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Abstract: Wearing a hard hat can effectively improve the safety of workers on a construction site.
However, workers often take off their helmets because they have a weak sense of safety and are
uncomfortable, and this action poses a large danger. Workers not wearing hard hats are more likely
to be injured in accidents such as human falls and vertical falls. Therefore, the detection of wearing
a helmet is an important step in the safety management of a construction site, and it is urgent to
detect helmets quickly and accurately. However, the existing manual monitor is labor intensive, and
it is difficult to popularize the method of mounting the sensor on the helmet. Thus, in this paper,
we propose an AI method to detect the wearing of a helmet with satisfactory accuracy with a high
detection rate. Our method selects based on YOLOv4 and adds an image super resolution (ISR)
module at the end of the input. Afterward, the image resolution is increased, and the noise in the
image is removed. Then, dense blocks are used to replace residual blocks in the backbone network
using the CSPDarknet53 framework to reduce unnecessary computation and reduce the number of
network structure parameters. The neck then uses a combination of SPPnet and PANnet to take full
advantage of the small target’s capabilities in the image. We add foreground and background balance
loss functions to the YOLOv4 loss function part to solve the image background and foreground
imbalance problem. Experiments performed using self-constructed datasets show that the proposed
method has more efficacy than the currently available small target detection methods. Finally, our
model achieves an average precision of 93.3%, a 7.8% increase over the original algorithm, and it
takes only 3.0 ms to detect an image at 416 × 416.

Keywords: small-object detection; helmet detection; image super resolution; YOLO; YOLOv4; safety

1. Introduction

Construction site safety is more important than ever as more and more infrastructure
needs to be built as the industry revitalizes. Accidents can be prevented by using personal
protective equipment [1]. Helmets are the most important personal protective equipment
to protect workers from falling objects [2], and it is legally mandatory at construction sites
around the world to wear them [3]. However, wearing a hard hat tends to be neglected due
to discomfort and a weak sense of safety. Therefore, it is very important to check whether
the worker is wearing a helmet for the safety of the worker, and it is possible to increase
the level of safety management. In existing helmet-wearing inspections at construction
sites, surveillance image inspection and manned patrols are performed [4]. However, this
method requires a lot of time and effort, and a manual monitor may cause misjudgment
due to fatigue because the examiner must stare at the screen for a long time. Accordingly,
image analysis techniques are rapidly developing with the help of new technologies and
sensors to detect helmets at construction sites.

Although the number of deaths from industrial accidents has decreased compared
to the past, the death rate in the construction industry is still high, and more than half

Electronics 2022, 11, 2348. https://doi.org/10.3390/electronics11152348 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11152348
https://doi.org/10.3390/electronics11152348
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-4061-9532
https://doi.org/10.3390/electronics11152348
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11152348?type=check_update&version=2


Electronics 2022, 11, 2348 2 of 18

of all deaths occur in the construction industry. Not wearing a helmet at a construction
site can lead to a fatal accident. Therefore, to prevent such fatal accidents, a system that
recognizes and detects whether a helmet is worn at a construction site is required. Advances
in computer technology have made it possible to train large-scale deep neural networks by
applying GPUs for massively parallel computing [5,6].

Object detection is an essential capacity of computer vision solutions. It has gained
attention over the last few years by using the core components of parallel-Self-Organizing
Map (SOM) that are used for the classification of meteorological radar images [7]. Miller et al.
used the congealing process to minimize the summed component-wise (pixel-wise) en-
tropies over a continuous set of transforms on the images’ data to demonstrate a procedure
for effectively bringing test data into correspondence with the data-defined model pro-
duced [8]. In the field of object detection, a series of deep learning-based methods have
been developed, and CNNs (Convolution Neural Networks) are the most used because of
their excellent characteristics in high-level feature extraction. As a result, they are gradu-
ally replacing conventional detection methods in image analysis [9]. There are two main
methods for CNN-based object detection. The first is a two-stage detector that first extracts
a set of candidate regions where the object may be and then applies the CNN detector
to object classification and location. Representatives include R-CNN (Region-Based Con-
volution Neural Network) [10] and improved networks such as Fast R-CNN [11] and
Faster R-CNN [12]. On the other hand, the single-stage detector treats object detection as a
regression problem, directly predicting class probabilities and bounding box coordinates
according to CNN features. Representative networks are the single-shot multibox detector
(SSD) [13], look-at-once (YOLO) [14], and the improved network [15]. The development
of CNN-based detectors has motivated deep learning-based hard hat-wearing detection
methods [16,17], and many researchers consider deep learning-based methods as essential
measures to solve construction safety management problems [18].

We developed a helmetless autodetector based on Faster R-CNN, achieving an accu-
racy of 90.1% to 98.4% in various scenarios [19]. However, Faster R-CNN cannot meet the
real-time requirement as it takes about 0.2 s to detect the image [20]. To improve Faster
R-CNN, we used multi-scale training, augmented anchor strategy, and online hard-example
mining. The safety helmet detection accuracy was finally improved by 7% compared to the
existing algorithm, but the operating speed did not improve. Recently, many researchers
have been working on single-stage detectors for hard hat detection tasks. Shi et al. [21]
extracted multi-scale feature maps using the image pyramid structure and combined them
with YOLOv3. In the research of Wu et al. [22], instead of the original backbone of YOLOv3,
a densely connected convolutional network [23] was adopted, resulting in better detection
results with the same detection time. Shen et al. [24] obtained a face-to-helmet regression
model after detecting hard hats based on the first stage face detector [25]. Li et al. [2]
chose the SSD algorithm to meet the real-time requirement and added MobileNet [26]
to reduce the computational load. Wang et al. [4] proposed a new objective function to
improve YOLOv3 and applied it to helmet detection. Single-stage detectors generally have
lower two-stage detector accuracy but provide higher throughput [27]. YOLOv4 is suitable
for real-time object detection by complying with both speed and accuracy among object
detection models [28]. All the above studies show that developing a deep learning-based
hard hat-wearing detection method can help reduce human and material resources, prevent
omissions and false positives caused by human factors, and lay the foundation for the
next step.

This paper proposes the image super revolution improved network based on YOLOv4
to solve the small helmet detection problem. The paper makes the following specific
contributions:

• To solve the small detection problem, we proposed, based on YOLOv4, the object
detection accuracy performance by increasing the resolution of low-resolution photos
through the ISR module and the high performance in our model.
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• To improve feature extraction, we proposed the CSP1-N network as the backbone
feature extraction network to improve feature extraction.

• To make detailed feature fusion processes during training we propose the CSP2-N
network in the neck.

• To train non-linear features, we propose the Hard Swish activation to improve the
model.

The structure of this paper is organized as follows. Section 2 introduces the related
works of safety helmet detection. Section 3 introduces the algorithm of the proposed model,
and Section 4 presents the experimental environment, training details, and analysis of the
results. In Section 5, we provide our conclusions.

2. Related Works

In this section, we will cover the general history and development of the YOLO
algorithm and how it has evolved in terms of speed and accuracy. Further, we will briefly
cover previous efforts to detect safety helmets on construction sites.

2.1. YOLO

The two main problems of object detection are classification and localization. When
those two problems are solved separately, we call it a two-stage detector. RCNN is a typical
two-stage algorithm. Two-stage algorithms have advantages in terms of accuracy, but it has
slow processing speed and structural complexity. On the other hand, a one-stage detector
solves the two before-mentioned problems in one process. YOLO is one such process. The
one-stage detector YOLO is an algorithm that can be used as an end-to-end training method.
It approaches the problems of categorizing and locating as a single regression problem.
YOLO divides the input image into an S × S grid [14]. If the center of an object is within
a specific grid, the grid takes on the role of detecting the object. In each grid, B bounding
boxes are predicted. Confidence scores predicted for each B-Box have a value between 0
and 1, indicating the probability that an object exists in the corresponding bounding box.
In addition, each grid also predicts the probability of classes. The final predicted value
has a tensor value of size (S × S × (B*5 + C). Finally, the final bounding box is selected
through non-max suppression. This method of YOLO shows a fast processing speed, but it
is difficult to detect small objects or close objects because only two boxes and one category
can be predicted in a region.

For the model to predict more boxes and show better performance, YOLOv2 borrows
the concept of anchor boxes from Faster-RCNN [10]. When using an anchor box, you only
need to predict the difference between the anchor box and the object. This makes it easier for
YOLOv2 to solve problems, which leads to improved performance. In addition, YOLOv2
changed the resolution of the input image to 416 × 416 pixels so that the last feature map
extracted was 13 × 13, which is an odd number so that an anchor box was created in the
center. In this way, the object in the center can also be predicted well. The grid of YOLOv2
provides five anchor boxes, so the size standard of the anchor box is determined based on
the anchor boxes clustered in the training set.

However, the YOLO family of algorithms shows weakness in small object detec-
tion. Therefore, YOLOv3 tried to solve this problem by using three different scales [29].
The three scales extract features at the pyramid level by adding a convolutional layer in
darknet-53. The added convolutional layer is used to create a feature pyramid. Upsampling
is performed twice on the final feature map, and the final feature map and the previous
two feature maps are combined with the upsampled feature map. After that, the merged
feature map is input to the Fully Convolutional Networks (FCN), and the same process is
applied to the feature map in the next level.

YOLOv4 designed the model using the latest deep learning techniques. When trained
based on a well-structured structure, it boasts very good performance in terms of speed and
accuracy. Compared with YOLOv3, the biggest difference is some additional techniques in
detecting and adjusting the network structure. Through this method, the performance of
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AP is increased by 10% and FPS by 12% compared to the previous model [4]. In YOLOv4,
the accuracy is increased by adding Bag of Freebies (BoF) and Bag of Special (BoS) tech-
niques. BoF is a factor involved in learning, such as data augmentation, loss functions,
and regularization, and refers to methods to increase accuracy by increasing the training
cost. BoS mainly refers to techniques from an architecture point of view, including post pro-
cessing and techniques to increase accuracy by only increasing the inference cost. YOLOv4
achieves an increase in processing speed by utilizing CSPDarknet in darknet-53, which
was used in the previous version. CSPDarknet proposed a cross-stage partial network
structure that can alleviate the very heavy inference costs and minimize the loss of accuracy.
After dividing the input feature map into two parts, one part is merged from the back
without participating in the operation. Based on this, inference cost, memory cost, etc.,
could be reduced. From the learning point of view, it is argued that the loss of accuracy is
small because it has a good effect on learning by dividing up the gradient flow.

Figure 1 shows the network structure of YOLOv4. It consists of a backbone with
CSPDarknet 53, a neck with a Path Augmented Network, and heads. The backbone extracts
the feature map from the input image. The neck is a recently used structure placed between
the backbone and the head. It is used to collect features from the various stages within the
neck; it is built using a few bottom-up, top-down paths. The head predicts the category
and bounding box of the object.

Figure 1. Network structure of YOLOv4.

2.2. Traditional Safety Helmet Detection

Accidents in constructions site can be significant when it damages human life. Espe-
cially when the brain is damaged, it can affect the construction worker permanently. Due
to the crucial importance of safety at construction sites, detecting safety helmets has been
worked on for past years. The detection of safety helmets mainly tried to detect outstanding
features of the helmet, such as its color and shape.
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Wen et al. [30] tried to detect a person wearing a safety helmet through the surveillance
camera of an ATM. They applied a circle/circular arc detection method based on the
modified Hough Transform. They placed an object that was taken by the surveillance
camera in the circular arc/circle, and used geometric features to detect whether the safety
helmet was in the arc.

Rubaiyat et al. [31] used the Histogram of Oriented Gradient (HOG) approach, a well-
known human detecting algorithm, to detect construction workers. Further, they used
Circle Hough Transform (CHT) with color to extract features of the safety helmets that
workers put on. Hu et al. [32] detected human faces through skin color by using the YCbCr
color model. By detecting human faces, they tried to locate safety helmets. To achieve
this goal, they used wavelet transforms to preprocess the image, and extract features of
safety helmets.

Liu et al. [33] located face regions by skin color detection, and by obtaining face
regions, they were able to acquire the region image above the face. Further, they used the
Hu moment to extract features and used neural networks and SVM to finish classification.
Du et al. [34] purposed a safety helmet algorithm through a Deformable Part Model.
With this model, they used Latent Support Vector Machine (SVM) to correctly train the
algorithm to classify and detect safety helmets. YOLOv4 can be used in different fields in
our society; Yu J. and Zhang W. use a face mask-wearing detection algorithm based on an
improved YOLOv4 by rebuilding the YOLOv4 network [35]. Li et al. [36] detected moving
objects in the power substation via the Vibe background modeling algorithm. Through the
motion–object segmentation they acquired through the algorithm, they processed it into a
C4, a real-time human classification framework. C4 allowed them to detect the workers
with high accuracy and processing speed. They used data to locate the worker’s head
and used color transformation and the color feature.

3. Realtime ISR-YOLOv4 Based Small Object Detection

Yu and Zhang and Wang et al. used the small object detection algorithm proposed
in this paper divided into input, backbone, network, neck network, and head. After im-
age super resolution processing is performed on the input part to extract small objects,
the backbone part is used to extract features of small objects from the image, the neck part
is used for multi-scale features, and the head part is used for multi-scale features It uses
a map to detect, then targets it and determine its location [35,37]. The major structure of
small object detection is divided into four categories, so we used this structure in safety
helmet detection by improving the backbone, neck, and prediction parts. The structure of
the algorithm is shown in Figure 2.

Figure 2. Proposed Helmet Object Detection Structure.
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3.1. Image Super Resolution (ISR)

The proposed small object detection algorithm proceeds with input, backbone, neck,
and head output. The input part performs ISR processing, extracts small object features
from the backbone image, the neck fuses multi-scale features, and the prediction specifies
detection using a multi-scale feature map. The algorithm is shown in Figure 2. The ISR
module was added to the input to capture local details of small targets. The main extracted
content used texture extraction for image enhancement and texture extraction for image
identification. In the backbone network, blocks in Darknet53 are connected in the same
way as each layer in DenseNet [23]. We use this specific association for training deeper
network structures and for neuronal modes of functional maps learned at different levels.
This connection can avoid overfitting with fewer parameters than other networks; the
neck requires fewer parameters than other networks and avoids overfitting. The neck part
maintains the PAnet structure and the original spatial pyramid pooling structure. PANet is a
functional fusion module of this part, combining different scale functions. Spatial pyramid
modules are structures added to the neck to amplify the usable fields of the network.
YOLOv4 [28] was selected as the head, and a loss function was added to the foreground
and background balance loss, reliability loss, and classification loss due to bounding box
regression to improve the accuracy of small object detection.

The ISR module input is split into two parts, content and local textures, as shown in
Figure 3. It is first extracted with a content extractor, and then sub-pixel convolution is used
to double the resolution of the content feature. The texture extractor connects the two parts
to the output terminals while selecting a trusted local texture from the base and reference
and function and denoising the reference function [37]. P0 represents the output of the
image super revolution module and is defined as:

P0 = Rl(I0 ⊗ Rc(I1) ↑2×) + Rc(I1) ↑2× (1)

I0 is the local texture input, I1 is the content input, R1() is the texture extraction
factor, Rc() is the content extraction factor, ↑2× indicates the secondary up-scaling via
sub-pixel convolution, and (X) indicates feature stitching. Both the content extractor and
the texture extractor consist of residual blocks. The default method uses sub-pixel con-
volution to perform advanced spatial resolution processing of the content features of the
underlying input.

To increase the pixel values of width and height, subpixel convolution transfers the
pixels in the channel dimension [37]. The features generated by the convolutional layer are
expressed as:

F ∈ RH×W×C·r2
(2)

The pixel shuffling operation of subpixel convolution rearranges the features to
rH × rW × C [37]. This operation is mathematically defined as:

PS(F)x,y,z = Fbx/λc,by/λc,C·λ· mod (y,λ)+C· mod (x,λ)+z (3)

The pixel-representing part of the output feature is PS(F)x; y; z, and the coordinates
(x; y; z), r after the pixel shuffling operation PS(), are the upscaling factors. ISR is where
PS(F)x; y; z represents the output feature pixel. The coordinates (x; y; z) of the pixel shuf-
fling operation PS() are upscaling factors. The size of the space is doubled by using D2
in the ISR module. D and content input A are sent from the texture area to the texture
extraction, which makes the extraction of small objects highly reliable. Adding textures
and content on an element-by-element basis allows the output to incorporate semantic
and local information from inputs and references. Thus, P() has a similar meaning to the
trusted texture selected from shallow feature D and deeper level 11.
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Figure 3. ISR-Module Framework.

3.2. Backbone Network

We add the remaining modules to YOLOv4 to reduce the parameters and improve
the network learning ability. Yu and Zjang used CSPNDarkNet53 as a face mask-wearing
detection module. The rest of the unit can be expressed as follows. First, there was a 1 × 1
convolution; we then proceeded with a 3 × 3 convolution, after which they added weights
to both outputs of the module. The weights retain dimensional information, and the goal
is to augment the information in the feature layers [35]. We used this method in helmet
detection differently; by maintaining the first and last CSP connections of each extra residual
network, inter-edges are added between every two adjacent extra blocks to provide cross-
layer flow separation of gradients and accelerate forward propagation while simultaneously
repeating deeply repeating extra blocks. It whitens wasted and vanishing resources that
occur in between. After the image feature layer set CSPDarkNet53 is the input, it continues
to perform convolutional downsampling to get better information. Therefore, the three
layers at the end of the backbone have the best semantic information and configuration,
and the last three layers are chosen as input to the SPPNet. The network structure of
CSPDarkNet53 is shown in Figure 4.
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Figure 4. CSPDarknet Network Structure.

In this paper, CSPDarknet53 of YOLOv4 was changed to a CSP1-N module for in-
creased performance. YOLOv4 uses redundancy networks to lower the computing perfor-
mance requirements for the algorithm, but the memory requirements are partially improved
with the CSP1-N module.

Compared to CSPDarkNet53 in Figure 4, it is an upstream network using an H-Swish
function [38], as shown in the following equation

h-swish (x) = x
ReLU 6(x + 3)

6
(4)

Since the Swish function [39] contains a sigmoid function compared to the ReLU
function, the Swish function has higher computational performance requirements but
better accuracy. In addition, the model runtime reduction slope error attenuation can be
reduced through the H-Swish function. It has been reduced in past work [40]. It also
improves the model object detection accuracy performance by segmenting the input layer
of the image block in CSP1-N. As shown in Figure 5, it is used as the residual edge of the
convolution operation.

Figure 5. CSP1-N Network Structure.

3.3. Neck Network

Convolutional neural networks require the input images to be the same size. In conven-
tional convolutional neural networks, fixed input values are obtained through truncation
and warping operations. There is also a study in which Yolov4 uses multi-scale local func-
tion to improve the demand for fixed input size through SPPNet [41]. Yu and Zjang, by
adding the CSP2-N module to the PANnet structure to combine full functional information
and multiple scales, improved the model performance accuracy and functionality. CSP2-N
is shown in Figure 6. The neck network of YOLOv4 adopts common convolution opera-
tion, and CSPNet has advantages such as excellent learning ability, computing bottleneck,
and memory cost reduction. By improving the CSPNet network module based on YOLOv4,
the network function convergence function can be further strengthened Ref. [35]. However,
in our experiment, we add the CBL-Resunit structure for the information delivery networks
to optimize the connectivity of the neck, and the main role is to use the cross-layer connec-
tivity properties of ResNet to allow the information processing to be distributed through
multiple paths in the FPN and PAN. Information and localization are effectively fused
through different pathways to improve image processing. The SPPNet network composes
functional fusion between other backbone layers at the neck by combining the bottom-to-
top deep positioning function, and in PANet, the top-to-bottom calculation method for
detailed functions is implemented through this convergence operation. It provides more
useful features for predictive networks. The CSP2-N network is shown in Figure 6.



Electronics 2022, 11, 2348 9 of 18

Figure 6. CSP2-N Network Structure.

3.4. Tiling Images

Tiling effectively magnifies the detector on small objects but can maintain the small
input resolution needed to run fast inference. If you use tiling during training, it is important
to remember that you need to tile the image at inference time for more accurate results.
This is because we want to keep the zoomed perspective so that the object during inference
is sized similar to the object during training. Here is a model trained to detect helmets via
construction site photos. In Figure 7, the model was trained with tiling to better recognize
helmets given the small size and large size of the source image, but if tiling was not used in
the inference, instead of helmets, it will detect fittings and other large shapes. The object
we tried to detect during training.

Figure 7. Tiled image during inference training.

Therefore, we tiled the image before running the inference. Figure 8 allows you to
magnify parts of the image and make the helmet easier to detect against the model.

3.5. ISR-YOLOv4 Network Structure

The improved network model uses three CSP1-N networks in the singularity extrac-
tion network from the backbone, as shown in Figure 9, and each CSP1-N network has
N remaining units. In this paper, to reduce the computational requirements, the residual
modules are connected in series with N residual unit combinations. This method can mod-
ify two 3 by 3 convolution operations with 1 by 1, 3 by 3, 1 by 1 convolution modules.
The first 1 by 1 convolutional layer can reduce parameters while reducing the number of
channels to approximately 50%. A 3 × 3 convolutional layer can improve feature extrac-
tion and reuse the residual number of channels. Finally, the 1 × 1 convolution operation
recovers the output of the 3 × 3 convolution layer, so the alternative convolution opera-
tion is efficient and has high accuracy for feature extraction and can reduce the computer
performance requirements.
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Figure 8. Tiled image before inference training.

Figure 9. Improved YOLOv4 Network.

4. Experiment and Results
4.1. Experiment Environment

All experiments and evaluations in this study were conducted on a 52 GB RAM and
NVIDIA Tesla V100 16 GB GPU. An anomaly detection model was built using PyTorch
version 1.10.0 + cu111. The learning hyperparameters were 300 epochs, batch size 8, learning
rate 10−5, and patch size 64. Table 1 shows the H/W and S/W Specification.



Electronics 2022, 11, 2348 11 of 18

Table 1. H/W and S/W Specification.

H/W and S/W Specification

System Window 11
CPU Intel Core i9 11900K

Memory 52 GB
GPU Nvidia Tesla V100 16 GB

OS Type 64-bit
CUDA version 11.0
Pytorch version 1.5.1

We also considered the problem of object detection to improve model performance by
objectively collecting helmet and head images with various scenarios from the web and
mostly on construction sites. Our dataset is rich as it learns by considering the manufac-
turing environment and outdoor and indoor factors sufficiently. Moreover, we collected
various small helmet and head images for increased model precision. Therefore, the model
algorithm has excellent helmet detection ability not only in the manufacturing environment
but also in various environments. In this experiment, the head of each figure is each label.
Label 0 is “head” without a hard hat. Label 1 indicates a “helmet”, a head with a hard hat,
namely two categories of detection. Table 2 shows the datasets used in the experiments.

Table 2. Dataset.

Category Train Set Test Set Validation Set

helmet 7185 1532 512
head 7025 1512 645

4.2. Performance Metric

The precision (P) and recall (R) curves were referenced as a function of precision (y-axis)
and recall (x-axis) for different probability thresholds. Comparisons with single variables
and comparisons of different models allowed a more holistic understanding of the relation-
ship between precision and recall. Precision and recall are expressed by Equation (5).

precision =
TP

TP + FP

recall =
TP

TP + FN

(5)

TP() is defined as the number of individuals that correctly predicted true positives for
each class, and FP() is defined as the number of individuals whose content was predicted
differently. False negatives (FN) represent the number of correct answers that the model
did not predict. Object detection studies generally show that the closer the curve is to the
upper right corner, the better the model’s performance. Mean Average Precision, which is the
average value of the Average Precision of the entire class, is expressed by Equation (6).

Mean Average Precision =
∑n

i=1 Average Precisioni

n
(6)

In Equation (6), n is the number of classes, and the average precision of each class
corresponds to the area under the precision-recall curve. In general, the higher the mean
average precision, the better the model’s performance. However, there is a trade-off between
precision and recall in Equations (5) and (6). The detection capability evaluation metrics
F-Mesure is expressed as follows.

Fα =

(
α2 + 1

)
× P× R

α2(P + R)
(7)
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The precision ratio and recall mean are expressed as F1 in Equation 8 when

F1 =
2× P× R
(P + R)

(8)

4.3. Results
4.3.1. Hyperparameters of the Model

All experiments were performed under the following parameters epoch 300, batch size 8,
and input image size 416 × 416 × 3. The parameter tuning process is shown in Table 3.

Table 3. Hyperparameters of the Model.

Hyperparameters Value

width 416
height 416

channels 3
momentum 0.949

decay 0.0005
angle 0

saturation 1.5
exposure 1.5

hue 0.1
learning rate 0.00261
max batches 500,500

4.3.2. Model Size and Training Time

Model sizes are 0.371× and 0.387× for YOLOv4 and YOLOv3. Under the same condi-
tions, the training time of this model was 2.945 h, which was the lowest among the YOLO
and SSD models in the experiment, followed by YOLOv6. Faster R-CNN requires a lot
of computing power because the model is applied by generating W × H × K candidate
regions using RPN (Region Proposal Network). Meanwhile, Faster R-CNN uses the full
connection layer in the ROI pooling layer while keeping the ROI pooling layer the same,
and many iterations occur in the network, reducing the learning speed of the model, as
shown in Table 4.

Table 4. Comparison of different models in parameters, model size, and training time.

Models Parameters Model Size Training Time

SSD 25.4 MB 92 MB 3.452 h
YOLOv3 59.9 MB 198 MB 7.951 h
YOLOv4 62.5 MB 201 MB 9.267 h

YOLOv-v5 65.3 MB 213 MB 10.152 h
YOLOv-v6 47.3 MB 132 MB 3.012 h

Proposed Work 46.8 MB 120 MB 2.945 h

4.3.3. Inference Time

In this paper, the real-time performance of the test was verified. Since FPS (frames per
second) is often used to measure the real-time performance of a model, it can be seen from
Table 5 that the higher the FPS, the better the real-time performance.
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Table 5. Comparison of inference time and real-time performance.

Models Inference Time

SSD 96.0 s
YOLOv3 156.8 s
YOLOv4 158.5 s
YOLOv5 160.2 s
YOLOv6 147.8 s
Proposed 148.9 s

4.3.4. Mean Average Precision

As shown in Table 6, our model has a Mean Average Precision (mAP) 0.15 higher than
Faster R-CNN mode, 0.118 higher than SSD, 0.107 higher than YOLOv3, 0.078 higher than
YOLOv4, 0.039 higher than YOLOv5, and 0.003 higher mAP than YOLOv6.

Table 6. mAP comparisons of different models.

Model Helmet AP Head AP mAP

SSD 0.819 0.811 0.815
YOLOv3 0.824 0.828 0.826
YOLOv4 0.858 0.853 0.855
YOLOv5 0.891 0.898 0.894
YOLOv6 0.928 0.932 0.930
Proposed 0.932 0.935 0.933

Through this experiment, we fully demonstrate that our model outperforms YOLOv4
and SSD in comprehensive performance and slightly outperforms the recently released
YOLOv6. However, the inference time was longer than that of YOLOv6. Faster R-CNN’s
mAP is higher than that of YOLOv4 and YOLOv3, but it has the lowest FPS, so the accuracy
is high, but being difficult to use as real-time detection is a common characteristic of
two-step detection algorithms.

As shown in Figure 10, our model detected safety helmets and the head well, both
in real-time.

Figure 10. Sample test data on real-time video from our proposed model, with non-worn safety
helmets and worn safety helmets.

As shown in Figure 11, our model detected non-wearing safety helmets even at a
long distance well.
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Figure 11. Sample test data on real-time video from our proposed model on small targets.

As shown in Figure 12, our model detected safety helmets at a long distance well.

Figure 12. Sample test data on real-time video from our proposed model from a drone angle view.

As shown in Figure 13, our model detected safety helmets at a long distance well.

Figure 13. Sample test data on real-time video from our proposed model on small target firemen.

As shown in Figure 14, our model detected and classified the people who were wearing
the safety helmets or not well, even if there are a lot of people.
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Figure 14. Sample testdata on real-time video from our proposed model who are wearing and not
wearing helmets.

As shown in Figure 15, our model detected safety helmets from the above view in a
busy construction site well.

Figure 15. Sample test data on real-time video from our proposed model from the above angle.

As shown in Figure 16, our model detected non-worn safety helmets well in a domain
different from construction sites.

Figure 16. Sample test data on real-time video on our proposed model indoors.
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5. Conclusions

In this experiment, we propose an improved network based on YOLOv4 to resolve the
helmet detection problem. Meanwhile, the efficiency and robustness model were verified
through comparative studies on object detection algorithms. First, we improved the object
detection accuracy performance by increasing the resolution of low-resolution photos
through the ISR module. The backbone feature extraction network was improved through
CSP-1N module feature extraction, and CSP2-N was used in the neck part so that the model
can handle parallel process learning. Further, to improve the model learning non-linear
functions, the H-Swish activation function was added.

As a result of the experiment, our method in this paper showed the best performance
detection accuracy on safety helmet detection compared to other algorithms. In addition,
the algorithm also reduces the model’s requirements for training cost and model complexity,
allowing the model to be deployed to medium-sized devices and used in other industries
where helmet-wearing decisions are required.

However, in this study, there is still a problem of insufficient feature extraction for
difficult-to-detect samples or missing and false-positive cases, and it is difficult to collect
a lot of data according to the Personal Information Protection Act. In addition, there is
still a point where the type of helmet cannot be identified. Therefore, the next step should
be extended to more object detection tasks by extending the dataset to helmet types and
gaining further improvements to the model in the current work.
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