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Abstract: The trajectory data of aircraft, ships, and so on, can be analyzed to obtain valuable informa-
tion. Clustering is the basic technology of trajectory analysis, and the feature extraction process is
one of the decisive factors for clustering performance. Trajectory features can be divided into two
categories: spatial features and temporal features. In mainstream algorithms, spatial features are
represented by latitude and longitude coordinates. However, such algorithms are only suitable for
trajectories where spatial features are tightly coupled with latitude and longitude. When the same
types of trajectories are in different latitude and longitude ranges or there are transformations such
as rotation, scaling, and so on, this kind of algorithm is infeasible. Therefore, this paper proposes a
spatio-temporal feature trajectory clustering algorithm based on deep learning. In this algorithm,
the extraction process of the trajectory spatial shape feature is designed based on image matching
technology, and the extracted spatial features are combined with the trajectory temporal features to
improve the clustering performance. The experimental results on simulated and real datasets show
that the algorithm can effectively extract the trajectory spatial shape features and that the clustering
effect of the fused spatio-temporal feature is better than that of a single feature.

Keywords: feature extraction; image matching; autoencoder; trajectory clustering

1. Introduction

With the development of various positioning systems, such as the ADS-B (Automatic
Dependent Surveillance-Broadcast) system for civil aircraft positioning [1], the AIS (Auto-
matic Identification System) for ship positioning [2], and the most commonly used GPS
(Global Positioning System), the acquisition of trajectory data has become more convenient.
Trajectory data records the spatio-temporal changes of moving objects. Through the mining
and analysis of the motion trajectory, the action law and behavior pattern of the moving
target can be analyzed [3], and the target and motivation of the trajectory action can even
be obtained [4]. This is of great significance in practical applications.

Trajectory clustering is an essential step in trajectory data analysis. It is usually used
to discover the information and laws hidden in massive trajectory datasets. It plays an
important role in many practical applications [5]. For example, [6] used trajectory clustering
to discover waterways and establish a model to detect abnormal behavior, while [7] mined
and studied driver behavior rules based on clustering. In addition, [8] observed traffic flow
changes for traffic supervision based on trajectory clustering; it can be said that trajectory
clustering is the basis of trajectory analysis [9].

The feature extraction process determines the clustering performance. Spatial and
temporal are the essential features of trajectory data, so trajectory data is also called spatio-
temporal trajectory data. The temporal features mainly reflect the correlation between
the track points. The spatial features mainly reflect the overall shape of the trajectory.
The current mainstream methods are biased towards the extraction of trajectory temporal
features, regard trajectories as a kind of time series data, and use time series networks,
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such as RNN (recurrent neural network) [10] and LSTM (long short-term memory) [11] to
process trajectory data. This type of method can effectively extract the temporal features of
the trajectory, but its ability to extract the spatial features is insufficient.

Therefore, in some studies, additional designs are used to extract spatial features
of trajectories. For example, in [12], before using LSTM networks for classification, the
distances between adjacent trajectory points were extracted as features to represent the
spatial distribution of trajectories; [13] firstly counted the distribution feature vectors of the
velocity, heading, acceleration, and other attributes of the trajectory as additional features
of the trajectory for classification; and [14] used the shapelet classification method to extract
the spatial features of trajectories. This method is similar to the traditional trajectory
distance measurement algorithm, which can reflect the local spatial shape feature of the
trajectory by the distance relationship between the trajectories. In [15], the trajectory spatial
features were represented by extracting the slope value between two adjacent trajectory
points as a feature vector.

The above improved methods achieve higher accuracy through additional trajectory
space feature extraction, but they still have shortcomings. Firstly, the above improvements
can only achieve the extraction of local spatial features; they cannot reflect the overall spatial
features of the trajectory (for example, when trajectories need to be classified according to
shape standards such as circles, straight lines, and arcs). Clustering needs to be performed
according to the overall spatial characteristics of the trajectories. This overall spatial feature
is mainly reflected in the shape of the trajectory, so it is called the spatial shape feature in
this paper. In addition, the above methods extract spatial features from the latitude and
longitude attributes, so they are only suitable for trajectories where spatial features are
tightly coupled with latitude and longitude. In some applications, such as exploration,
search, or some military applications, the trajectory data is not limited by the channel.
Therefore, the latitude and longitude are not strictly related to the spatial features—for
example, the same trajectory may be in different latitude and longitude ranges or there
may be transformations such as rotation and scaling. Therefore, the methods extracting
spatial features by latitude and longitude are not effective.

To summarize, the existing algorithms have insufficient ability to extract the overall
spatial shape features of the trajectory. Further extraction of spatio-temporal features of
trajectories is a research direction worthy of attention.

Therefore, this paper proposes a spatio-temporal feature trajectory clustering algo-
rithm based on deep learning. In this algorithm, a method for extracting the trajectory
spatial shape feature is designed first. After the trajectory is imaged, the SURF algorithm
from the field of image recognition is used to extract the overall shape of the trajectory.
The extracted spatial shape features are merged with the temporal features extracted by
the time series autoencoder, and the fused spatio-temporal features are used for trajectory
clustering. The experimental results show that the proposed algorithm can effectively
extract the spatial shape features of the trajectory and show good robustness to possible
rotation and scaling changes in the trajectory. The clustering effect after the fusion of the
two features has also been significantly improved.

The structure of this paper is as follows. The Section 2 is the problem analysis.
The Section 3 is the introduction of the algorithm. In the Section 4, algorithm performance
is verified by clustering experiments. The Section 5 concludes this paper.

2. Problem Analysis

The trajectory can be expressed as follows:

TRi = {tri1, tri2, · · · , trik}0 < k < N, 0 < i < M, (1)
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The trajectory point trij is composed of multi-dimensional attributes, including identity
number, timestamp, position information, speed, heading, turning rate, and so on, which
can be expressed as follows:

trij = (ID, tj, latj, lonj, · · · ), (2)

The mainstream trajectory analysis method directly uses the time series network to
read the temporal features in the above trajectory data. The spatial features are extracted by
the latitude and longitude coordinates. This is because in some applications, the trajectory is
limited by external factors, such as the channel, and the latitude and longitude coordinates
of the trajectory are related to the spatial and shape characteristics of the trajectory. In
fact, however, these two characteristics are different. Taking the three trajectories shown in
Figure 1 as an example, trajectories 1 and 3 have high similarity from the perspective of
spatial shape features. However, the mainstream algorithm uses latitude and longitude
to match the trajectory points one by one according to the time series. Trajectory 1 and
trajectory 2 will be classified according to the latitude and longitude distance between them.
This causes the similarity of the shapes of trajectories 1 and 3 to be ignored.

Electronics 2022, 11, x FOR PEER REVIEW 3 of 16 
 

 

The trajectory point trij is composed of multi-dimensional attributes, including iden-
tity number, timestamp, position information, speed, heading, turning rate, and so on, 
which can be expressed as follows: 

(ID, , , , )ij j j jtr t lat lon=  , (2) 

The mainstream trajectory analysis method directly uses the time series network to 
read the temporal features in the above trajectory data. The spatial features are extracted 
by the latitude and longitude coordinates. This is because in some applications, the trajec-
tory is limited by external factors, such as the channel, and the latitude and longitude 
coordinates of the trajectory are related to the spatial and shape characteristics of the tra-
jectory. In fact, however, these two characteristics are different. Taking the three trajecto-
ries shown in Figure 1 as an example, trajectories 1 and 3 have high similarity from the 
perspective of spatial shape features. However, the mainstream algorithm uses latitude 
and longitude to match the trajectory points one by one according to the time series. Tra-
jectory 1 and trajectory 2 will be classified according to the latitude and longitude distance 
between them. This causes the similarity of the shapes of trajectories 1 and 3 to be ignored. 

1

2

3

 
Figure 1. Schematic diagram of the trajectory. 

Therefore, this paper will extract the spatial shape features of the trajectory sepa-
rately. The first technical problem is how to extract the spatial shape features of the trajec-
tory, and the method needs to be able to adapt to changes such as the rotation and scaling 
of the trajectory. In this regard, this paper introduces the image matching technology 
SURF (Speeded Up Robust Features) [16] method with rotation invariance to process the 
trajectory image and convert the result into a spatial feature vector.  

The second technical problem is how to combine the extracted shape features and the 
temporal features. It is difficult to take full advantage of the two features by simple splic-
ing or artificially designed weights. To this end, this paper uses an autoencoder for feature 
reduction and fusion to get the utmost out of the extracted two feature types. 

To sum up, this paper designs a trajectory clustering algorithm based on spatio-tem-
poral features. Its main idea is shown in Figure 2. The temporal feature is extracted by 
building an autoencoder with a time series network according to the conventional meth-
ods. The spatial shape feature is designed separately, including the extraction process of 
imaging, image matching algorithm, and feature dimension reduction processing. Finally, 
an autoencoder is used to fuse the two features for clustering. The specific algorithm is 
described in detail below. 

Figure 1. Schematic diagram of the trajectory.

Therefore, this paper will extract the spatial shape features of the trajectory separately.
The first technical problem is how to extract the spatial shape features of the trajectory,
and the method needs to be able to adapt to changes such as the rotation and scaling of
the trajectory. In this regard, this paper introduces the image matching technology SURF
(Speeded Up Robust Features) [16] method with rotation invariance to process the trajectory
image and convert the result into a spatial feature vector.

The second technical problem is how to combine the extracted shape features and the
temporal features. It is difficult to take full advantage of the two features by simple splicing
or artificially designed weights. To this end, this paper uses an autoencoder for feature
reduction and fusion to get the utmost out of the extracted two feature types.

To sum up, this paper designs a trajectory clustering algorithm based on spatio-
temporal features. Its main idea is shown in Figure 2. The temporal feature is extracted
by building an autoencoder with a time series network according to the conventional
methods. The spatial shape feature is designed separately, including the extraction process
of imaging, image matching algorithm, and feature dimension reduction processing. Finally,
an autoencoder is used to fuse the two features for clustering. The specific algorithm is
described in detail below.
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3. A Spatio-Temporal Feature Trajectory Clustering Algorithm

The symbols that appear in the algorithm are described in Table 1.

Table 1. Symbol description.

Symbol Description

TRi the i-th trajectory in the trajectory dataset
trik the k-th point in the i-th trajectory
P the number of trajectory feature points
Pq the number of match feature points
sij the similarity of trajectories calculated by SURF method
dij the distance between the i-th and the j-th trajectory
n the number of track categories
k the number of matching samples trajectories

Mi the trajectory shape feature vector
Xi the final generated feature vector

The remaining unmarked symbols will be further explained when they appear in the paper.

3.1. Image-Based Trajectory Spatial Shape Feature Extraction Algorithm
3.1.1. Trajectory Imaging

In this paper, the spatial shape features of the trajectory are extracted from the tra-
jectory image, so the trajectory needs to be imaged first. Other properties such as speed,
heading, and so on, can be extracted by the temporal network. Therefore, only the position
information of the trajectory points needs to be considered in the imaging process. Thus,
this paper normalizes the latitude and longitude coordinates of the trajectory, removes the
relative position features, and only retains the shape features of the trajectory. When pro-
cessing trajectory data with elevation attributes such as airplanes, the color of the trajectory
points is used in the generated image to reflect the change of this elevation attribute. The
graphical result is shown in Figure 3.
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3.1.2. SURF Similarity Matching

The similarity of trajectory images is calculated using a classic image matching algo-
rithm. Among the common image feature matching algorithms, the SIFT (scale-invariant
feature transform) [17] algorithm is considered the most accurate algorithm, and its variant
SURF algorithm processes faster. Therefore, this paper chooses the SURF algorithm to
match the trajectory image.

The principle of the SURF algorithm is simply to extract the sharply changing pixel
points in the image as feature points; generate feature vectors according to the position,
gradient, direction, and other factors of the feature points; and use this feature point vector
to match each image. This method can mark the special points, such as the corners of the
trajectory, in the image and reflect the shape characteristics of the trajectory, and because
the main direction of each feature point is calculated in the process of generating feature
points, this algorithm has rotation invariance. Even if the image is rotated, it will not affect
the matching of feature points. The matching diagram is shown in Figure 4.
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Figure 4. SURF for trajectory image matching.

As shown in Figure 4, the feature points of the two trajectories are matched. The
number of matching points Pq and the number of feature points P are recorded, and the
ratio of the two numbers is used to measure the similarity between these two trajectories.
The formula is as follows:

sij = Pq/P (3)

The larger the value of sij, the more similar the two trajectories are. Randomly select
100 samples in the dataset as matching targets, calculate the similarity between the trajectory
and these matching samples, and use this similarity vector as the spatial shape feature
vector Mi of the trajectory, and we obtain the following:

Mi = {si1, si2, si3 · · · si100} (4)

In theory, it is only necessary to match the sample with most of the possible categories
to ensure that the vector reflects the overall distribution in the dataset. Assuming that there
are n types of data with uniform distribution in the dataset, and k trajectories are extracted
as matching samples, the probability that a certain type of data is not extracted is as follows:

p =

(
n− 1

n

)k
(5)

As long as k is guaranteed to have a certain size, unless there is an extreme class
imbalance, the probability of one of the classes not being drawn is extremely low. In
addition, in the case of extreme imbalance, the de-sampling of some minority classes has
little effect on the overall similar features. In this paper, 100 trajectories are selected as
matching samples, and the experimental part in Section 4 proves that the sampling process
has no negative effects.
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3.1.3. Feature Dimensionality Reduction

There are still many redundant features in the feature vector of length 100, which
need to be further processed to obtain low-dimensional features for subsequent fusion
with temporal features. Commonly used eigenvector dimensionality reduction algorithms
include PCA (principal component analysis) [18], matrix decomposition, and so on. Au-
toencoders are also a commonly used method and have better dimensionality reduction
performance for high-dimensional data [19]. Therefore, this paper uses an autoencoder to
reduce the data dimension and learn the low-dimensional trajectory feature representation.
The constructed network is shown in Figure 5.
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The convolutional layers in Figure 5 adopt the 1DCNN network. This is a convolu-
tional network commonly used to process one-dimensional data [20]. The similarity vector
extracted in this paper is also suitable for processing by this network. The main function
of this network is to extract features from the input data. High-dimensional data can be
transformed into corresponding low-dimensional data representations while retaining most
of the critical feature information of the original data. The main function of the pooling
layer is to downsample the extracted feature maps. In this paper, we choose the max
pooling layer to reduce the dimensions of the feature data further. It can also improve the
operating efficiency of the model and reduce the gradient disappearance and overfitting
problems of the model.

The combination of convolutional and maxpooling layers can achieve the effect of
data dimensionality reduction. For different input data, the size of the network needs to
be changed accordingly. The ultimate goal is to maintain the same size as the features
proposed by the subsequent time series network, which is convenient for subsequent
feature splicing and fusion processing.

3.2. Spatio-Temporal Feature Trajectory Clustering Algorithm
3.2.1. Temporal Feature Extraction

An autoencoder is a neural network commonly used for feature extraction in unsuper-
vised learning processes [21]. It is also widely used in the field of trajectory processing. For
example, references [22,23] both used autoencoders to learn the features of trajectories.

Trajectories are typical time series data, and temporal features are the critical infor-
mation to distinguish the type of trajectory [24]. RNN is the mainstream neural network
model for processing time series data. This paper uses the RNN variant network GRU
(gated recurrent unit) [25] to build a time series autoencoder. GRU is a model proposed to
solve the long-term memory problem. The effect is similar to that of LSTM, but it has fewer
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parameters and performs well in time series data processing. The designed autoencoder
network structure is shown in Figure 6.
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Figure 6. Time-series autoencoder structure.

The GRU layers in Figure 6 are used to read the trajectory points in sequence and
retain the correlation between the points before and after the trajectory during processing to
generate the final feature vector. The RepeatVector layer is used to regenerate the time series
from the extracted feature vectors and reconstruct the input data with the symmetrical
decoder network.

In the process of temporal feature extraction, the input data retains all attribute
features, including latitude, longitude, speed, heading, and so on. Each attribute of the
data is normalized, and zero-padding is performed to keep the length of the input data
consistent. The output from the middle layer of the encoder is taken as the temporal feature
of the trajectory.

3.2.2. Feature Fusion

Fusion of multiple features to improve data analysis results, as in [26], is common
in various fields. This paper adopts a similar approach. After obtaining the two types
of features, it is necessary to fuse the two for clustering. This paper continues to use the
autoencoder to reduce the dimension of the data features to fuse the two features and
obtain useful information.

As shown in Figure 7, the two extracted feature vectors are combined, and the (N, 2)
feature vector is spliced. As in Section 3.1.3, a convolution pooling layer is used to form an
autoencoder to reduce the dimension of the vector to obtain (N/2, 1) feature vectors so that
the two feature vectors are fully integrated.
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The autoencoder still uses the 1DCNN network structure, and the network structure
of the corresponding size is designed according to the input and output vectors, as shown
in Figure 8.
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Figure 8. Fusion autoencoder network structure.

This compresses the combined features from two dimensions using convolutional and
max-pooling layers. The (N, 2) features are transformed into (N/2, 1) form, and the encoder
output is taken as the extracted fusion feature to fully fuse the two types of features.

3.2.3. Clustering

After extracting the trajectory features according to the above method, the similarity
between trajectories is measured by calculating the distance between feature vectors. This
paper uses Euclidean distance to measure the similarity between trajectory features [27].
Assuming that the distance between two trajectories is denoted as dij = dist

(
TRi, TRj

)
and the extracted feature is Xi = {xi1, xi2, · · · xik}, the calculation formula of the distance
between the features is as follows:

dij = dist(Xi, Xj) =
1
k

k

∑
t=1

√
(xit − xjt)

2 (6)

Finally, the distance matrix is clustered based on the K-means algorithm [28], and the
brief process is shown in Figure 9. Firstly, K cluster centers are randomly determined, and
each sample point is assigned to the cluster represented by the closest cluster center point
according to the similarity between each sample point and each cluster center. After all
points are allocated, recalculate the new cluster center in each cluster, then re-divide all
sample points according to the similarity, and repeat iteratively until the cluster center
points remain stable or reach the pre-specified clustering number of runs.
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4. Experiment and Analysis
4.1. Experimental Design
4.1.1. Performance Index

The principle and improvement effect of the algorithm are verified by clustering
experiments; the evaluation indicators of clustering selected are purity and KL (Kullback–
Leible) divergence.

The calculation principle of purity is similar to the accuracy rate in classification, but
first, the correspondence between clusters and classes needs to be assigned. The class with
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the most samples in the group is taken as the representative class of the cluster. This is
calculated as follows:

Purity = (Q, C) =
1
N ∑

k
max

j

∣∣ωk ∩ cj
∣∣ (7)

In the formula, N represents the total number of samples; Q =
{

ω1, ω1, · · ·ωj
}

represents the clustered class; C =
{

c1, c1, · · · cj
}

represents the correct class; ωk represents
all samples in the corresponding cluster after clustering; and cj represents the real samples
of this class. The value range of purity is [0, 1]; the higher the better.

The concept of KL divergence comes from probability theory and information theory
and is also known as relative entropy. It can be used to measure the difference between
two distributions. The smaller the difference between the two distributions, the smaller
the KL divergence. When the two distributions are consistent, the KL divergence is 0. Its
calculation formula is as follows:

KL divergence = (p, q) = ∑
x

p(x) log
p(x)
q(x)

(8)

In the formula, p and q represent the category distribution of clustering results and
the distribution of actual samples, respectively. The smaller the KL divergence, the more
similar the distribution of clustering results is to the actual distribution, and the better the
clustering effect is.

Purity can intuitively reflect the accuracy of clustering, and KL divergence is mainly
used to observe the overall clustering effect.

4.1.2. Data Sources

The experimental data adopted ADS-B data and GPS data.
ADS-B data is the civil aviation trajectory data recorded by the ADS-B system and

downloaded from the website https://flightadsb.variflight.com, accessed on 19 July 2022.
The system can periodically obtain parameters from the onboard equipment and broadcast
the status information of the aircraft to other aircraft or ground stations to monitor the
status of the aircraft. The information contained in the data includes flight number, time,
latitude, longitude, altitude, speed, heading angle, and so on.

GPS data comes from the GeoLife dataset published by Microsoft Research. This
dataset records the movement trajectories of multiple users through the GPS positioning
system, including walking, bicycle, car, and other modes of transportation. It provides
information such as timestamp, latitude, and longitude.

The above data is used as experimental data after preprocessing, such as screening, fil-
tering, interpolation, smoothing, and so on. The specific data used in different experiments
will be described in detail in the corresponding experimental section.

4.2. Verification of Trajectory Spatial Shape Feature Extraction

Firstly, the correctness of the algorithm principle is verified on the simulation dataset.
We test the ability of the algorithm in this paper to read the spatial features in the trajectory
image and verify the effect of introducing the extracted spatial features into the trajectory
clustering process.

4.2.1. Simulation Datasets

Generate simulated datasets based on ADS-B data. Select the trajectories on several
routes with complex spatial shape characteristics, retain only the latitude and longitude
characteristics, and normalize the attributes to create a simulated trajectory dataset, as
shown in Figure 10a. Only the position attribute exists in the manufactured data, and it
mainly used to verify the processing ability of the algorithm for trajectory images.

https://flightadsb.variflight.com
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In addition, as introduced in the problem analysis in Section 2, trajectory shape feature
extraction needs to ensure that the extraction method is robust to transformations such as
rotation and scaling of the trajectory. However, since the position attribute is normalized in
the imaging process, there is no need to study the scaling change of the trajectory. Therefore,
based on the simulation dataset, the dataset formed by the rotation transformation of the
trajectory is shown in Figure 10b, which is used to further verify the algorithm’s ability to
extract spatial features in the trajectory image with rotational changes.

4.2.2. SURF Algorithm Effect Verification

The ability of SURF algorithm to extract trajectory space features is tested. On the
produced simulation dataset, the performance of SURF and the convolutional autoencoder
in extracting features and clusters is compared. The temporal autoencoder model is used
to process the original trajectory data as a comparison. The extraction ability of the three
algorithms for trajectory shape features is compared, and the experimental results are as
shown in Figure 11.

As shown in the Figure 11, in the general trajectory dataset, both the convolutional
autoencoder and the temporal autoencoder can effectively read trajectory features and
obtain good clustering results. However, the performance degrades rapidly when the
rotation of the trajectory image appears. The SURF method is more robust to rotation
changes. It shows apparent advantages in rotating datasets, which proves that the SURF
method is more suitable for extracting the spatial features of the trajectory image under
unsupervised conditions. Therefore, this paper chooses the SURF algorithm to extract the
spatial features of the trajectory.
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4.2.3. Verification of Spatial Shape Feature Extraction Process

As introduced in Section 3.1, after using the SURF algorithm to extract the trajectory
similarity in this paper, it needs to be processed by the algorithm into the trajectory space
features for subsequent use. In the algorithm process, a similarity vector with a length
of 100 is formed first, and then an autoencoder is used to reduce the dimensions of the
vector to obtain a low-dimensional feature vector as the trajectory spatial shape feature.
Sections 3.1.2 and 3.1.3 illustrate from the algorithm principle that these processing proce-
dures do not negatively affect the spatial features extracted by the SURF method, which is
experimentally verified in this section.

Observe the loss function curve during the training of the convolutional autoencoder
shown in Figure 12. As the number of iterations increases, the loss value decreases rapidly
and converges, and the final loss value is lower. This shows the model fits the data well,
and the information loss is small in the process of feature dimension reduction.
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Figure 12. Iterative process.

Then, observe the impact of this process from the feature clustering results: clustering
with the similarity matrix extracted by the SURF method, the similarity vector extracted
from 100 trajectory matching, and the feature vector after dimensionality reduction pro-
cessing on the simulated and the rotated dataset, respectively. The effect of the three-stage
clustering is shown in Figure 13. Another method of convolutional autoencoder clustering
is taken as a comparison.
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From the experimental results, it can be seen that sampling and dimensionality re-
duction have no negative impact on the shape features extracted by SURF, and the shape
features after corresponding processing are more suitable for trajectory clustering. The
clustering effect has been significantly improved. In general simulation datasets, the same
clustering effect as convolutional autoencoders can be achieved, and obvious advantages
are obtained in rotated datasets. This also shows that it is appropriate to select the SURF
method to extract the shape features of the trajectory in this paper.

4.2.4. Verification of Feature Fusion Effect

After splicing the extracted spatio-temporal features, this paper continues to use
convolutional autoencoders for feature fusion to test the effect of fusing the two features.
On the simulation dataset, we compare the clustering effects of four features: time series
features, spatial features, splicing features, and fusion features. The statistical results are
shown in Table 2.

Table 2. Feature fusion effect verification.

Clustering Features Purity KL Divergence

Temporal Features 0.73 0.22
Spatial Shape Features 0.87 0.05

Feature Stitching 0.89 0.06
Feature Fusion 0.93 0.06

It can be seen from the results in Table 2 that compared with the clustering results
based on a single type of feature, the direct splicing and fusion of the two types of features
can achieve certain improvement effects. Compared with direct splicing, the clustering
effect can be improved by using the convolutional autoencoder for further dimension
reduction and fusion. Observing the index of KL divergence, the overall distribution of
clustering results can also remain stable during the process of splicing and fusion.

Summarizing the experiments in Section 4.2, it can be proven that the design of the
algorithm in this paper, such as shape feature extraction and fusion, is correct.

4.3. Algorithm Comparison

After verifying the principle and effect of the algorithm design on the simulation
dataset, this section details experiments on the actual dataset to verify the actual perfor-
mance and compares the algorithm effect with other classical methods.

4.3.1. Datasets

One of the applications of trajectory clustering is to use the data of the aircraft takeoff
to distinguish aircraft on different channels [29]. In this section, the trajectory data of
100 points after takeoff of the aircraft on three adjacent routes taking off from Shanghai
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Hongqiao Airport are intercepted as the experimental dataset for clustering experiments,
and the latitude and longitude coordinates of the trajectory are used to draw the trajectories,
as shown in Figure 14.
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Figure 14. Original airplane trajectory.

In addition to position attributes, the data includes attributes such as heading and
speed. In the following experiments, all attributes of the data are kept in the correlation
model for temporal feature extraction. As described in the trajectory imaging method
described in Section 3.1.1, only the location attributes (longitude, latitude, and elevation)
are retained in the imaging process, the color changes of the trajectory points are used to
reflect the trajectory elevation attributes, and the attributes are normalized. The obtained
partial trajectory image is shown in Figure 15.
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Figure 15. Trajectory after imaging.

In order to further verify the generality of the algorithm, this paper selects eight
types of high-quality data, as shown in Figure 16, from the GeoLife dataset, and it uses
the user as the label in the experimental data. The data includes three different modes
of transportation: walking, cycling, and driving. As can be seen from the images, these
motion patterns have their own characteristics and are more complex than civil aircraft
data, so they can better test the effect of the algorithm on different trajectories.
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Figure 16. Selected data from the GeoLife dataset.

4.3.2. Experimental Results

The classical algorithms used for comparison in this section are the traditional tra-
jectory feature extraction algorithm DTW [30] (dynamic time warping) and the MFA
(multi-feature fusion autoencoder) designed in [23]. The DTW method, as a classic tra-
jectory similarity measurement method, will not be introduced in this paper. The MFA
method extracts two latent attributes, the acceleration and steering rate, from the trajectory
data and combines them into three sets of attributes: latitude and longitude, velocity and
acceleration, heading and steering rate. Then, it extracts them using three respective autoen-
coders. Compared with traditional algorithms, better robustness and clustering effect are
obtained in the experiments. This method fully mines the time series attributes of trajectory
data and can be used as a comparison algorithm with spatial feature mining effect.

Furthermore, the temporal autoencoder and SURF method are used alone for feature
extraction and clustering to test the effect of extracting and fusing trajectory spatial features.

The datasets described in Section 4.3.1 were extracted and clustered using the above
algorithm. The average statistical results of multiple experiments are shown in Table 3.

Table 3. Clustering results of actual datasets.

Data Clustering Algorithm Purity KL Divergence

ADS-B

SURF 0.729 0.160
Temporal Autoencoder 0.718 0.168

Our Algorithm 0.882 0.044
DTW 0.702 0.219

MFA Autoencoder 0.790 0.154

GeoLife

SURF 0.719 0.129
Temporal Autoencoder 0.744 0.149

Our Algorithm 0.884 0.052
DTW 0.791 0.158

MFA Autoencoder 0.836 0.068

It can be seen from Table 3 that on the two types of experimental data, the algorithm
that combines time series and space features in this paper has higher clustering purity,
lower KL divergence, and better clustering results than the algorithm with a single feature.

In addition, compared with the two comparison algorithms DTW and MFA, the
algorithm in this paper also has advantages. It is proven that the clustering effect of the
trajectory can be effectively improved by introducing the trajectory shape feature. It also
proves that our algorithm is not limited to datasets dominated by spatial features, such as
the rotation datasets in Section 4.2.1. Extracting spatial shape features in other common
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trajectory datasets also helps in trajectory clustering. Based on the above experiments,
we can conclude that in practical applications, the algorithm in this paper can effectively
extract trajectory shape features and integrate them with temporal features to improve the
clustering effect.

5. Conclusions

Finally, a summary of the work of this paper is as follows:

(1) An image-based trajectory spatial shape feature extraction algorithm is proposed. It is
used to extract the overall shape features of the trajectory and is robust to changes
such as rotation and scaling of the trajectory.

(2) The extracted spatial shape features and temporal features are fused, and a trajectory
clustering method based on the fusion of temporal and spatial features is proposed to
get better clustering performance.

(3) The performance of the algorithm is verified by experiments on simulated datasets
and actual ADS-B and GPS datasets. The experimental results show that the algorithm
in this paper can effectively extract the trajectory spatial shape features and obtain
better clustering performance.

The algorithm also has some shortcomings. For example, when using the SURF
algorithm to extract trajectory features, the threshold in the algorithm needs to be manually
designed according to the image characteristics and cannot be automatically selected.
The method of adaptive threshold selection can be studied later. In addition, this paper
mainly studies the extraction of trajectory spatial shape features and the improvement
effect brought by the fusion of two types of features, so the network structure is not studied
in depth. The next step can further optimize the network structure to enhance the feature
extraction and clustering effect.
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