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Abstract: Aerial image-based target object detection has several glitches such as low accuracy in
multi-scale target detection locations, slow detection, missed targets, and misprediction of targets.
To solve this problem, this paper proposes an improved You Only Look Once (YOLO) algorithm
from the viewpoint of model efficiency using target box dimension clustering, classification of the
pre-trained network, multi-scale detection training, and changing the screening rules of the candidate
box. This modified approach has the potential to be better adapted to the positioning task. The aerial
image of the unmanned aerial vehicle (UAV) can be positioned to the target area in real-time, and the
projection relation can convert the latitude and longitude of the UAV. The results proved to be more
effective; notably, the average accuracy of the detection network in the aerial image of the target area
detection tasks increased to 79.5%. The aerial images containing the target area are considered to
experiment with the flight simulation to verify its network positioning accuracy rate and were found
to be greater than 84%. This proposed model can be effectively used for real-time target detection for
multi-scale targets with reduced misprediction rate due to its superior accuracy.

Keywords: image processing; convolutional neural network (CNN); YOLO; target detection;
Darknet 19

1. Introduction
1.1. Background

The researchers have remarkable achievements in Computer vision due to its devel-
opments in deep learning algorithms, hardware requirements, and the obtainability of
datasets. Notably, object detection is one of the most important research directions in com-
puter vision and large numbers of target detection techniques have recently been developed.
Because, the targets in a scene vary in size, it's more critical to detect and recognize them at
varied scales. Small object detection and localization error are a hard and exciting challenge
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in the task of object identification that has attracted the interest of researchers, motivating
them to enhance task performance in aerial object recognition and tracking to minimize
human effort with increased efficiency. Although deep detection models were designed to
handle challenges connected to broad object detection, they nonetheless contribute to the
success of small object detection on a specific level. To improve the detection performance
of targets with different sizes, a multi-scale target detection algorithm is essential using
multi-scale detection training, with changing the screening rules of the candidate box.

1.2. Literature Review

Specifically, object detection is the most cited research task due to its broad appli-
cation in several domains [1]. The unmanned aerial vehicles (UAV) have exposed their
extraordinary impending for commercial, military, and civil-government applications in a
broad range, notably infrastructure inspection, aerial photography, logistics, etc. [2]. The
engagement of a UAV integrated with computer vision practices is absolutely beneficial
for errands that necessitate distinctive conception and robust insight [2,3]. Deep learning
with a convolutional neural network (CNN) in the extraction of high-level image features
has several advantages [4]. Additionally, some of the researchers proposed a regional
convolutional neural network (RCNN) with the VOC2012 data set [5], and the average
accuracy of target detection mean Average Precision (mAP) increased notably. Also, the
authors demonstrate that Fast RCNN and ultra-fast Faster RCNN [6,7] offer superior ac-
curacy with relatively faster, and the frame rate can reach five frames/s. Redmonet al. [8]
proposed YOLO that reaches the speed to detect video at 45 Frame/s. While increasing
detection speed, YOLO sacrificed accuracy and found a new way to combine classification
and localization for future research purposes.

Further, Liu et al. [9] and Redmon et al. [10] suggested YOLO and Single Shot Multi-
Box Detector (SSD) map that the detection speed increased significantly and achieved
satisfactory results for overall systems. For the target detection process in the VOC 2007
dataset, when the detection speed is 67 frame/s, the mAP reaches 76.8% in the field of
target detection and achieves the best detection results. Target detection and aerial image
positioning task have many similarities, and all need to target areas with fast and accurate
positioning. From the perspective of human cognition and judgment position, the eye can
see the scene; a human can quickly find and locate the target object, which is the target
detection process that requires the computer to complete the task.

Similarly, during the flight, the pilot can roughly determine the aircraft’s location
according to the familiar target area on the ground, but aerial image positioning also needs
to teach the computer to complete the task. In recent years, the target detection technology
has matured, and the accuracy rate and detection speed have been significantly improved.
Some of the recent works carried out by the researchers are illustrated in Table 1.

Table 1. Recent research works carried out by the researchers.

Ref. No Methodologies Inferences Limitations
Single Shot Multi-Box - Used for V.ehlde detection. - Sensitivity and precision
[11] Detector (SSD) - Deep learning approach was adapted. scales were decreased
- Found to be faster than other compared models ’
- Adapted to identify the human presence. - The proposed approach is
[12] RCNN and HOG - Deep learning schemes were used. not suitable for real-time

- The overall performance showed superior

. . scenarios.
compared with other conventional schemes.
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Table 1. Cont.

Ref. No Methodologies Inferences Limitations
- Used to detect the human and pose estimation. Iraining descriptions are
. clutter-free, contextual, and

[13] GANet - Deep learning model was adapted. inaporopriate for real-time

- It offered ideal accuracy in detection. pprop

scenarios.

- Object detection was carried out using the

proposed method. s .
[14] MobileNet and SSD - Deep learning approach was considered. d:ﬂgrzgl;lfcefﬂiiit—(;b'ects

- It offered best better accuracy with the jects.

foreground and background attention model.

- Human action detection was carried out using

the considered model. - Waving hand action was
[15] CNN - Deep learning approach was adopted. concentrated more than the

- It detected the multiple actions of humans with  other movements.

good accuracy.

- Human detection and their counts were

—p ]':s)refg rrﬁzea(lirlfifrf\ecz Vei}c,).ach was used to stud - This work failed to focus on
[16] YOLO, SSD and RCNN the pgr formangce PP y more crowd patterns with

- It offered good accuracy in counting improved accuracy.

the humans.

- This work demonstrated the recognition of

human activity. - It failed to recognize the
[17] CNN - Deep learning approach was used. human action from different

- This pipeline scheme improved the accuracy camera angles.

and speed of the detection.

- This work identified the birds using the

proposed method. ) e
[18] Human shape validation filter - Deep learning approach was considered. . It show.e d some dlfﬁcult} e

. in detecting the smaller birds.

- The detection shows better accuracy than

other methods.

- This model was adapted to detect the apple

flower bud. - The classification
[19] YOLOv4 - Deep learning approach was considered. performance showed

- It helped to determine the heat requirement average results.

based on feasible detection.

- This work provided optimized performance in

both terms FPS and mAP. - This scheme offered less
[20] Tiny YOLO - Used the own dataset for training the data. accuracy for low-resolution

- Applied to detect the pest using the
proposed approach.

images.

Considering all the inferences and limitations, this work attempted to improve the

detection accuracy using the YOLO network and helped to study the aerial image posi-
tioning. Using the YOLO network as the main body, the improvement measures are put
forward through the target frame dimension clustering, classification network pre-training,
multi-scale detection training, and changing the screening rules of the candidate frame
to make it better adapt to the positioning task. The core problem of image localization is
transformed into the target detection problem, and the target detection data set is made by
selecting the flight test area and using the feature with apparent characteristics in the area as
the target area. It is possible to locate the target area in the aerial image acquired in real-time.
At the same time, two or more target areas of the judgment are adapted so that the relative
positional relationship between the targets can greatly improve the positioning accuracy.
However, the introduction of oblique projection to form an oblique image increases the
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difficulty of detection. Still, it can expand the range of aerial image storage so that a single
aerial image appears as much as possible in the target area to improve positioning accuracy.

2. Methodology
2.1. Principle Feature Extraction Network Darknet 19

YOLO plus SSD network structure with a new design classification network, namely
Darknet 19, acts as the basic model of the network. Before the YOLO model, most of the
target detection framework was carried out using VGG 16 [21] to extract features, but it is
more complex and offers computationally more intensive. The YOLO framework is similar
to GoogleNet [22] in the network structure, but the calculation is lower than VGG 16, with
a reduced accuracy rate compared with VGG 16. As a result, Redmon designed CNN with
both complexity and accuracy to improve the detection performance of the network [8].
The final base model adapted is Darknet 19, containing 19 convolution layers and five
top pooling layers. Like VGG 16, the network uses a large number of 3 x 3 convolution
kernels; after each pool operation (Size 2 x 2, Step 2) and the number of channels also
doubled. Based on the idea of Network In-network [23], the 1 X 1 convolution kernel is
placed between the 3 x 3 convolution kernel to compress features and increase network
depth. After each convolution layer, the bulk normalization operation is improved, and the
Dropout operation is removed. The performance of the Darknet 19, AlexNet [24], and VGG
16 is shown in Table 2. Darknet 19 is in the Top 1% and Top 5% in the accuracy of 72.9%
and 91.2%, respectively, which are higher than AlexNet and VGG 16. The time parameters
(Central Processing Unit (CPU) and graphics processor (GPU) are slightly longer than that
of AlexNet and VGG 16. The overall comparison shows that the performance of Darknet
19 is superior to others.

Table 2. Performance comparison of Darknet-19.

Model Top—1/% Top—5/% GPU/ms CPU/s
Alexnet 57 80.3 1.5 0.3
VGG-16 70.5 90 10.7 49

DarkNet-19 729 91.2 6.0 0.66
2.2. YOLO

YOLO structure and its improvement in the detection network use Darknet 19 as
the primary model for feature extraction. The modification is done by replacing the final
convolutional layer Darknet 19 network by adding three dimensions of 3 x 3. The number
of channels with 1024 convolution layer; each convolution layer, after adding a size of
1 x 1 convolution layer, the output dimension that is required to detect the number. Com-
pared with conventional YOLO, this modified structure removes the complete connection
layer. The whole network is a convolution operation that retains the spatial information,
i.e., each feature point and the resulting original map of each correspondence. And they
are drawing on the ideas of anchors in the Faster RCNN [25] method for the target box
dimension and clustering data set to determine the size and number of anchors. The
category predictions in YOLO are no longer tied together with each cell but rather by using
anchors to predict categories and coordinates simultaneously. Due to removing the fully
connected layer, the model contains only Convolution and pooling layers, so the input size
is flexible. When training, every few rounds can change the model input size, and therefore
the model for different size image become robust. Every ten cycles, the model randomizes
to obtain a new image dimension as input to proceed with the training. This rule forced
the model to consider different input resolutions. The model is faster for small input sizes;
YOLO can adjust the speed and accuracy when required. In the case of low resolution
(288 Pixel x 288 Pixel) as illustrated in Table 3, YOLO's processing speed can reach up to
90 Frames/s in the case of accuracy and Fast RCNN flat results are obtained from [10]. In
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the case of high resolution, the mAP of YOLOv2 in the data set of VOC 2007 can achieve
the best results.

Table 3. Performance comparison of object detection box with state-of-the-art results.

Detection
Network

Fast
R-CNN

Faster Faster
R-CNN R-CNN YOLO SSD 300 SSD 500
VGG-16 Resnet

YOLO YOLO
288 x 288 544 X 544

mAP

70

73.2 76.4 63.4 74.3 76.8 69.0 78.6

FPS

0.5

7 5 45 46 19 91 40

2.3. Coordinate Transformation

The camera coordinate system (x, y., zc) to the camera optical lens center ‘S” as the
origin, the z-axis is perpendicular to the imaging plane up to the positive direction, and
x-axis and y-axis are parallel to the two sides of the imaging plane (Figure 1). The global
coordinate system (X, Y, Z¢) uses the internationally adopted geocentric coordinate
system to the Earth centroid as the coordinate origin of the WGS 84g coordinate system.

Figure 1. Imaging Model Diagram.

The external orientation elements of the imaging model comprise of 3 corner elements
(¢, w, and «x) and 3 line elements (X, Ys, Z;), which are used to describe the spatial
position coordinates of the camera’s spatial posture and the Optical Center Point S. Global
coordinates (Xg, Yy, Z¢) and the camera coordinates (xc, yc, zc) of the conversion is derived
using the below formula [26]:

cosxcosk —sinasinwsink —cosasink —sinasinwsink —sinacosw]| [x, X

cos wsink cosw cosk —sinw Vel + 1Y 1

sinacosk + cosasinwsink —sinasink 4+ cosasinwcosk  cosa cosw Ze Zs

where X; and Y are the items to be solved and Z; is the known item representing the flight
altitude of the aircraft. Point A coordinates in the camera coordinate system are expressed
as (Xa, Yp, —f), where X4, Y4 represents a point A location in aerial imagery; f represents
a focal length which is a known term of the coordinates in the global coordinate system
(X4, Yp, 0); wherein X4 and Yp represent the coordinates of the target area as a known item
and B states the midpoint of the plane.
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The coordinates in the global coordinate system are Xg, Y, 0, according to the points

S, A, B. The coordinate conversion relationship X can be derived between the positional as
illustrated below:

[(XaYaZa] = Mlxaya — f]+ [XsYsZs] @)

In Equation (2), where the coordinates of the rotation matrix of 3 x 3 consist of three
corner elements and M terms the aerial map. Further, the synthesis of both the equations
can be calculated by X5 and Y, i.e., by calculating the projection relationship and the
coordinate conversion. The coordinates of the onboard camera can obtain the coordinates
of the center of the target area to obtain the coordinates of the centroid of the UAV.

3. Improved Method

Although YOLO has achieved the best detection results, it is not entirely suitable for
image localization tasks. As shown in Figure 2, the basis of the YOLO network mainly
improved by combining two different approaches as follows:

(1) The target frame of the self-made data set dimension clustering determines the anchor
parameters of YOLOV2 are determined by clustering of VOC2007 and VOC2012datasets.
The determined parameters of YOLOv2 are universal but not suitable for specific
detection tasks; therefore, it is necessary to re-clustering operation in the self-made
aerial image detection data set.

(2) Fine-tune the network using a different set of self-made data in classification network
training. Like the YOLO, the first use of ImageNet dataset for pre-training, and the
difference is the use of homemade resolution different image classification data set,
can get a better fine-tuning effect.

(3) During the training process, every ten rounds change the input size of the model, and
therefore, the model of different scales of the image becomes robust. The input data is
self-made aerial image detection data set.

(4) Modify the filter rules of the candidate box to change the non-Maxima suppression
(NMS) operation to the maximum value. The screening rule of the candidate frame
in YOLO is NMS operation, but the maximum value operation can be carried out
directly on the image positioning problem in this work to improve the detection effect.

YOLO v2 network

<jj.

object box classified multi-scale change the filter
dimension network pre- detection rulq for the
clustering training training candidate box

image location

1

Figure 2. Schematic of the improved method.

3.1. Target Box Dimension Clustering

The target box dimension clustering YOLO works on the idea of the Faster RCNN
and introduces the anchors in a set of constant size and aspect ratio of the initial candidate
box anchor. The accuracy of the target’s detection concerning speed and the position of
the target box, but the anchor dimensions are set manually. Redmon et al. [8] proposed a
method of dimensionally clustering by k-Means for the data set manually labeled target
box clustering and finds the statistical laws of the target box. YOLO has five anchors, and
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the number of clusters from VOC and COCO is also 5. The ] function represents the sum
of squares of the distance from each sample point to its cluster center, and the purpose of
k-means is to adjust the | function to a minimum. When the number of clusters is increased
to a particular value with the increase in the number of clusters, the objective function
changes very little, and this inflection point can be considered the optimal number of
clusters—using the k-means algorithm to cluster the width and height of the target frame in
the data set, the objective function changes as shown in Figure 3a. When k > 4, the objective
function changes very little; therefore, it takes four as the optimal number of clusters. When
k = 4, the target block clustering distribution formed as shown in 3b, four different color
regions corresponding to four different types of the target frame are observed, and the
number of the anchor ‘1’ is 4; width and height dimensions are four color regions.

T

J(k)

0 12345678 910
k

(a) (b)

Figure 3. (a) Objective Function Change Curve (b) Cluster of Objective Box.

The center point of the cluster corresponding to the target frame width and height in
the configuration file changes the parameters anchors (11.68, 10.38), (18.11, 17.23), (9.59,
16.83) and (15.72, 20.75), corresponding to the green, red, blue, yellow cluster centers region.

3.2. Classification Network Pre-Training

Classification network pre-training is an essential part of target detection, and the
ability and speed of the classification network are to extract features directly, which affect
the target detection. A pre-trained version of the classification network on ImageNet [24]
can be used as a framework for extracting features, but due to the limitations of the fully
connected layer, the input data will be uniformly adjusted to a fixed size. The first step is to
pre-train the Darknet 19 and this is done through an existing data set named ImageNet.
Considering the pre-training’s performance, processing power and efficiency are advisable
to use low-resolution (224 x 224) pixel aerial images. The pre-training of these images on
the ImageNet data set allows classification and fine-tuning of Darknet 19 to recognize aerial
images exponentially.

The resolution in Darknet 19 can be changed to be higher 448 x 448 pixels and then
let the weight of every single layer adapt to the resolution. The classification algorithm
is switched to a detection algorithm better to adapt aerial image features and multi-scale
detection tasks.

3.3. Multi-Scale Detection Training

Since YOLO contains only the Convolution and pooling layer, it is possible to change
the size of the input image at any time. In the training process, the input size of the model is
changed every ten rounds, and therefore the model has robustness to the images of different
sizes. Since the down sampling factor of the model is 32, the size of the input image is a
multiple of 32, and the size calculation can be performed using the below formula:

S=232(7+a) 3)

where S is the size of the input image and a is a natural number randomly generated
in the 0~12. This multi-scale training rule forced the model to adapt to different input
resolutions. Compared with the fixed-resolution model, the multi-scale detection training
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is faster for low-resolution input image detection and more accurate for high-resolution
input image detection.

3.4. Change the Candidate Box

Initially, the input Aerial image is divided into S x S grid blocks, and each block
predicts the object present at the center of the block, where bounding boxes and their
confidence scores are estimated. During the training process, each candidate box of YOLO
will calculate their confidence as follows:

Class;
_ ; truth
CScong = Pr(Object) x Ry x Pr<Objeclt) 4)

truth

The class specific confidence score, CS.yf, is defined as Pr (Oobject) * grid Rimd ,

where Pr (Oobjgct> represents the probability that the block contains an object in the pre-
truth
pred
the bounding box and the ground truth. The block i the bounding box is also predicts

the uncertain class probabilities, Pr (%) , for class objects to determine which class the

dicted bounding box and the target grid R helps to predict the rate of overlap between

object in the bounding box belongs to. If the bounding box is appeared in the area where
the object exists, then Pr (Oob]-gct) takes 1; otherwise, takes 0.

Pr (Oobject) * R;r:é;h = Pr(Class;) * Rgféff’ 5)

where Pr (Oobjgct> and Pr(Class;) represents each grid prediction category probability score.

After the composite score of each candidate box is obtained, the threshold value of Tyjespo14
is set, and the candidate box with a low score is filtered out. Thus, the Non-maximum
Suppression (NMS) operation is changed to the maximum value of the operation, i.e.,
taking the maximum value in several groups. It is more significant than the threshold value
of the composite score uniquely by determining the position of the candidate frame and
its prediction category. The maximum value of the operation in the aerial image of a class
of target area can only detect a target box that can effectively avoid the target area and
calculated as:

Pr(Classi) = Pr (Oobjecti> * Rgx;h 2 Tinresholds (6)

The false identification of a similar area caused by network detection improves target
detection accuracy.

4. Results and Discussions
4.1. Experimental Data

The experimental data is based on the rectangular area centered in Changchun city,
Jilin province. The source image was derived from Google Earth for April 2013, October
2015 and November 2016 in the city of Changchun in Jilin province Satellite Remote Sensing
which lies in the middle portion of the Northeast China Plain. The orbital aerial image
tile is captured from the altitude of 15 km above the sea level with an elevation of 200 m
with different aerial angles. This data set is divided into two categories: (1) pre-training
process that requires the use of classification data according to the resolution level which
is divided into two groups, namely 224 pixel x 224 pixel and 448 pixel x 448 pixel;
(2) detection network training that needs detection data according to the resolution and the
study area was divided into 256 square areas of the same size with classification data set
consists of 25 classes namely Agricultural land, Airport, Art gallery, Bus station, Church,
Colleges, Film studio, Football, court, Highway, Hotel, Industry, Lake, Library, Mountains,
Museum, Oil Mill, Open Mines, Park, Pond, Shopping mall, Tennis court, Theme park,
Town hall, Train station and Zoo, which marked evenly distributed areas with obvious
characteristics [27]. By rotating, adding noise, adjusting the tone, and other methods expand
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the number of samples [28]. Finally, the total number of samples of the classification data
set is 530,440, with the ratio of the high and low resolution of about 3:1. The total number
of samples of the test data is 38,200, with the number of samples of different resolutions
being almost the same. Also, the ratio of the ortho image to the tilted image is 1:1 in order.

4.2. Configuration and Training Results

The experimental configuration is as follows: graphics for NvidiaGTX 1070; Intel
CPU Core i7 6700; clocked at 3.40 GHz; memory is 32 GB; the operating system is Ubuntu
14.04. Further, the network parameter is as follows: learning rate is 0.0001; batch size is 64;
steps were taken as 100, 20,000, 3,500,000; max_batches are 50,000; scales are 10, 0, 1, 0.1;
momentu is 0.9; decay is 0.0005. As shown in Figure 4, the graph represents the number of
iterations, average interactions over union; the range is about 0~20,000 times with good
recall over 0.8 and reduced loss to 0.1. The ordinate of the scatter plot represents the four
important parameters in the course of target detection network training: category accuracy
rate, average overlap rate, recall rate, and loss value. With the increase in the number
of iterations, category accuracy and recall rate gradually close to 1; the average overlap
rate is stable at 0.883; the loss value dropped to about 0.1. From the convergence of the
parameters, the network training results are ideal.

5 1.0
©
isos
ERY 4
Py
&2 04}
[+
0 1 | 1 | <>: 0 2 1 1 1 1
0 0.5 1.0 1.5 2.0 "0 0.5 1.0 1.5 2.0
Interations /10* Interations /10"
(a) (b)
L i 2y
AL VI T g s, - L] Y
08 . 15
& 04F S
02k 0.5
0 1 1 1 | 0 "
0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0
Interations /10* Interations /10?
(0) (d)

Figure 4. Networking Training Parameters of the Convergence Scatter Plot. (a) Class. (b) Intersection.
(c) Recall. (d) Loss.

4.3. Performance Comparison
4.3.1. Candidate Frame Generation Scheme

This work discusses the method in correspondence to the candidate frame generation
schemes of Faster Region CNN and YOLO. As discussed earlier, clustering of the target
block concerning the target region of the self-made data set and the optimal candidate block
generation scheme of the self-made data set is obtained in Table 4. The Dimension clustering
gives 0.83 average overlap rates, which obtains better performance when compared Faster
Region based CNN and YOLO.
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Table 4. Anchors and Overlap rate.

Candidate Box Anchors Generated Average Overlap Rate
Faster Region based-CNN 7 0.77
YOLO 5 0.79
Dimension Clustering 4 0.83

4.3.2. Classification Network Pre-Training Method Comparison

The classification network pre-training method is divided into three steps that compare
each phase’s impact on the network classification extraction feature capabilities. Three
different stages of the pre-training network used to control other variables unchanged
as a feature extractor and uses the same method to detect network training. Also, the
comparison is carried out for the performance of three networks namely ImageNet with
448 x 448 pixels (blue line), ImageNet fine-tuned with low resolution of 288 x 288 pixels
(red line) and ImageNet fine-tuned with low resolution of 224 x 224 pixels (yellow line).
Fine to determine the effectiveness of the pre-training method. The effect of different
pre-training methods is illustrated in Figure 5 through the multi-resolution fine-tuning.
After the classification of the network in the detection task and found to be better for
ImageNet fine-tuned with low resolution of 224 x 224 pixels (yellow line) because mAP
value reached to 79.5 when compared to ImageNet with 448 x 448 pixels and ImageNet
fine-tuned with low resolution of 288 x 288 pixels. The results show that the pre-training
method of multi-resolution fine-tuning can significantly improve the feature extraction
capability of classification networks.

1.0p=

0.8f

0.6

— imagenet training,
MAP is 72.5

— low resolution fine tune,

0.2k MAP is 76.6

low resolution fine tune,

Precision

0.4F

MAPis 795 A
00— 02 04 06 08 L0
Recall

Figure 5. Comparison of different Pre-Training Methods.

4.3.3. Performance Measure between Different Networks

Performance measure of a multi-scale network is carried out by comparing a single-
scale network through multi-scale network training that can show the detection of different
scales of data sets. It offered strong adaptability through the detection of different scales of
data sets and tested to obtain multi-scale network and single-scale network performance,
as shown in Table 5. The input size of a single-scale network in Table 5 shows that the
increase of the detection data set scale improved the detection effect of the two networks.
Compared to a single-scale network with a multi-scale network, it is found that the smaller
the scale of the detection data set, the faster the detection speeds. Also, the larger the scale
of the detection data set, the higher the mAP value.
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Table 5. Comparison of multi-scale and single-scale network performance.

Detection of Multi-Scale Network Single-Scale Network
Dataset/(Pixel x Pixel) Detection Time/s mAP Detection Time/s mAP
224 x 224 0.01 71.1 0.013 70.3
320 x 320 0.012 74.8 0.014 74.2
416 x 416 0.015 77.5 0.015 77.8
512 x 512 0.018 79.4 0.016 784
608 x 608 0.029 80.9 0.018 78.9

4.3.4. Change Candidate Box Filtering Rules

To use the maximum value Operation MAX instead of NMS, change the candidate box
filter rule is adapted. Different screening rules, namely MAX and NMS training network
detection results are assessed and compared. It is found that the mAP value increased by
5 with NMS operation using the MAX rule screening network. So, the aerial image of a
class of target area will only detect the most a target box, as far as possible to avoid the
target area similar to the size of network detection. The comparison of different screening
effects is shown in Figure 6.

1.0

e
[

Precision
=
(=7 ]

<
>

=
0

— MAX, MAP is 79.5
— NMS, MAP is 74.5

0 0.2 04 06 08 1.0
Recall

Figure 6. Comparisons of Different Screening Effects.

4.3.5. Determining Optimal Threshold and Detection Validation Set

To determine the best threshold and test verification set in the detection process, setting
the threshold to filter out the low-score candidate box, and different detection results are
assessed. The improved method to train the detection network is compared with varying
values of threshold and shown in Table 6.

Table 6. Comparison of the detection effects of different thresholds.

Region Proposals/Image

Threshold (Rps/Img) Recall% Precision%
0.001 7.75 100 12.07
0.005 3.13 86.78 50.27
0.025 1.56 69.91 80.45

0.45 1.17 50.29 93.73

0.8 0.12 12.03 100
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Airport-

When using an improved method to complete the network training, the threshold is
set to 0.025 with the validation set of samples to verify the effect of training and obtains
results of precision as 80.45% and recall as 69.91%, which performs better when compared
with other threshold values. Further, a part of the ortho results is shown in Figure 7a; ortho
aerial image can accurately locate the position of the target area. Also, a part of the tilt
image detection is shown in Figure 7b; and the results in Figure 7 correspond to this. For
the same target area in aerial images, the different aerial angles will have a more significant
deformation, and the network can be a good deformation of the target detected.

Furthermore, a part of the multi-target image detection results are shown in Figure 8;
when there are two or more target areas in an aerial image, they can simultaneously
detect multiple target areas [29-33]. As discussed earlier, the coordinate conversion and
projection relationship can determine the latitude and longitude of the aircraft through the
target frame mark aerial image position. When an aerial image contains multiple target
frames, the need for comprehensive judgment takes place during multiple target frames are
determined, the aircraft’s latitude and longitude at the same time within the error range,
and the output is positioned.

‘ -~ {1y~
A
\\\\ s )}

\\\\ I\

Figure 7. Cont.



Electronics 2022, 11, 2343

13 of 16

(b)

&
>

‘s af R o

F,ijotball court

£

el P v
Fodthall o b
- Qé:tba Cpuft)z

K DN

Figure 8. Detection Results of Multi-Target Image.

4.4. Simulation Verification

A simulation experiment was carried out under the Skyline environment of a high-
resolution landscape to improve the method of training a good YOLO network; to de-
termine whether the aerial image contains the target area and its location and category,
Using projection and coordinate conversion relationship, real-time latitude and longitude
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of the UAV is assessed and then compared with the actual position of the UAV in Skyline.
Select four different routes over the study area as the flight path of the UAV in the range of
Changchun, on the four routes obtained.

Figure 9 represents a schematic diagram of Route 1. The camera takes four different
tilt angles as a cycle for continuous aerial photography and takes four corresponding aerial
images as a set sequence of camera pictures. Other routes in the image positioning effect are
described in Table 7 within the scope of the study. The proportion of the target area image
sequence contains an average of more than 40% in aerial images containing the target area
and the positioning accuracy rate of more than 84%. The positioning accuracy rate can be
increased when the aerial image includes a plurality of target areas.

Figure 9. Diagram of Number 1 Route.

Table 7. Comparison of image positioning effects of different routes.

Track Number of Proportion of Number of a Correct  Number of a Wrong Accuracy Rate of
Number Sequences Object Area (%) Object Area Object Area Location (%)
1 276 45 136 25 84.5
2 355 38 144 31 82.3
3 210 54 130 17 88.4
4 395 46 202 34 85.6

5. Conclusions

This work considered the YOLO network and improved the detection results utilizing
the clustering of target frame dimensions, classification network pre-training, multi-scale
detection training, and changing the screening rules of candidate frames. The proportion
of the target area in the image sequence is about 40% on average. Further, the aerial
images containing the target area offer a more than 84% positioning accuracy rate. This
idea is to verify the feasibility of the image localization problem in target detection. But,
there is also a small range of research data available from the existing study and the data
sample production workload is insufficient for demonstration. Further, this research will be
extended to adapt advanced methods to simplify data related to the hybrid network-based
UAV image localization search.
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