

SRATS tnorm 3.408

Electronics 2022, 11, 2353 12 of 18

Table 5. Cont.

GDS2

Best model PMSE

Case I (cumulative) tlogist-II 0.816

Case I (non-cumulative) tnorm-III 0.799

Case II (cumulative) gamma-II 0.742

Case II (non-cumulative) txvmax-II 0.407

Case III (cumulative): Linear regression tlogist-IV 0.616

Case III (cumulative):
Exponential regression tnorm-III 1.644

Case III (non-cumulative): Linear regression tlogist-IV 0.780

SRATS tlogist 1.769

GDS3

Best model PMSE

Case I (cumulative) tlogist-II 2.676

Case I (non-cumulative) txvmax-III 0.481

Case II (cumulative) exp-VII 0.467

Case II (non-cumulative) pareto-VI 1.506

Case III (cumulative): Linear regression llogist-II 0.748

Case III (cumulative): Exponential regression lxvmax-VI 1.842

Case III (non-cumulative): Linear regression lxvmax-VII 1.769

SRATS exp 1.836

GDS4

Best model PMSE

Case I (cumulative) tlogist-III 2.088

Case I (non-cumulative) pareto-II 1.506

Case II (cumulative) exp-I 0.495

Case II (non-cumulative) tnorm-VI 0.425

Case III (cumulative): Linear regression txvmax-VI 1.139

Case III (cumulative): Exponential regression exp-II 0.688

Case III (non-cumulative): Linear regression lxvmin-I 0.703

SRATS tlogist 1.754

Electronics 2022, 11, 2353 13 of 18

● ● ● ● ● ● ●

●

● ●

● ●

●

●

●

●

●

●
● ● ●

Propotional intensity SRM

(lxvmax-II)

(cumulative metrics data)

NHPP (tnorm)

Propotional intensity SRM

(txvmax-II)

(non-cumulative metrics data)

● Actual data

0 5 10 15 20

0

50

100

150

Test time

C
u
m
u
la
ti
v
e
n
u
m
b
e
r
o
f
fa
u
lt
s

Figure 3. Behavior of the predicted cumulative number of software faults with PI-SRMs and common
NHPP-based SRM in GDS1 (50% observation point).

● ● ● ● ● ● ●

●

● ●

● ●

●

●

●

●

●

●
●

● ●

Propotional intensity

SRM

(txvmax-III)

(non-cumulative

metrics data)

Propotional intensity SRM

(tnorm-II)

(cumulative metrics data)

NHPP (txvmin)

● Actual data

0 5 10 15 20

0

50

100

150

Test time

C
u
m
u
la
ti
v
e
n
u
m
b
e
r
o
f
fa
u
lt
s

Figure 4. Behavior of the predicted cumulative number of software faults with PI-SRMs and common
NHPP-based SRM in GDS1 (80% observation point).

Table 6. Predictive performance based on PMSE at 80% observation point.

GDS1

Best model PMSE

Case I (cumulative) tnorm-II 2.482

Case I (non-cumulative) txvmax-III 1.768

Case II (cumulative) txvmax-VII 2.142

Case II (non-cumulative) txvmax-V 2.903

Case III (cumulative): Linear regression tnorm-II 1.033

Case III (cumulative): Exponential regression tlogist-VII 3.159

Electronics 2022, 11, 2353 14 of 18

Table 6. Cont.

Case III (non-cumulative): Linear regression txvmax-VII 3.916

SRATS txvmin 1.218

GDS2

Best model PMSE

Case I (cumulative) pareto-IV 0.488

Case I (non-cumulative) gamma-V 0.277

Case II (cumulative) lnorm-VII 0.399

Case II (non-cumulative) pareto-I 0.466

Case III (cumulative): Linear regression exp-IV 0.455

Case III (cumulative): Exponential regression llogist-VI 0.499

Case III (non-cumulative): Linear regression llogist-IV 0.508

SRATS lnorm 0.531

GDS3

Best model PMSE

Case I (cumulative) tnorm-II 0.326

Case I (non-cumulative) txvmax-II 0.150

Case II (cumulative) txvmax-IV 0.330

Case II (non-cumulative) lxvmax-II 0.982

Case III (cumulative): Linear regression lxvmin-I 0.340

Case III (cumulative): Exponential regression txvmin-VI 1.484

Case III (non-cumulative): Linear regression pareto-III 0.293

SRATS exp 0.295

GDS4

Best model PMSE

Case I (cumulative) exp-I 0.213

Case I (non-cumulative) lxvmin-V 0.227

Case II (cumulative) tnorm-IV 0.220

Case II (non-cumulative) tnorm-II 0.206

Case III (cumulative): Linear regression tlogist-II 0.207

Case III (cumulative): Exponential regression lxvmax-III 0.273

Case III (non-cumulative):
Linear regression tlogist-VII 0.220

SRATS gamma 0.230

5.3. Software Reliability Assessment

In the previous argument, we have confirmed that our PI-SRMs could show better
predictive performances than the existing NHPP-SRMs in all cases. In the next step, we
wish to quantify the software reliability, which is defined as the probability that the software
after release is fault-free. Let R(tl | tm) = Pr{N(tm)− N(tl) = 0 | N(tl) = n} denote the

Electronics 2022, 11, 2353 15 of 18

software reliability in the operational phase (tl , tm], where tl is the release point. Then,
from the NHPP assumption, it is easy to obtain:

R(tl | tm) = exp
[

Hp(tm; θ̂, β̂)− Hp(tl ; θ̂, β̂)
]
. (22)

In our numerical example, we set tm = 2tl , say, the operational period is twice the
length, and assume that the software metrics xk = (xk1, xk2, xk3) are constant in the time
interval (tl , tm), since the software product has not been tested after the release time tl . We
assess the software reliability quantitatively with the best PI-SRMs, which are selected with
the minimum AIC at the release time point tl = tn.

Table 7 presents the comparison results of our PI-SRMs with the existing NHPP-based
SRMs. It can be seen that our PI-SRMs with cumulative/non-cumulative software metrics
could provide larger software reliability than the common NHPP-based SRMs without
software metrics. This result implies that if the PI-SRMs are reliable in goodness-of-fit and
predictive performances, they are more inclined to provide positive decisions in terms
of software reliability assessment, and the NHPP-based SRMs without software metrics
tend to underestimate the software reliability. On the other hand, we also note that in
all four data sets, the software reliability estimated by almost all of the SRMs, except in
txvmin-II PI-SRM in GDS3 and txvmin NHPP-based SRM in GDS4, are not promising. This
observation also implies that in time period tm − tl , these SRMs tend to give false alarms
from the viewpoint of safety, so that the software products under testing seem to require
more tests to meet the software reliability requirement.

Table 7. Software reliability assessment with best SRM (minimum AIC).

(i) Best proportional intensity model (cumulative metrics data)

Model Reliability

GDS1 tlogist-VI 2.969 × 10−2

GDS2 tlogist-III 9.260 × 10−1

GDS3 txvmin-II 9.998 × 10−1

GDS4 exp-I 5.455 × 10−3

(ii) Best proportional intensity model (non-cumulative metrics data)

GDS1 txvmin-II 4.393 × 10−1

GDS2 llogist-II 1.984 × 10−2

GDS3 gamma-II 2.945 × 10−1

GDS4 exp-VI 4.324 × 10−1

(iii) Best SRATS (no metrics data)

GDS1 tlogist 6.977 × 10−5

GDS2 llogist 4.152 × 10−3

GDS3 lxvmax 7.236 × 10−5

GDS4 txvmin 9.559 × 10−1

6. Conclusions

This paper presented the proportional intensity NHPP-based SRMs (PI-SRMs in short)
with eleven representative baseline intensity functions, which could incorporate multiple
time-dependent cumulative/non-cumulative software development/test metrics data.
In our numerical experiments with actual software project data, we have quantitatively
evaluated the goodness-of-fit and predictive performances of our PI-SRMs and compared
them with the common NHPP-based SRMs with the same baseline intensity functions.

Electronics 2022, 11, 2353 16 of 18

Finally, we have verified that our SRMs performed well in all data sets and had excellent
potential ability on prediction. By carefully checking the regression coefficients, we have
also confirmed that failure identification work was the most important testing metric
that could contribute to software debugging, and could improve the goodness-of-fit and
predictive performances.

In the future, we will propose other PI-SRMs with different baseline intensity functions.
In software engineering, the measurement of software metrics and development efforts
has been considered as the most fundamental technique to quantify the software product
quality. However, compared with the traditional software reliability modeling with only
software fault count data, the metrics-based software reliability quantification has not been
fully studied yet. In the NHPP-based modeling framework, it is important to find out the
best parametric model, such as the intensity function. A similar attempt should be made in
finding the best baseline intensity function, which depends on the kind of software metrics
used in the analysis.

On the other hand, to analyze the classical software fault count data, we applied only
the three time-dependent software metrics mentioned in [39], fault identification effort,
execution time, and computer time fault identification, while some metrics that are more
easily observed as time-dependent or non-time-dependent during the testing of software
engineering (e.g., the total number of operators, number of program volume, number of
lines of comments, number of lines of code, number of lines of executable source code)
were ignored. Therefore, we will continue to investigate our PI-SRMs in the near future by
using the above mentioned metrics data as well as software fault count data.

Author Contributions: Conceptualization, S.L., T.D. and H.O.; methodology, S.L., T.D. and H.O.;
validation, S.L., T.D. and H.O.; writing—original draft preparation, S.L.; writing—review and editing,
T.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Acknowledgments: This work was supported by the Program for Developing and Supporting the
Next-Generation of Innovative Researchers at Hiroshima University (Next Generation Fellows),
Japan.

References
1. Lyu, M. (Ed.). Handbook of Software Reliability Engineering; McGraw Hill: New York, NY, USA, 1996.
2. Musa, J.D.; Iannino, A.; Okumoto, K. Software Reliability Measurement, Prediction, Application; McGraw-Hill: New York, NY,

USA, 1987.
3. Pham, H. Software Reliability; Springer: London, UK, 2000.
4. Goel, A.L.; Okumoto, K. Time-dependent error-detection rate model for software reliability and other performance measures.

IEEE Trans. Reliab. 1979, R-28, 206–211. [CrossRef]
5. Yamada, S.; Ohba, M.; Osaki, S. S-shaped reliability growth modeling for software error detection. IEEE Trans. Reliab. 1983,

R-32, 475–478. [CrossRef]
6. Zhao, M.; Xie, M. On maximum likelihood estimation for a general non-homogeneous Poisson process. Scand. J. Stat. 1996,

23, 597–607.
7. Abdel-Ghaly, A.A.; Chan, P.Y.; Littlewood, B. Evaluation of competing software reliability predictions. IEEE Trans. Softw. Eng.

1986, SE-12, 950–967. [CrossRef]
8. Ohba, M. Inflection S-shaped software reliability growth model. In Stochastic Models in Reliability Theory; Springer: New York, NY,

USA, 1984; pp. 144–162.
9. Gokhale, S.S.; Trivedi, K.S. Log-logistic software reliability growth model. In Proceedings of the Third IEEE International

High-Assurance Systems Engineering Symposium (HASE 1998), Washington, DC, USA, 13–14 November 1998; pp. 34–41.
10. Okamura, H.; Dohi, T.; Osaki, S. Software reliability growth models with normal failure time distributions. Reliab. Eng. Syst. Saf.

2013, 116, 135–141. [CrossRef]
11. Achcar, J.A.; Dey, D.K.; Niverthi, M. A Bayesian approach using nonhomogeneous Poisson processes for software reliability

models. In Frontiers in Reliability; World Scientific: Singapore, 1998; pp. 1–18.
12. Ohishi, K.; Okamura, H.; Dohi, T. Gompertz software reliability model: Estimation algorithm and empirical validation. J. Syst.

Softw. 2009, 82, 535–543. [CrossRef]

http://doi.org/10.1109/TR.1979.5220566
http://dx.doi.org/10.1109/TR.1983.5221735
http://dx.doi.org/10.1109/TSE.1986.6313050
http://dx.doi.org/10.1016/j.ress.2012.02.002
http://dx.doi.org/10.1016/j.jss.2008.11.840

Electronics 2022, 11, 2353 17 of 18

13. Rinsaka, K.; Shibata, K.; Dohi, T. Proportional Intensity-Based Software Reliability Modeling with Time-Dependent Metrics. In
Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC’06), Chicaco, IL,
USA, 17–21 September 2006; Volume 1, pp. 369–376.

14. Shibata, K.; Rinsaka, K.; Dohi, T. PISRAT: Proportional Intensity-Based Software Reliability Assessment Tool. In Proceedings
of the 13th Pacific Rim International Symposium on Dependable Computing (PRDC 2007), Melbourne, VIC, Australia , 17–19
December 2007; pp. 43–52.

15. Okamura, H.; Dohi, T. SRATS: Software reliability assessment tool on spreadsheet (Experience report). In Proceedings of the 2013
IEEE 24th International Symposium on Software Reliability Engineering (ISSRE 2013), Pasadena, CA, USA, 4–7 November 2013;
pp. 100–107.

16. McCabe, T.J. A complexity measure. IEEE Trans. Softw. Eng. 1976, SE-2, 308–320. [CrossRef]
17. Halstead, M.H. Elements of Software Science; Elsevier: New York, NY, USA, 1977.
18. Putnam, L.H. A general empirical solution to the macro software sizing and estimating problem. IEEE Trans. Softw. Eng. 1978,

SE-4, 345–367. [CrossRef]
19. Takahashi, M.; Kamayachi, Y. An empirical study of a model for program error prediction. In Proceedings of the 8th International

Conference on Software Engineering, London, UK, 28–30 August 1985; pp. 330–336.
20. Pillai, K.; Nair, V.S.S. A model for software development effort and cost estimation. IEEE Trans. Softw. Eng. 1997, 23, 485–497.

[CrossRef]
21. Khoshgoftaar, T.M.; Munson, J.C. Predicting software development errors using software complexity metrics. IEEE J. Sel. Areas

Commun. 1990, 8, 253–261. [CrossRef]
22. Khoshgoftaar, T.M.; Bhattacharyya, B.B.; Richardson, G.D. Predicting software errors, during development, using nonlinear

regression models: A comparative study. IEEE Trans. Reliab. 1992, 41, 390–395. [CrossRef]
23. Khoshgoftaar, T.M.; Munson, J.C.; Bhattacharyya, B.B.; Richardson, G.D. Predictive modeling techniques of software quality from

software measures. IEEE Trans. Softw. Eng. 1992, 18, 979–987. [CrossRef]
24. Khoshgoftaar, T.M.; Pandya, A.; Lanning, D. Application of neural networks for predicting program fault. Ann. Softw. Eng. 1995,

1, 141–154. [CrossRef]
25. Schnieidewind, N.F. Software metrics model for integrating quality control and prediction. In Proceedings of the Eighth

International Symposium on Software Reliability Engineering, Washington, DC, USA, 2–5 November 1997; pp. 402–415.
26. Schneidewind, N.F. Measuring and evaluating maintenance process using reliability, risk, and test metrics. IEEE Trans. Softw.

Eng. 1999, 25, 768–781. [CrossRef]
27. Li, P.L.; Shaw, M.; Herbsleb, J.; Ray, B.; Santhanam, P. Empirical evaluation of defect projection models for widely-deployed

production software systems. In Proceedings of the 12th ACM SIGSOFT Symposium on Foundations of Software Engineering,
Newport Beach, CA, USA, 31 October–6 November 2004; pp. 263–272.

28. Khoshgoftaar, T.M.; Gao, K.; Szabo, R. Comparing software fault predictions of pure and zero-inflated Poisson regression models.
Int. J. Syst. Sci. 2005, 36, 705–715. [CrossRef]

29. Amasaki, S.; Yoshitomi, T.; Mizuno, O.; Takagi, Y.; Kikuno, T. A new challenge for applying time series metrics data to software
quality estimation. Softw. Qual. J. 2005, 13, 177–193. [CrossRef]

30. Ascher, H. Proportional hazards modelling of software failure data. In Software Reliability; State of the Art Report; Bendell, A.,
Mellor, P., Eds.; Pergamon Infotech: Berkshire, UK, 1986; pp. 229–263.

31. Ascher, H. The use of regression techniques for matching reliability models to the real world. In Software System Design Methods,
NATO ASI Series; Skwirzynski, J.K., Ed.; Springer: Berlin/Heidelberg, Germany, 1986; Volume F22, pp. 366–378.

32. Bendell, A. The use of exploratory data analysis techniques for software reliability assessment and prediction. In Software System
Design Methods, NATO ASI Series; Skwirzynski, J.K., Ed.; Springer: Berlin/Heidelberg, Germany, 1986; Volume F22, pp. 337–351.

33. Evanco, W.M.; Lacovara, R. A model-based framework for the integration of software metrics. J. Syst. Softw. 1995, 26, 75–84.
[CrossRef]

34. Evanco, W.M. Using a proportional hazards model to analyze software reliability. In Proceedings of the 9th International
Conference Software Technology & Engineering Practice, Pittsburgh, PA, USA, 2 September 1999; pp. 134–141.

35. Nishio, Y.; Dohi, T. Determination of the optimal software release time based on proportional hazards software reliability growth
models. J. Qual. Maint. Eng. 2003, 9, 48–65. [CrossRef]

36. Cox, D.R. Regression models and life-tables. J. R. Stat. Soc. 1972, B-34, 187–220. [CrossRef]
37. Murphy, S.; Sen, P. Time-dependent coefficients in a Cox type regression model. Stoch. Process. Their Appl. 1991, 39, 153–180.

[CrossRef]
38. L. Tian, D.Z.; Wei, L.J. On the Cox model with time-varying regression coefficient. J. Am. Stat. Assoc. 2005, 100, 172–183.

[CrossRef]
39. Musa, J.D. Software Reliability Data, Technical Report, Data and Analysis Center for Software; Rome Air Development Center: New

York, NY, USA, 1979.
40. Shibata, K.; Rinsaka, K.; Dohi, T. Metrics-Based Software Reliability Models Using Non-homogeneous Poisson Processes. In

Proceedings of the 2006 17ths International Symposium on Software Reliability Engineering, Raleigh, NC, USA, 7–10 November
2006; pp. 52–61.

http://dx.doi.org/10.1109/TSE.1976.233837
http://dx.doi.org/10.1109/TSE.1978.231521
http://dx.doi.org/10.1109/32.624305
http://dx.doi.org/10.1109/49.46879
http://dx.doi.org/10.1109/24.159804
http://dx.doi.org/10.1109/32.177367
http://dx.doi.org/10.1007/BF02249049
http://dx.doi.org/10.1109/32.824387
http://dx.doi.org/10.1080/00207720500159995
http://dx.doi.org/10.1007/s11219-005-6216-8
http://dx.doi.org/10.1016/0164-1212(94)00129-B
http://dx.doi.org/10.1108/13552510310466873
http://dx.doi.org/10.1111/j.2517-6161.1972.tb00899.x
http://dx.doi.org/10.1016/0304-4149(91)90039-F
http://dx.doi.org/10.1198/016214504000000845

Electronics 2022, 11, 2353 18 of 18

41. Okamura, H.; Etani, Y.; Dohi, T. A Multi-factor Software Reliability Model Based on Logistic Regression. In Proceedings of the
2010 IEEE 21st International Symposium on Software Reliability Engineering, San Jose, CA, USA, 1–4 November 2010; pp. 31–40.

42. Kuwa, D.; Dohi, T. Generalized Logit Regression-Based Software Reliability Modeling with Metrics Data. In Proceedings of the
2013 IEEE 37th Annual Computer Software and Applications Conference, Kyoto, Japan, 22–26 July 2013; pp. 246–255.

43. Kuwa, D.; Dohi, T.; Okamura, H. Generalized Cox Proportional Hazards Regression-Based Software Reliability Modeling with
Metrics Data. In Proceedings of the 2013 IEEE 19th Pacific Rim International Symposium on Dependable Computing, Vancouver,
BC, Canada, 2–4 December 2013; pp. 328–337.

44. Nagaraju, V.; Jayasinghe, C.; Fiondella, L. Optimal test activity allocation for covariate software reliability and security models. J.
Syst. Softw. 2020, 168, 110643. [CrossRef]

45. Lawless, J.F.L. Regression methods for Poisson process data. J. Am. Stat. Assoc. 1987, 82, 808–815. [CrossRef]
46. Goel, A.L. Software reliability models: Assumptions, limitations, and applicability. IEEE Trans. Softw. Eng. 1985, SE-11, 1411–1423.

[CrossRef]

http://dx.doi.org/10.1016/j.jss.2020.110643
http://dx.doi.org/10.1080/01621459.1987.10478502
http://dx.doi.org/10.1109/TSE.1985.232177

	Introduction
	Related Works
	NHPP-Based Software Reliability Modeling
	Proportional Intensity Model
	Model Description
	Maximum Likelihood Estimation

	Numerical Examples
	Goodness-of-Fit Performance
	Predictive Performance
	Software Reliability Assessment

	Conclusions
	References

