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Abstract: Distributed radar target detection in non-Gaussian noise, modeled as the sum of K-
distributed clutter plus thermal noise, is considered in this paper. The conventional target techniques,
e.g., constant false-alarm rate (CFAR), scatterer density-dependent generalized likelihood ratio test
(SDD-GLRT), and energy integration (EI) detectors, have limited performance. On the other hand,
since radar target detection can be considered a classification task, deep learning techniques have
been widely applied as radar detectors in recent years, but such techniques require a larger amount
of training samples to prevent overfitting, which is time-consuming. To balance detection efficiency
and accuracy, this paper proposes an improved random forest algorithm based on the sparrow search
algorithm (RF-SSA). First, we propose a mixed method of 3DT space-time adaptive processing and
wavelet denoising (3DT-WD) to improve the output signal-to-clutter plus-noise ratio. Then, the SSA
is applied to the RF algorithm to adaptively obtain the optimal parameters of the detection model.
The simulation results show that the proposed RF-SSA ensures higher detection performance than
the other classical methods, showing a gain of about 2 dB at the same detection probability. Moreover,
the detection results of the real data further confirm the superiority of the proposed RF-SSA.

Keywords: radar detection; distributed target; K-distribution; STAP; sparrow search algorithm;
random forest

1. Introduction

A target can be resolved into several discrete physical scatterers that appear in radar
range cells for a high-resolution radar (HRR), which is regarded as a distributed target.
Returned signals for HRR convey abundant target information, and they fluctuate less than
that of low-range resolution radars. Therefore, HRRs can significantly enhance the target
detection performance [1,2]. However, the detection strategies of the point-target may fail
in practical high-resolution radar systems [3].

Distributed target detection has been extensively investigated in recent years, such
as the adaptive detection of distributed targets in homogeneous environments [4]. In [5],
the time-frequency distribution features of two adjacent echoes are utilized for target
detection. By adding a general window function to calculate the cross S-method (CSM), it
can efficiently detect targets with a high velocity, even if the adjacent radar high-resolution
range profiles (HRRPs) are weakly correlated. By compensating for linear and quadratic
phase errors [6], a waveform contrast-based constant false-alarm rate (CFAR) detector
is proposed to realize the distributed radar target detection [7]. In [8], a persymmetric
adaptive matched filter (perAMF) detector is proposed for the distributed target detection
in Gaussian clutter, where the clutter covariance matrix is unknown. Numerical examples
show that the perAMF detector still has good detection performance even though the
training data is limited. In [9], by exploiting a priori knowledge of the clutter covariance
matrix, an effective detection algorithm is proposed.

However, the assumption of the Gaussian random variable (RV) may no longer be met
for the background clutter in HRRs. More specifically, the clutter can be described as non-
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Gaussian observations, which are suitable to be modeled by a spherically invariant random
vector (SIRV) [10,11]. Recently, the adaptive detection of distributed targets in non-Gaussian
clutter has been an active research topic in the radar community. For instance, in [12],
based on the assumption of knowing the disturbance covariance matrix, an approximate
generalized likelihood ratio test (GLRT) -based detector is designed. Similarly, a modified
adaptive detector based on GLRT is devised in [13]. However, a priori knowledge about
the disturbance covariance matrix in some complex electromagnetic environments is in
general unknown. A detection method based on the volume cross-correlation function
is proposed to solve this problem, without resorting to a priori knowledge about the
disturbance covariance matrix [14]. However, its performance can be obtained by resorting
to the basis vectors of the signal subspace, which is computationally burdensome.

The detection performance of distributed targets in non-Gaussian clutter depends not
only on the detection algorithms but also on the performance of clutter compression. For
instance, the space-time adaptive processing (STAP) technique plays a significant role in
suppressing the sea/ground clutter by the co-development of degrees-of-freedom (DOFs)
in both spatial and temporal domains. However, the performance of the traditional STAP
technique may greatly degrade in heterogeneous clutter environments. To address this
problem, several detection methods based on the estimation of the clutter covariance matrix
(CCM) are devised [15,16]. However, the detection performances of the aforementioned
methods significantly degraded when prior assumptions on clutter echoes deviate from
the real clutter environments. To solve the problem, a robust detection method for STAP
applications based on the volume cross-correlation function (VCF) is proposed and it does
not need to estimate the clutter CCM. However, when the velocities of moving targets are
unknown, or all the targets have different velocities, this method needs to slide the window
with an unknown length along all the range axis to select the training sample matrix, which
results in a huge computational burden [17].

In essence, target detection can be considered a binary classification task, and detection
based on machine learning techniques has drawn much attention in recent several years.
Amongst those techniques, deep learning techniques are being used as radar detectors
with success [18]. For instance, in [19], the long short-term memory (LSTM) algorithm is
used to achieve target detection with remarkable precision, even for very low SCR ratios.
In [20], a dual neural network detection scheme is proposed, in which the first neural net is
used to filter out noisy images, and the second neural net is used to realize target detection
and classification by extracting fast-time and slow-time information. In [21], to lower the
false alarm rate while maintaining the detection probability, an artificial neural network
is proposed after applying a CFAR algorithm. However, those methods require a larger
amount of training samples. Moreover, in general, a great increment in the number of
samples leads to an increase in the training time [22]. To solve this problem, traditional
machine learning techniques may be an alternative approach. For instance, in [23], a
k-nearest neighbor (KNN)-based detector is designed to detect targets in non-Gaussian
noise. In [24], based on the features of the returned signals in the time and frequency
domains, a support vector machine (SVM) is implemented to detect small sea-surface
targets. Motivated by STAP and machine learning technologies, we propose a two-step
scheme by integrating the signal processing and machine learning techniques to improve
the performance of detecting distributed targets in non-Gaussian noise, modeled as the sum
of K-distributed clutter plus thermal noise. Firstly, the mixed method by combining 3DT
space-time adaptive processing with wavelet denoising (3DT-WD) is utilized to improve
the output signal-to-clutter plus-noise ratio before target detection. Second but more
importantly, a novel detection method based on random forest optimized with the sparrow
search algorithm (RF-SSA) is proposed. The experiment results show that the proposed
RF-SSA can achieve better detection performance than several peer methods. The proposed
RF-SSA framework is illustrated in Figure 1. The major innovations of this paper can be
summarized as follows:
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1. The proposed RF-SSA is an adaptive detection method, which solves the unbalance
between detection probability and efficiency of the traditional RF, without any prior
knowledge.

2. We tested if the 3DT-WD makes an improvement in the output signal-to-clutter plus-
noise ratio (SCNR) and detection performance.

3. Comprehensive analyses, including parameter determination, such as the number of
decision trees of RF optimized by the SSA, together with the performance compared
to the other related methods, are also evaluated.

4. The proposed RF-SSA can achieve better or more competitive performance in terms
of detection probability and area under the receiver operating characteristic curve
(AUC), compared to several peer methods. Additionally, the RF-SSA is more robust
for the shape parameter of the clutter distribution compared to the scatterer density-
dependent GLRT (SDD-GLRT) and energy integration (EI) detectors.

The main content of this paper is organized as follows. In Section 2, the detection
problem is described. Then, in Section 3, the proposed detector is designed. In Section 4, nu-
merical simulations are conducted for performance evaluation. Finally, Section 5 concludes
this paper.
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2. Problem Formulation

The target detection with an airborne radar system is carried out in this paper. It is
assumed that received data are collected from the N-sensor radar system and the targets
are completely contained within the received data. Radar returns z ∈ CNM×1 denote
the space-time data in the cell under test, and M is the number of pulses in a coherent
processing interval (CPI).

The distributed target detection problem can be expressed in the following binary
hypothesis: 

H0 : zt = ct +nt, t = 1, . . . , D, D + 1, . . . , D + R

H1 :
{

zt = st+ct+nt, t = 1, 2, . . . , D
zt = ct+nt, t = D + 1, D + 2, . . . , D + R

(1)

where the received data zt = st+ct+nt (t = 1, 2, . . . , D) are called the primary data from
the t-th radar distributed cell, and D is the number of range cells occupied by the target.
zt = ct+nt (t = D + 1, . . . , D + R) are the second data from the t-th range cell. s ∈
CNM×1, c ∈ CNM×1, and n ∈ CNM×1 denote the target returns, clutter, and thermal
noise, respectively. Specifically, nt (t = 1, . . . , D + 1, . . . , D + R) is modeled as zero-mean
white Gaussian noise. ct = gtwt (t = 1, . . . , D + 1, . . . , D + R) can be modeled as K-
distribution clutter, gt and wt are the texture and speckle parts of the clutter, respectively.
wt follows a complex Gaussian distribution, with zero mean and speckle covariance matrix
R ∈ CMN×MN . The texture gt follows a Gamma distribution with scale parameter q̃
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and shape parameter v, and it represents the characteristics of the observed scene. The
probability density function (PDF) of the texture part gt is

f (gt) =
q̃−v

Γ(v)
gv−1

t e−q̃−1gt(gt ≥ 0, v ≥ 0, q̃ ≥ 0) (2)

where Γ(·) is the gamma function.
PDF of clutter is given by

fK(t; v, q) =
2

qΓ(v)
(

t
q
)
(v−1)/2

Kv−1(2

√
t
q
) (3)

where Kv(x) denotes a modified Bessel function of the second kind and shape parameter v
can control the tails of the PDF, i.e., the clutter is locally Gaussian if shape parameter v + ∞.

3. Proposed Detector

In this section, we address the detection problem of distributed targets in non-Gaussian
noise, modeled as the sum of K-distributed clutter plus thermal noise. First, 3DT-WD is
utilized to realize clutter suppression, then, the RF-SSA is performed to decide between
H0 and H1 in (1), which is the major contribution of step II. Finally, to further verify the
effectiveness of the proposed RF-SSA, the performance evaluation based on the real radar
data is operated. The framework of the proposed detector is summarized in Figure 1, and
SCNR is denoted as follows:

SCNR =
1

LM

M

∑
m=1

(sm)
TR−1(sm) (4)

where L is the number of radar system channels, (·)T denotes the Hermitian transpose, and
R is the interference covariance matrix.

3.1. Step I: 3DT-WD for Clutter Suppression
3.1.1. 3DT

The movement of the radar platform can result in a significant Doppler spread of
clutter, which may obscure the Doppler information of the target. Therefore, the target
cannot be distinguished from the clutter easily by only using the Doppler information.
To solve this problem, STAP is derived by combining spatial azimuth information and
Doppler information. However, DOFs of conventional STAP techniques are equal to DM
(D is element number), which results in a great amount of training samples (between 2 and
5 times the number of DOFs of the processor) to estimate the clutter covariance matrix. In
addition, those training data satisfy the identical independent distribution (IID) condition,
which is often inadequate in heterogeneous environments. To maintain the performance
of STAP methods with limited sample supports, some suboptimal STAP approaches are
proposed. 3DT can greatly reduce DOFs of the radar system by linearly transforming the
echo data with the full-dimensional into the data with a low-dimensional space, achieving
a good compromise between the computational burden and interference suppression
performance; thus, it is a priority algorithm in practical engineering applications.

The 3DT algorithm firstly transforms the received signals of each channel from the
time domain to the Doppler domain through weighted fast Fourier transformation (FFT)
and then combines the Doppler unit where the target is to be detected and its adjacent
Doppler units for adaptive processing.

For the k-th Doppler unit, its reduced-dimension matrix can be expressed as

Tk = Fkλ⊗ IN (5)
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where Fk =

 1 e−j 2π
M (k−1) . . . e−j 2π

M (k−1)(M−1)

1 e−j 2π
M k . . . e−j 2π

M k(M−1)

1 e−j 2π
M (k+1) . . . e−j 2π

M (k+1)(M−1)


3×M

is the FFT transformation ma-

trix, λ =


λ1

λ2
. . .

λM

 is the weight matrix, and λ1, λ2, . . . , λM is the weight

coefficient.
After using the reduced-dimension matrix Tk, the received data corresponding to

the k-th doppler unit, the target steering vector, and the noise covariance matrix become
z̃k = Tkz, s̃k = Tks, R̃k = TkRTH

k , respectively.
The optimal weight vector of the k-th doppler unit to be detected can be written as

w̃k = γR̃
−1
k s̃k (6)

As the noise and clutter characteristics are unknown, the covariance matrix in Equation (6)
can be obtained by the following maximum likelihood estimate method:

ˆ̃Rk =
1
L

L

∑
l=1

z̃k;l z̃
H
k;l (7)

where L is the number of samples and z̃k;l represents the data from adjacent samples of the
k-th Doppler unit, after using a reduced-dimension matrix Tk.

Based on the above analysis, it can be concluded that the DOFs of 3DT are much
smaller than that of the full-dimensional STAP, i.e., it is reduced from MN to 3N, which
greatly reduces the computational burden and the number of IID training samples.

In practice, the clutter suppression performance of conventional 3DT may be remark-
ably reduced when training samples do not satisfy the IID assumptions in heterogeneous
environments. Wavelet transform has the ability of multi-resolution analysis, which is espe-
cially suitable for non-stationary signal processing. For noise reduction, wavelet transform
is a reasonably effective method. Therefore, wavelet transform is introduced to improve
SCNR.

3.1.2. Wavelet Denoising

Based on the wavelet basis function and threshold function, satisfactory denoising
performance can be achieved. In general, wavelet denoising consists of three steps, as
follows:

1. Wavelet decomposition

After selecting a mother wavelet and determining the level of wavelet decomposition,
the wavelet transform is applied to the input noisy signals.

2. Wavelet threshold

Wavelet denoising is highly dependent on the threshold function. After wavelet
decomposition, the wavelet approximation aj,k and detail coefficient dj,k are obtained.
Then, the wavelet detail coefficient that involves the noise components can be filtered by
the threshold. The threshold selection and refinement process mainly consist of general
threshold, adaptive threshold, and wavelet packet threshold.

The wavelet packet threshold method carries out the next layer of decomposition for
both low-frequency and high-frequency sub-bands of each layer of wavelet decomposition
and has the capability of adaptive threshold processing at different scales, which makes the
wavelet domain information more detailed with a low computing burden. Therefore, the
wavelet packet-based threshold method is adopted in this paper.

3. Wavelet reconstruction
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By applying inverse wavelet transform on the modified coefficients, the recovery
signal y(i) is obtained through the inverse DWT (IDWT).

y(i) = ∑
k

aj ,k φj,k(i) + ∑
j

∑
k

dj ,kψj,k(i) (8)

where aj ,k =
〈

z(i), φj,k(i)
〉

, dj ,k =
〈

z(i), ψj,k(i)
〉

and j is an arbitrary scale. φ(i) and ψ(i)
are wavelet functions, and they provide the wavelet approximation coefficient and detail
coefficient at scale j, respectively.

3DT-WD in step I is a straight-forward method to improve SCNR. In the following
section, the RF-SSA is proposed to achieve the detection of distributed targets, which is the
major contribution of step II.

3.2. Step II: RF-SSA for Target Detection
3.2.1. RF

As for the detection problem itself, identifying a target from interference can be
considered a classification problem in nature. The RF is an ensemble learning approach,
it has state-of-the-art classification performance and is insensitive to over-fitting, which
makes it one of the most popular classifiers. It also consists of a large number of decision
trees that are generated by the bootstrap sampling technique. At each node, the best split
point of each decision tree is generated based on the selected feature subsets. One must
note that feature subsets are randomly selected from the full features (n � N1, n is the
number of the selected features, N1 is the number of all features) at each node of each base
decision tree Ci (i = 1, 2, . . . , w, w is the number of the decision trees). Briefly, the RF is
structured completely by combining the base decision trees, and the final classification
results (0 and 1 denote hypotheses H0 and hypotheses H1, respectively) are determined
by the votes of all the base decision trees. The classification process of the RF is shown in
Figure 2.
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3.2.2. RF-SSA

From the above analysis, the reasonable selection of the number of decision trees has a
significant impact on the final classification accuracy. In general, the number of decision
trees is obtained through iterative search or default parameter setting. However, the former
is time-consuming with regard to learning tasks, and the latter hardly obtains optimal
classification accuracy. To balance detection efficiency and accuracy, in this paper, SSA is
implemented to adaptively compute the optimal number of the decision trees of RF.
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SSA is a heuristic algorithm, derived from the theory of foraging behavior and anti-
predation behavior of sparrows. It has the advantages of high optimization ability, few
adjustment parameters, and fast convergence speed, having drawn important attention
recently [25,26]. During the foraging search process, the sparrow colony is divided into two
groups, discoverers and entrants. The discoverer has better fitness values and is responsible
for searching foraging areas and directions for the entire sparrow population, while the
entrants utilize the position of the discoverer to obtain food. At the same time, if the
sparrows selected for investigation and early warning find the danger, and the alarm values
are greater than the safety threshold, then the discoverers lead other sparrows to the safe
place.

In the simulation experiment, the position of sparrows can be written as follows:

X =


x1,1 x1,2 · · · x1,d
x2,1 x2,2 · · · x2,d

...
...

...
...

xq,1 xq,2 · · · xq,d

 (9)

where q is the number of the entire sparrows, and d is the dimension of the variables to be
optimized.

During the iteration, the updated locations of discoverers can be described as follows:

Xt+1
i,j =

{
Xt

i,j · exp(−i
a·I ) if R2 < ST

Xt
i,j + Q · B if R2 ≥ ST

(10)

where t indicates the current number of iterations, I is a constant, indicating the largest
number of iterations and a ∈ (0, 1] is a random number. Q represents the normal distri-
bution random number and B indicates a 1 × d matrix for which each element inside is 1.
R2 ∈ [0, 1] is the alarm value and ST ∈ [0.5, 1] is the safety threshold.

When R2 < ST, it means that there are no predators in the neighborhood and then
the discoverer continues to search for food; when R2 ≥ ST, it means that there are some
sparrows that have detected the predator, and then all sparrows immediately fly to other
safe zones to search for food.

The updated locations of entrants can be described as follows:

Xt+1
i,j =


Q · exp(

Xt
worst−Xt

i,j
i2 ) if i > q/2

Xt+1
p + 1

d

d
∑

j=1
(rand(−1, 1)·

∣∣∣Xt
i,j − Xt+1

p

∣∣∣) otherwise
(11)

where t represents the current iteration number and Xt
p and Xt

worst represent the global best
and worst positions at the t-th iteration, respectively.

When i > q/2, it means that the i-th entrant cannot obtain food and needs to change
position to search for food. When i ≤ q/2, it means that the i-th entrant is near to Xt

p and is
randomly foraging around.

In general, the alerters account for 10% to 20% of the entire sparrow population, and
its updated locations can be described as follows:

Xt+1
i,j =


Xt

best + β×
∣∣∣Xt

i,j − Xt+1
best

∣∣∣ if fi > fg

Xt
i,j + K1 × (

∣∣∣Xt
i,j−Xt+1

worst

∣∣∣
( fi− fw)+ε

) if fi = fg

(12)

where β is a random value, subject to a normal distribution with a mean value of 0 and a
variance of 1, and it can control the step size, K1 ∈ [−1, 1] indicates the moving direction of
the sparrow population and ε is the smallest constant, which is used to avoid zero-division-
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error. fi is the fitness value of the i-th sparrow, fg and fw are the global best and worst
fitness values of the current sparrow population, respectively.

The position of the discoverer is based on the minimum classification error rate f ∗,
which is the objective function in the simulation, and f ∗ is denoted as follows:

f ∗ = 1− TP
TP + FP

(13)

where TP is the true position, and FP is the false positive.
Based on the above analysis, the algorithm flow chart of the RF-SSA can be summa-

rized in Figure 3.
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4. Results and Analysis
4.1. Detection Performance Assessment on Simulated Data

To evaluate the performance of the proposed method, in this section, first, the effec-
tiveness of 3DT-WD is verified, then performance evaluations for the proposed RF-SSA, the
traditional RF, KNN [23], and SVM [24] are carried out. To further verify the effectiveness of
the proposed RF-SSA, we also compare it with the detection performance of the SDD-GLRT
and EI detectors.

4.1.1. Parameter Determination

We assume that the total energy of the target scatterers is evenly distributed among
four range cells, and D = 83. The key radar parameters in the simulations are given in
Table 1. In step I, wavelet transform is based on Daubechies (db4) wavelet basis functions.
In step II, we could yield 500 target samples and 1700 sea clutter samples, then, we randomly
sample 70% data as the training set, and the remaining 30% are used as the test set. The
parameter setting of the RF-SSA is as follows: the largest number of iterations I = 10, the
initial number of sparrows is 10, and the number of discoverers accounts for 20% of the
entire sparrow population, ST = 0.8, the number value range of the decision trees is set 1,
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300, and the interval is set 5. For KNN, the number of neighbors is 5, and the leaf size is 10.
For SVM, the radial basis function is adopted here, and the regularization parameter is 1.

In addition, the power of the Gaussian white noise is set according to CNR = 20 dB.
The CNR is formulated as follows:

CNR =
∑R

r=1 cH
r cr

Rσ2
n

(14)

where σ2
n is the average power of the white Gaussian noise; R denotes the number of range

cells, and cr is the clutter in the r-th range cell.
The simulations are implemented on CPU AMD Ryzen 7 3700X@3.59 GHz 8-core and

RAM Kingston FURY 16GB DDR4. The signal pre-processing algorithm (3DT-WD) in step I
is carried out on Matlab2016 (a) software (Matlab 2016 is a commercial math software from
MathWorks, Natick, MA, USA), and the proposed detection algorithm (RF-SSA) in step II
is carried out on the PyCharm Community simulation platform, programming languages,
Python3.7.

Table 1. Parameters of radar.

Parameter Value

Carrier frequency 10 GHz
Bandwidth 600 MHz

Range resolution 0.25 m
Pulse repetition interval 2 ms

Inter element spacing 0.015 m
Identical antenna elements 16

Number of pulses 16
Wavelength 0.03 m

4.1.2. Performance Evaluation

First, the performance of conventional 3DT and the proposed 3DT-WD are tested,
respectively, as shown in Figure 4. It can be observed from Figure 4a that since the linear
frequency modulation (LFM) signals have a large gain in pulse compression, the radar
can easily detect the target in Gaussian noise. The target is submerged when sea clutter
enters the radar main lobe, failing target detection, as shown in Figure 4b. Then, the 3DT
algorithm is utilized to suppress the clutter, as shown in Figure 4c and the target amplitude
is only slightly higher than the clutter amplitude, which means it is still difficult to achieve
the target detection. After using 3DT-WD, as shown in Figure 4d, it can be observed that
the output SCNR is greatly improved, which verifies the effectiveness of 3DT-WD.
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Then, we compare the RF-SSA with the traditional RF, wherein the number of decision
trees is obtained through iterative searches to evaluate the detection efficiency, and the
computational cost of the two methods is shown in Table 2. The results show that the
average detection accuracy of the RF-SSA is relatively close to the traditional RF with
iterative searches, achieving the optimal detection accuracy rapidly within 10 iterations.
More importantly, the average computational cost of the RF-SSA is greatly lower than the
traditional RF with iterative searches, i.e., 316.2 and 519.2 s (v = 0.1), respectively, which
demonstrates that the RF-SSA can greatly improve the detection efficiency.

Table 2. Comparisons of average computational cost (v = 0.1).

SCNR/dB −20.9 −11.2 −6.7 −2.7 −0.4 1.6 T/s

RF-SSA 83.3% 88.7% 95.1% 96.7% 99.8% 1 316.2
RF 82.8% 88.5% 94.9% 97.3% 99.5% 1 579.2

Moreover, the performance of the RF-SSA is compared with that of the traditional RF
with default parameters, KNN, SVM, and the CFAR and the detection results are shown
in Figure 5. It can be observed that the RF-SSA can provide highly competitive results
compared to the other algorithms, obtaining an up to 2-dB performance improvement,
followed by the RF, SVM, KNN, and the CFAR method performs the worst. Combining
the results in Table 2, the proposed RF-SSA can solve the unbalance between detection
probability and efficiency of the traditional RF. Moreover, the detection probability of the
proposed RF-SSA rises as v decreases. In addition, the performance of the CFAR is greatly
improved after using 3DT-WD, which indicates that the 3DT-WD helps to improve the
detection performance.
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To evaluate the overall detection performance, we also compare the RF-SSA with the
other algorithms in terms of AUC. As shown in Tables 3 and 4, the RF-SSA is superior to
the other methods, which also indicates that the proposed RF-SSA has a lower false alarm
rate.

Finally, to further evaluate the effectiveness of the proposed method, the detection re-
sults of RF-SSA are compared with the SDD-GLRT and EI detectors, under the K-distributed
clutter with the shape parameters v = 0.1 and v = 0.5. As we cannot obtain the detection
probability Pd and the false alarm probability Pfa in closed form, the detection probability Pd
for the SDD-GLRT and EI detectors are estimated based on the Monte Carlo technique. In
the simulation, each Pfa and Pd are obtained via 10/Pfa and 1/Pfa independent Monte Carlo
experiments. Specifically, Pfa is set to 10−4 and the key radar simulation parameters remain
unchanged. As shown in Figure 6, it can be observed that the performance of the RF-SSA
outperforms the SDD-GLRT and EI detectors, in particular the low SCNR cases. Moreover,
the RF-SSA achieves more robust detection performance in heterogeneous environments,
compared with the other two detectors.

Table 3. Comparisons of AUC (v = 0.1).

SCNR/dB −20.9 −11.2 −6.7 −2.7 −0.4 1.6

KNN 58.8% 62% 78.3% 84.3% 90.8% 99%
SVM 66.7% 81.8% 89.7% 96% 99.5% 1
RF 75.5% 86.7% 93.8% 97.1% 98.9% 1

RF-SSA 77.7% 88.2% 95% 99% 1 1

Table 4. Comparisons of AUC (v = 0.5).

SCNR/dB −20.9 −10.9 −6.5 −2.6 −0.5 1.7

KNN 52.5% 53.3% 61.3% 69.3% 90.1% 95.3%
SVM 60.3% 70.4% 79.5% 93.2% 99.1% 1
RF 71.4% 76.6% 87% 95.8% 99.4% 1

RF-SSA 72.2% 81% 90% 97.8% 99.8% 1
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4.2. Detection Performance Assessment on Real RadarData

This subsection is devoted to the performance assessment of the RF-SSA, KNN, and
SVM, in terms of probability of detection (Pd), by exploiting real radar data using the Ku-
band radar. More specifically, the key radar parameters are given in Table 5 and the target
echo is collected from three same angle reflector, which occupies 64 range cells (D = 63).
Then, we could yield 2000 target samples and 7000 clutter samples, and the detection results
with real data are shown in Tables 6 and 7. It should be noted that the parameter settings
of the detection methods (RF-SSA, RF, KNN, and SVM) remain unchanged. In addition,
since our focus is on the performance of the proposed RF-SSA, for simplicity, the signal
pre-processing method (3DT-WD) is not used before target detection. The performance
evaluation is carried out on the PyCharm Community simulation platform.

Table 5. Parameters of real radar.

Parameter Value

Carrier frequency 16 GHz
Bandwidth 64 MHz

Range resolution 2.34 m
Pulse repetition interval 24.8 ms

Wavelength 0.0187 m
Sampling rate 100 MHz

Table 6. Comparisons of the detection probability.

Methods
Pd

SCR = 5.7 dB SCR = 7.9 dB SCR = 10.5 dB

RF-SSA 80.7% 96% 99.3%
RF 78.7% 94.7% 98.7%

KNN 32.7% 73.3% 85.3%
SVM 44% 88% 96.7%
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Table 7. Comparisons of AUC.

Methods
Pd

SCR = 5.7 dB SCR = 7.9 dB SCR = 10.5 dB

RF-SSA 89% 97.5% 99.6%
RF 87.6% 96.6% 99%

KNN 65.8% 86.1% 92.7%
SVM 71.5% 93.5% 98.3%

As shown in Table 6, it can be observed that the proposed RF-SSA outperforms the
other three under different SCR situations. For example, the proposed RF-SSA improves
the detection probability Pd by 1.3%, 22.7%, and 8% compared with the RF, KNN, and SVM,
respectively, when SCR = 7.9 dB.

We further compare our RF-SSA with the other methods in terms of AUC in Table 7.
It can be observed that, compared with the RF, KNN, and SVM, the proposed RF-SSA
always works better under different SCR situations. For instance, the proposed RF-SSA
improves the AUC values by 0.9%, 11.4% and 4% compared with the RF, KNN, and SVM,
respectively, when SCR = 7.9 dB, which indicates that the proposed method has a lower
false alarm rate.

Finally, we compare the detection performance of the proposed RF-SSA with that of
the SDD-GLRT and EI detectors. For this experiment, the false alarm probability is set to
be Pfa = 10−4. To evaluate the Pd and Pfa, 2000 target samples and 7000 clutter samples are
used in the Monte Carlo experiments. Since the target occupies 64 range cells (D = 63), the
range of the detection window for the SDD-GLRT and EI detectors is set to (40, 100). The
detection results with real data are shown in Table 8. The proposed RF-SSA outperforms
the other two detectors, and the EI detector is worse than the SDD-GLRT detector. For
instance, the proposed RF-SSA improves the detection probability Pd by 6.9%, and 6.4%
compared with the EI, and SDD-GLRT detectors, respectively, when SCR = 7.9 dB.

Table 8. Comparisons of the detection probability.

Methods
Pd

SCR = 5.7 dB SCR = 7.9 dB SCR = 10.5 dB

RF-SSA 80.7% 96% 99.3%
EI 80.4% 89.1% 96.3%

SDD-GLRT 81.9% 89.6% 96.8%

5. Conclusions and Future Work

In this paper, we propose a novel RF-SSA to detect distributed targets in non-Gaussian
noise, modeled as the sum of K-distributed clutter plus thermal noise. The proposed
RF-SSA can adaptively solve the unbalance problems between detection probability and
efficiency of the traditional RF, without any prior knowledge. Moreover, the experimental
results have verified that our proposed method outperforms several existing methods
under different clutter environments.

Although the proposed method can greatly improve detection efficiency with respect
to the traditional RF, it is unable to achieve real-time target detection. To alleviate compu-
tation load, feature extraction methods, for instance t-distributed random neighborhood
embedding, principal component analysis, maximal information coefficient, etc., can be
used before target detection.

In this paper, we assume that the problem of detecting distributed targets is investi-
gated under a fixed CNR. However, the CNR in realistic scenarios is various and uncertain.
Thus, future work will examine the performance of the proposed detector in practical
application.
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