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Abstract: Schizophrenia, a mental disorder experienced by more than 20 million people worldwide,
is emerging as a serious issue in society. Currently, the diagnosis of schizophrenia is based only on
mental disorder diagnosis and/or diagnosis by a psychiatrist or mental health professional using
DSM-5, a diagnostic and statistical manual of mental disorders. Furthermore, patients in countries
with insufficient access to healthcare are difficult to diagnose for schizophrenia and early diagnosis
is even more problematic. While various studies are being conducted to solve the challenges of
schizophrenia diagnosis, methodology is considered to be limited, and diagnostic accuracy needs
to be improved. In this study, a new approach using EEG data and deep learning is proposed to
increase objectivity and efficiency of schizophrenia diagnosis. Existing deep learning studies use EEG
data to classify schizophrenic patients and healthy subjects by learning EEG in the form of graphs
or tables. However, in this study, EEG, a time series data, was converted into an image to improve
classification accuracy, and is then studied in deep learning models. This study used EEG data of
81 people, in which the difference in N100 EEG between schizophrenic patients and healthy patients
had been analyzed in prior research. EEGs were converted into images using time series image
conversion algorithms, Recurrence Plot (RP) and Gramian Angular Field (GAF), and converted EEG
images were learned with Convolutional Neural Network (CNN) models built based on VGGNet.
When the trained deep learning model was applied to the same data from prior research, it was
demonstrated that classification accuracy improved when compared to previous studies. Among
the two algorithms used for image conversion, the deep learning model that learned through GAF
showed significantly higher classification accuracy. The results of this study suggest that the use
of GAF and CNN models based on EEG results can be an effective way to increase objectivity and
efficiency in diagnosing various mental disorders, including schizophrenia.

Keywords: schizophrenia; EEG; Recurrence Plot; Gramian Angular Field

1. Introduction

Schizophrenia is a mental or psychotic disorder characterized by disturbances in
cognition, emotional responsiveness and behavior, in which common symptoms include
hallucinations, delusions, disorganized speech, abnormal behavior and disturbances of
emotion. Schizophrenia is estimated to be experienced by more than 20 million people
worldwide, and schizophrenic patients are two to three times more likely to die early than
the general population. Statistics show that more than 69% of schizophrenic patients are not
receiving appropriate treatment, and more than 90% of these patients live in low-income or
middle-income countries with insufficient healthcare access [1,2].

Since chronic schizophrenia patients are difficult to treat, it is imperative that schizophrenia
is diagnosed early. Currently, DSM-5, a mental disorder diagnosis and statistical manual
published by the American Psychiatric Association, is used by psychiatrists for diagnosis
and as a result schizophrenia diagnosis takes an extensive amount of time as it requires long
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consultations and observations [3]. Therefore, there is a need for a diagnostic process and system
that can objectively and conveniently diagnose schizophrenia.

Many studies have been introduced in order to diagnose various mental disorders, includ-
ing schizophrenia, and some of these studies use electroencephalography (EEG) [4–7]. EEG
is a non-invasive monitoring method, in which electrodes are attached to the scalp surface,
measuring the brain’s activity status and recording brainwaves. Recordings show generated
electrical activity when signals are transmitted between cranial nerves [8]. Since EEG includes
neurological conditions that can be leveraged to identify mental illness, recordings are used
to distinguish between healthy subjects and patients with mental illness by comparing brain
activity. Various studies that focus on the diagnosis and treatment of mental disorders have
previously recommended using EEGs, and recently proposed using the field of artificial intelli-
gence in combination with standard diagnostic methods. Most studies that utilize EEGs, use a
diagnostic method through artificial intelligence models that use EEGs in the form of graphs or
tables, which can limit classification accuracy. In order to ensure high diagnostic accuracy, there
is a need for improvement in methodology.

In order to differentiate EEGs of schizophrenic patients from the general public with
high accuracy, this study proposed a method of improving diagnostic accuracy by convert-
ing EEG, a time series data, into images and then learning in deep learning models. Recent
study results showed that a method converting time series data into an image, which was
then learned and classified in a deep learning model, demonstrated higher classification
accuracy when compared to a method without conversion [9,10]. Based on these insights
from prior research, this study used a method of learning deep learning after converting
EEGs into images to increase diagnostic accuracy.

2. Related Works

There has been a substantial amount of introduced studies that analyze the relation-
ship between EEG and schizophrenia, working towards a more objective and accurate
diagnosis of schizophrenia. Ford et al. [11] presented a study to classify schizophrenic
patients using EEG through N100, in which brain waves are given auditory stimulation
and then stimulation is decreased after 100 ms. Since schizophrenic patients have hearing
impairment due to auditory cortex dysfunction, it has been demonstrated that N100, a large,
negative evoked potential that is elicited by auditory stimulus, differs in schizophrenic
patients compared to the general population. In addition, Kim et al. [12] and Thilakvathi
et al. [13] analyzed the pattern of EEG or compared EEG numerical values to validate the
correlation between schizophrenia and EEG. Ruxandra et al. [14] trained on a deep learning
model without transforming time series data. This study suggests the importance and
limitations of learning time series data in deep learning methods.

In Zhang et al. [15], data analyzed in Ford et al. [11] was classified through machine
learning technology. The Random Forest was used to differentiate EEGs of schizophrenic
patients from the general public, and the highest classification accuracy was 81.1%.

In addition to schizophrenia, the utilization of EEG was also recommended as methods
for diagnosing mental disorders such as epilepsy and depression. Archarya et al. [16]
proposed a system for automatically diagnosing epilepsy by learning EEG data in the CNN
model without any other conversion of EEG, and the accuracy of differentiating between
epilepsy patients and healthy subjects was 88.67%.

Alhagry et al. [17] conducted an experiment to discern human emotions using EEG.
Emotions were classified by learning raw EEG data in LSTM model, which is used for time
series data learning, and the maximum accuracy of emotion classification obtained was 87.99%.

Naira et al. [18] used a new EEG methodology to improve classification accuracy
of schizophrenic patients and healthy subjects. This publication presented a method of
calculating Pearson Correlation in EEG data, converting into a matrix representing the
relationship between EEG channels, and then learning in a CNN model. Previous studies
using Support Vector Machine (SVM) and Random Forest obtained 81.07% and 84.5%
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accuracy, respectively [19], and deep learning models that learned by converting EEG data
into Pearson Correlation matrix demonstrated an improved classification accuracy of 90%.

There are various studies that convert EEG into images to learn from artificial intelligence.
WeiKoh et al. [20] used EEG data to limit new methods of diagnosing patients with schizophrenia.
In this study, EEG is transformed into a spectrogram and then trained with KNN, one of the
machine learning models. Sobahi et al. [21] converted the EEG into an image form using a local
binary pattern. Then, using the transformed image, the CNN is trained.

In this research, Recurrence Plot (RP) and Gramian Angular Field (GAF) were used as
methods of converting time series data into images [10,22]. The two methods calculated
numerical conversion information of time series data using nonlinear analysis and rep-
resented the data as a square image. RP and GAF are techniques to which algorithms to
analyze patterns of time series data are applied. Therefore, specific changes in EEG data can
be efficiently checked, and the overall flow is expressed in one image, which is effective for
CNNs where receptive fields are important. In addition, RP and GAF change the patient’s
EEG into an image for each channel, so it has the advantage of accurately learning a deep
learning model with more data.

3. Materials and Methods
3.1. Data

Data used in this experiment was measured data presented by the National Institute
of Mental Health (NIMH; R01MH058262), and was provided at https://www.kaggle.
com/broach/button-tone-sz (accessed on 17 July 2022), in which data was measured in
49 schizophrenic patients and 32 healthy patients, generating a total of 81 EEGs. The
composition of the research data is as follows.

Data of 81 subjects used in the experiment were measured to study the difference
in EEG between schizophrenic patients and healthy subjects. N100 refers to a negative
deflection in EEG brain waves after 100 ms when auditory stimulation is given. Schizophre-
nia patients have problems with N100 because they have hearing impairment due to a
dysfunction in the auditory cortex. Thus, a study was conducted to verify the difference in
N100 between schizophrenic and healthy patients using EEG data of 81 subjects [12].

EEG was measured 100 times each under the following three conditions.

(1) Subject pressed a button to generate the tone.
(2) Subject passively listened to the same tone.
(3) Subject pressed a button without generating the tone.

EEG was measured in a total of 70 channels by measuring 64-channel scalp EEG and
6 channels around the eyes and nose. In this study that compared the N100 differences
between schizophrenic patients and healthy subjects, among the 70 analyzed channels,
9 electrode sites (Fz, FCz, Cz, FC3, C3, CP3, FC4, C4, CP4) had distinct N100 differences.
Figure 1 shows the N100 difference between schizophrenic patients and healthy subjects
in the Fz channel. As a result of the analysis, in the case of the healthy subjects, N100
was more suppressed in Condition 1 than in Condition 2, but in the case of schizophrenic
patients, it was demonstrated that there was no difference between Conditions 1 and 2.

In this experiment, the average of 100 values measured under each condition was used,
and the measured data was edited from 1.5 s before hearing the tone to 1.5 s after hearing
the tone to use 3 full seconds of EEG data. This experiment proceeded in classifying EEG
of schizophrenic patients and healthy subjects using 9 out of 70 channels, similar to that in
previous studies.

https://www.kaggle.com/broach/button-tone-sz
https://www.kaggle.com/broach/button-tone-sz
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Figure 1. Differences in N100 EEG between schizophrenic patients and healthy.

3.2. Convert Time Series to Images

Unlike previous studies that learn EEG in table form or in EEG graphs, the newly
proposed schizophrenia diagnosis method in this study required a process of converting
EEG data into images. Possible methods of converting time series data into images included
Recurrence Plot (RP), Gramian Angular Field (GAF), and Markov Transition Field (MTF).
The aforementioned methods represent the amount of change in time series data values as
a matrix and are expressed as an image. Looking into the characteristics of each method,
RP displays the amount of change in the data value in a two-dimensional space, expressing
the distance between each point as a matrix, and GAF as the inner matrix of the data values.
MTF uses the Markov Transition Matrix to express the probability that the data value will
change to the next value in chronological order and converts it into an image.

After comparing classification accuracies of the three image conversion methods, RP
and GAF, which have high classification accuracy, were applied to the learning process
for this experiment. Figure 2 portrays the overall process of the experiment, and EEGs of
schizophrenic patients and of healthy subjects were classified after converting EEG data
into images using the previously mentioned two methods and trained in deep learning.
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3.2.1. Recurrence Plot

This step corresponds to (A) of Figure 2 and describes the process of converting the
EEG into an image using RP. In order to visualize the movement of time, RPs represent
data values in two-dimensional spatial trajectories and then convert them into images by
representing the Euclidean distance between spatial trajectories [22]. Therefore, they can be
useful in converting time series data, such as EEGs, into images.

Ri,j := H
(

εi − ‖
→
xi −

→
xj‖
)

, i, j = 1, . . . , N (1)

Equation (1) of the Recurrence Plot represented the value of the Euclidean distance
matrix. ‖→xi −

→
xj‖ meant the distance between trajectories in a two-dimensional spatial

trajectory, and εi meant a threshold. H(x) was the output of a Heaviside Function equal to
1 if x value was greater than or equal to 0 or 0 if x value was less than or equal to 0. If the
distance between the trajectories in a two-dimensional spatial trajectory was farther than
the threshold, it was represented by a value of 0, and if it was closer than the threshold,
it was represented by a value of 1. In the RP, 1 was marked in black and 0 was marked
in white to represent an image. Thus, when the EEGs of schizophrenic patients and of
healthy subjects were expressed as RPs, the results of the conversion were square images
with values of 0 and 1.

3.2.2. Gramian Angular Field

The step corresponding to (B) in Figure 2 is the process of converting the EEG into
an image using GAF. GAF is an introduced method in order to visualize the movement of
time, similar to the RP [10]. If RP is a method of calculating the Euclidean distance between
spatial trajectories as a matrix and expressing it as an image, GAF uses polar coordinates to
represent the temporal correlation between each time point.

x̃−1 =
(xi −max(X)) + (xi − min(X))

max(X)−min(X)
(2)

or x̃0 =
xi −min(X)

max(X)−min(X)
(3)
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when n time series data values are referred as X = {x1, x2, . . . , xn} values are adjusted to
have a value between [−1, 1] or [0, 1] using Equations (2) and (3).

{∅ = arccos(x̃i), −1 ≤x̃i ≤1, x̃i ∈ X̃

r =
ti
N , ti ∈ N

(4)

Equation (4) ti refers to time and N referred to a constant that normalizes the range of
polar coordinates. ∅ represented the arc cosine value, and r the radius value of the polar
coordinates. Therefore, the adjusted value x̃i was changed to arc cosine using Equation (4),
and time series data was expressed as polar coordinate values by calculating time as the
radius. Thereafter, a matrix obtained by calculating the inner product values between each
data point was created and displayed as an image.

GAF was also visualized as an image by converting time series data values into
matrices, similar to RP, and GAF expressed EEGs of schizophrenic patients and of healthy
patients by using inner product values of data to convert into square images. RP and GAF
are methods to represent images using changes in time series data. The EEG data used
in the experiment is data measuring the difference in EEG change between schizophrenia
and normal. Therefore, it can be converted into an image more effectively than the Pearson
correlation method expressing the correlation between channels [18], the spectrogram or
the local binary pattern method indicating the EEG value [20,21]. Thus, in the next section,
we discuss deep learning models for learning RP and GAF.

3.3. Deep Learning Using Time Series Images

Since the EEGs of schizophrenic and healthy patients used for schizophrenia diagnosis
were nonlinear data, deep learning that distinguishes nonlinear c1haracteristics was used
for EEG classification in both groups [23]. Currently, CNN is mainly used in studies that
look to distinguish EEG [24,25]. CNN, a high-performing model in image processing,
effectively extracts the characteristics of the image, and has a feature that facilitates in
model modification [26]. Among the representative models of learning time series data,
LSTM, a model that learns by considering the correlation between past and current data,
lacks accessibility compared to CNN due to difficult model modification [27]. In this study,
the CNN model was used to effectively extract the characteristics of the image by modifying
the deep learning model after converting EEG data into an image.

Figure 3A shows the overall structure of the CNN model and Figure 3B shows VGGNet
structure used in the experiment. Features of the EEG have significant variation in values,
and in order to learn these features in detail, the model was constructed based on VGGNet,
which used a small 3 × 3 filter [28]. VGGNet is a model that won second place at the 2014
ImageNet Image Recognition Competition, in which 13–16 convolution layers and 3 fully
connected layers are used. In the convolution layer of VGGNet, there is an advantage of
increasing the processing speed using a 3 × 3 filter with a small computational volume,
learning data features in detail, and amplifying the effectiveness of nonlinear learning by
using the convolution layer several times.

In this experiment, the CNN model used a total of 14 convolution layers, 5 maxpooling
layers, 3 fully connected layers, and 1 dropout layer. The input size of VGGNet was
224 × 224 × 3, which was based on an image of an RGB channel with 224 pixels in width
and length. However, given that the time series image used in the experiment was a
gray scale, only one channel existed. (RP and GAF are images representing patterns of
time series images, and are shown in gray scale. A 1 × 1 convolution layer using three
filters was added on top of VGGNet to make the time series image into three channels
so when a one-channel time series image passed through the Convolution layer using
three filters, an output value with three channels was obtained.) When a one-channel time
series image passed through the convolution layer using three filters, an output value
with three channels was obtained, so a convolution layer using three filters was added on
top of VGGNet to make the time series image into three channels. After passing through
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13 convolution layers and 5 maxpooling layers of VGGNet, the result was inputted to the
fully connected layer.
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On the 20th to 23rd floors, a fully connected layer that has 4096, 2048, and 1024 units
were used. After passing through the first fully connected layer, a dropout layer was
used to prevent overfitting. VGGNet used a pre-trained model with ImageNet, and
transfer learning was used for this experiment. VGGNet was frozen, convolution and fully
connected blocks were trained. Below, the results were compared and analyzed by learning
EEG images through the presented model.

4. Results

Unlike the existing method of classifying schizophrenic patients by learning deep
learning without converting EEG data, this study differentiated schizophrenic patients by
learning deep learning after converting time series data EEG into images. A total of 81 EEG
data were used in the experiment, in which the data were converted into images using RP
and GAF and then learned in the deep learning model.

The measured timeframe of EEG data was 3 s and had 3072 values per channel. Each
channel was converted into a single image, and 3072 values passed through RP and GAF
to result in a 3072 × 3072 size image. Since the input size of the model in this experiment
was 224 × 224, the 3072 × 3072 size image was adjusted to 224 × 224 to learn in the deep
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learning model. In training, 2187 EEG images of 81 patients were used in 9 channels and
3 conditions were converted to RP and GAF.

RP and GAF are methods for converting time series data into images by calculating
the change. Therefore, if RP and GAF are used, the difference in the EEG change between
schizophrenia and normal can be expressed as an image. The transformed EEG image is
trained on the aforementioned VGGNet-based deep learning model. This model trained
the difference between schizophrenia and normal EEG and makes classification possible.
Deep learning model trained 200 epochs using binary cross entropy as loss function and
Adam as optimizer. Then, the data converted for the experiment is validated by dividing it
into train data and test data for each patient using 10-fold cross validation.

Classification accuracy was determined through learning on CNN with EEG data that
was converted into images using Recurrence Plot and Gramian Angular Field. Figure 4A,B
show the learning curve of the model in which the RP was learned. The maximum accuracy
and loss obtained as a result of learning were 0.945, 0.209, respectively. Figure 4C,D show
the learning curve of the model in which GAF was trained. The maximum accuracy and
loss obtained as a result of learning were 0.963, 0.184, respectively.

Figure 4. Learning curve of Recurrence Plot and Gramian Angular Field.

For result analysis, classification accuracy obtained by learning EEG Graph and classi-
fication accuracy from previous studies that differentiated schizophrenic patients using the
same data were used in this experiment. Previous studies classified schizophrenic patients
using Random Forest but used the same channels as those used in this experiment [16].

Confusion matrices of the approaches using RP and GAF, presented in Tables 1 and 2
were used to determine model performance. For the RP approach, sensitivity and specificity
were 90.9% and 88.6%, respectively. For the GAF approach, sensitivity was 93.9% and
specificity was 92.1%.
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Table 1. EEG Recurrence Plot confusion matrix.

PREDICTED

Schizophrenia Normal

ORIGINAL
Schizophrenia 1230 95

Normal 123 739

Table 2. EEG Gramian Angular Field confusion matrix.

PREDICTED

Schizophrenia Normal

ORIGINAL
Schizophrenia 1256 67

Normal 82 782

Table 3 shows the average classification accuracy obtained by learning RP and GAF
through the 10-fold cross validation approach. Classification accuracy obtained from
learning EEG Graph, from LTSM and from previous studies are presented together for
comparison. The EEG graph was trained on the same model as the RP and GAF learning
methods to obtain the results, and the LSTM obtained the results by learning the table
EEG data without converting it into an image. The classification accuracy obtained by
learning EEG Graph was 75.3%, and the classification accuracy from previous studies
using same EEG data as our experimental that used Random Forest was 81.1% [15]. In
this comparison, the average classification accuracy obtained by learning RP and GAF
were 90% and 93.2%, respectively. Thus, improved classification accuracy was achieved
compared to prior approaches and previous studies.

Table 3. Comparative analysis of learning results of EEG data.

Method Accuracy

Recurrence Plot 90.0%
Gramian Angular Field 93.2%

EEG Graph 75.3%
LSTM 66.3%

Previous Research 81.1%

As a result of data analysis, the method of converting the time series data, EEG, into an
image and learning in deep learning indicated an improvement in classification accuracy
compared to prior methods and proposed methods in previous studies. In this study, EEG
data was converted into images using RP and GAF, and based on the analysis results, it can
be demonstrated that the approach using GAF is more effective and accurate in classifying
EEGs in schizophrenic patients and healthy subjects.

5. Discussion

An increasing amount of proactive research for mental disorder diagnosis is being
conducted as the number of patients suffering from mental disorders has had a rapid
upward trend. Currently mental disorder diagnosis depends only on a diagnosis by a
psychiatrist using DSM-5, a statistical manual. Societies with poor access to healthcare,
in particular, face challenges in inaccurate diagnosis in addition to difficulties in early
diagnosis. It is necessary to improve the accuracy by supplementing the limited approach
of existing research. In this study, a new methodology was proposed to improve the
efficiency and accuracy of mental disorder diagnosis.

Unlike conventional methods of learning EEGs of schizophrenic and healthy patients
in deep learning in the form of graphs or tables, this study used a different approach
of converting EEGs into images and diagnosing schizophrenic patients in deep learning
models. Recurrence Plot and Gramian Angular Field were used to convert time series data
into images, while deep learning models used CNN models built on VGGNet.
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EEG data of 81 subjects were converted into images, then learned in a deep learning
model. Results from this experiment were analyzed and compared to previous studies that
used a variety of approaches including learning EEG graphs in deep learning, learning in
LSTM, which is used for time series data learning, and the NIMH experiment in which the
EEG data used in this experiment was originally collected.

Demonstrated classification accuracy was 66.3% from learning using LSTM, 75.3%
in the experiment that used learning EEG graphs of 81 subjects, and 81.1% in a previous
study that classified EEG using Random Forest. The classification accuracy obtained by
learning RP and GAF was 90.0% and 93.2%, respectively, which was a 12.1% improvement
from the classification accuracy of existing methods and previous studies. Additionally, a
comparative analysis of the learning results from RP and GAF confirmed that the use of
GAF as a method for diagnosing schizophrenia was more effective than the use of RP.

This study proposed an approach for effectively diagnosing schizophrenia. The current
diagnosis method of schizophrenia on mental disorder diagnosis by a psychiatrist using
DSM-5, a statistical manual. Furthermore, there are challenges in early diagnosis given
that patients must have extensive in-person visits at mental health institutions for medical
treatment. As such, the method presented in this study provides a potential procedure
for an objective and effective diagnosis of schizophrenia. Additionally, leveraging this
proposed method further supports the possibility of diagnosing mental disorders for
patients in socio-economically disadvantaged societies where healthcare access is difficult,
for patients with frequent outpatient treatment and can be expanded to develop convenient
patient management for psychiatrists.

Future research will focus on how to further improve the accuracy of schizophrenia
classification by supplementing the deep learning model used in this experiment. It can
be seen that this study and improved methodologies have the potential to be expanded
and applied to various mental disorders other than schizophrenia, such as depression,
impulse control disorder, and anxiety disorder, in which diagnosis is solely dependent on
the utilization of DSM-5.
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