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Abstract: The detection and description of feature points are important components of many
computer vision systems. For example, in the field of autonomous unmanned aerial vehicles (UAV),
these methods form the basis of so-called Visual Odometry (VO) and Simultaneous Localisation
and Mapping (SLAM) algorithms. In this paper, we present a hardware feature points detection
system able to process a 4K video stream in real-time. We use the ORB algorithm—Oriented FAST
(Features from Accelerated Segment Test) and Rotated BRIEF (Binary Robust Independent Elementary
Features)—to detect and describe feature points in the images. We make numerous modifications to
the original ORB algorithm (among others, we use the RS-BRIEF instead of classic R-BRIEF) to adapt
it to the high video resolution, make it computationally efficient, reduce the resource utilisation and
achieve lower power consumption. Our hardware implementation supports a 4 ppc (pixels per clock)
format (with simple adaptation to 2 ppc, 8 ppc, and more) and real-time processing of a 4K video
stream (UHD—Ultra High Definition, 3840× 2160 pixels) @ 60 frames per second (150 MHz clock).
We verify our system using simulations in the Vivado IDE and implement it in hardware on the ZCU
104 evaluation board with the AMD Xilinx Zynq UltraScale+ MPSoC device. The proposed design
consumes only 5 watts.

Keywords: Oriented FAST and Rotated BRIEF; ORB; feature points; feature extraction; FAST detector;
BRIEF descriptor; UHD; 4K resolution; real-time; FPGA; Zynq UltraScale+

1. Introduction

Unmanned Aerial Vehicles (UAVs) (for the purposes of this work, we restrict this
term to multi-rotor vehicles such as quad- and hexa-copters) have become very popular in
recent years. They are currently used for a variety of tasks, such as filming, transporting
small goods, exploring unknown spaces, or various types of inspections. Nowadays,
one of the main trends in UAV development is autonomy, understood as the ability to
carry out missions without (or with only minimal) operator involvement. This requires
the vehicle to be equipped with several systems responsible for environment perception,
navigation, and control. In addition, in some missions all calculations need to be performed
using an on-board computer, for example, exploration of hard-to-reach areas where a high-
throughput connection to a base station may be unavailable. Typical on-board computers
for UAVs are characterised by a relatively limited computing power (due to weight and
available energy), which poses a significant challenge for the developers of perception and
navigation systems.

One of the previously mentioned problems concerns the exploration of an unknown
space by a UAV without a GNSS (Global Navigation Satellite Systems) signal. In this task,
the SLAM (Simultaneous Localisation and Mapping) algorithm can be used. It is based on
the data acquired by the sensors available on board (e.g., cameras, inertial measurement
unit—IMU) and determines the current position of the UAV, as well as generates a map of
the unknown environment. When the GNSS signal is unavailable or disrupted, the vehicle
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must perform a specific task based on the sensors it is equipped with. Among them, the
camera deserves special attention. In particular, vision-based algorithms can be used to
detect the displacement and rotation of the UAV, which can be used for its positioning.
However, for this purpose, it is necessary to determine the geometric relationships between
two images captured by the camera. The most common approach to obtain them is to use
detection and description of feature points. There are many well-established algorithms
for this task. Worth mentioning are: SIFT (Scale-Invariant Feature Transform) [1], SURF
(Speeded-Up Robust Features) [2], and ORB (Oriented FAST and Rotated BRIEF) [3]. The
detected points are then matched by comparing their descriptors, thus obtaining the
corresponding locations in both images (e.g., corners of objects visible in both frames). This
allows the desired geometric relationships to be determined. The accuracy of the obtained
results depends on the quality of the details (colours, edges, shapes) visible in both input
images.

Nowadays, UAVs are equipped with high-end 4K cameras. Due to very high resolu-
tion, the obtained video stream is characterised by a huge amount of high-quality details.
This allows for a more accurate determination of geometric relationships. At the same
time, the processing of 4K images requires more computational resources, especially for
a real-time implementation (above 30 frames per second). This poses a particular challenge
in case of embedded platforms typically used for UAVs. Heterogeneous Systems on a Chip
(SoC) , which integrate different types of computing units, e.g., CPUs and FPGAs (Field-
Programmable Gate Arrays), are exemplary solutions that enable high-resolution video
stream processing with a relatively low power consumption.

In this paper, we present a hardware implementation of the ORB algorithm developed
for the real-time implementation of the Visual SLAM algorithm for the Unmanned Aerial
Vehicles. We have prepared a fully pipelined system operating in a parallel manner
using a heterogeneous SoC FPGA device. The main contribution of our work includes
the implementation of the FAST detector and the BRIEF descriptor for a 4K resolution
video stream (UHD—Ultra High Definition, 3840 × 2160 pixels) @ 60 frames per second,
150 MHz clock. Due to the characteristics of the 4K video stream and the hardware
platform used, we apply a vector data format (4 ppc—4 pixels per clock cycle), which
imposes a different hardware architecture of the ORB algorithm. We also propose the first
FPGA implementation of the Fast Score method. To our best knowledge, this is the first
real-time implementation of the ORB algorithm for such a high-resolution video stream.

The remainder of this paper is organised as follows. Section 2 presents basic informa-
tion about the ORB (FAST+BRIEF) algorithm. Then, Section 3 discusses the most important
related work on hardware implementation of the algorithms considered in FPGA. The
proposed system is described in Section 4, while the results obtained are summarised in
Section 5. The article ends with conclusions and a discussion on future research.

2. Oriented FAST and Rotated BRIEF

In this section, we present a brief overview of the ORB algorithm used for feature
point detection and description. This solution was proposed in 2011 in the article [3] as
a kind of compromise between the SIFT and SURF algorithms. It performs as well as SIFT
on the task of feature detection while being almost two orders of magnitude faster, and it is
better than SURF, as it has higher detection quality and computational efficiency. The ORB
algorithm consists of a FAST (Features from Accelerated Segment Test) oriented corner
detector and a BRIEF (Binary Robust Independent Elementary Features) rotated feature
descriptor.

When processing an image on a CPU, the ORB algorithm usually consists of the
following steps:

1. Performing the fast accelerated segment test to determine the corners (FAST).
2. Filtration using non-maximum suppression (NMS).
3. Elimination of feature points for which it is not possible to determine the full context

31× 31 pixels (px).
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4. Filtering of feature points and leaving only the best N points.
5. Computation of the Harris score and re-filtering of feature points.
6. Calculation of the orientation of the feature point (intensity centroid).
7. Determination of the context 31× 31 px and blurring with a Gaussian filter.
8. Determination of the binary feature descriptor (rBRIEF).

2.1. Oriented FAST Feature Detector

The FAST algorithm is a corner detector that was originally presented in the paper [4]
and developed further in the paper [5]. Its most important advantage is the high compu-
tational efficiency (compared to other algorithms, i.e., SIFT or SURF) while maintaining
reasonable accuracy. For this reason, it is successfully used in real-time image processing
applications on embedded platforms. Feature point detection is performed in the context
of 7× 7 px by comparing the brightness of a given image point with 16 pixels located in
a surrounding Bresenham circle of radius 3, as shown in Figure 1. A centre point with
intensity Ip is considered a corner if the brightness of consecutive n pixels in the circle is
simultaneously lower than Ip − t or simultaneously higher than Ip + t, where t defines
an intensity threshold. The authors of [4,5] showed in their study that the best quality
results can be obtained by setting n = 9. It may be considered as a general statement
(regardless of image resolution), as this depends primarily on the fixed radius of the used
Bresenham circle.

16 1 2

15

14

13 C

12

11

3

7

10 9 8

4

5

6

Figure 1. The Bresenham circle used in the FAST algorithm. Note that for n = 9 the centre point will
be detected as a corner for a relatively wide range of possible thresholds t.

Furthermore, the algorithm assumes the calculation of a corner score to determine
the stability of the detected feature point. For this purpose, depending on the particular
implementation, one of several metrics is used, e.g., the Harris corner score, the sum of
absolute differences between the candidate point and the pixels on the Bresenham circle [4]
or a modification of the sum of absolute differences referred to as Fast Score.

The Harris corner score is determined by Equation (1). For each corner, the value of
H(x, y) is calculated based on the determinant and the trace of the autocorrelation matrix
M(x, y).

H(x, y) = det(M(x, y))− k ∗ trace2(M(x, y))

M(x, y) = h(x, y)

[
I2
x(x, y) Ix(x, y)Iy(x, y)

Ix(x, y)Iy(x, y) I2
y(x, y)

]
(1)

where det is the matrix determinant, trace is the matrix trace, k is the constant value,
k ∈ [0.04; 0.06], (x, y) are the image coordinates, h(x, y) is the Gaussian function, M(x, y) is
the autocorrelation matrix, Ix(x, y), Iy(x, y) are the spatial derivatives.
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The sum of the absolute differences is calculated using Equation (2). For each point
x ∈ {1, . . . , 16} on the circle two sets: Sbright and Sdark are determined. The first set contains
pixels greater than or equal to Ip + t, and the second pixels less than or equal to Ip − t.
Then, the sum of absolute differences between the intensities of the pixels in each set and
the intensity of the central pixel is determined, decreased by the threshold t. The final value
of the measure is the maximum value of the two sums obtained.

V = max

 ∑
x∈Sbright

∣∣Ip→x − Ip
∣∣− t, ∑

x∈Sdark

∣∣Ip − Ip→x
∣∣− t

 (2)

Sbright =
{

x|Ip→x ≥ Ip + t
}

Sdark =
{

x|Ip→x ≤ Ip − t
} (3)

The mentioned modification of the sum of absolute differences has been used in the
OpenCV library [6]. In the documentation, this modification is referred to as Fast Score.
For each set of 9 contiguous pixels from the Bresenham circle, the absolute differences in
intensity between these 9 pixels and the central point are calculated. Then, the minimum
of the 9 obtained values is determined. These operations are repeated for the remaining
contiguous arc sets, obtaining 16 minimum values. The corner score of the feature point is
the maximum of the 16 minimum values according to the Equations (4).

dk =
{
|Ip→x − Ip|, x ∈ {1, . . . , 9}

}
dk

min = min
{

dk
i , i ∈ {1, . . . , 9}

}
score = max

{
dk

min, k ∈ {1, . . . , 16}
} (4)

where: dk are the difference values from one contiguous arc set of pixels, Ip is the pixel
value, dk

min is the minimum value from one contiguous arc set of pixels, score is the corner
score, Fast Score.

The next step of the ORB algorithm is non-maximum suppression with a context
3× 3 px. It allows to eliminate candidate points with a lower corner score and leave only
the best N feature points.

However, the obtained corners are not invariant to the rotation angle of the image and
its scale. To solve the first problem, the intensity centroid [7] as a measure of orientation
was used. First, the moments of an image patch around a given feature point are calculated.
This is defined by Equation (5). The moments mpq are determined as a weighted sum of
the image pixels’ intensities within a circle of radius r and centre in the given feature point.

mpq = ∑
x,y

xpyq I(x, y) (5)

where x, y are the local coordinates within a circle of radius r relative to the detected feature
point, I(x, y) is the brightness of the pixel in a given location (x, y).

Then, the orientation of the feature point is determined by Equation (6):

θ = arctan 2(m01, m10) (6)

The second problem is solved by the well-known multi-scale approach. The FAST
detector is applied to each level of the image pyramid to improve scale invariance. The
image pyramid is built by smoothing the image with an appropriate low-pass filter (usually
Gaussian) and then subsampling the image, usually by scaling down by a factor of 2 along
each coordinate direction. The resulting image is then subjected to the same procedure,
which is repeated multiple times. At each level of the pyramid, exactly the same feature
point detection operations as described above are carried out. Non-maximum suppression
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can be applied to eliminate multiple detections of the same corners in different scales. The
size of the filter mask is dependent on the scaling factor and the number of scales.

2.2. Rotated BRIEF Descriptor

The BRIEF descriptor was first presented in the paper [8]. Based on an image patch of
31× 31 pixels around a given point, the algorithm returns a 256-bit binary feature vector
(descriptor). It is calculated using a set of binary intensity tests τ—Equation (7).

τ(p; ui, vi) :=

{
1 for I(ui) < I(vi)

0 for I(ui) ≥ I(vi)
(7)

where p is the smoothed image patch around a given feature point (ui, vi), ui, vi are the
coordinates of sample pairs p (ui 6= vi), I(w) is the brightness of the pixel in a given
location w = (x, y).

The descriptor of a feature point is constructed as a n-element bit string—Equation (8).
The patch p must be blurred with a Gaussian filter to reduce the influence of noise.

fn(p) :=
n

∑
i=1

2i−1τ(p; ui, vi) (8)

In the original BRIEF descriptor, 256 pairs of points used for the binary intensity test
are randomly selected in a corner’s neighbourhood according to a Gaussian distribution.
However, this descriptor is not resistant to large in-plane rotation. To address this issue,
the authors of the paper [8] suggest computing a BRIEF descriptor for a set of rotations
for each image patch, but this approach is computationally very expensive. Therefore, in
the paper [3] some modifications to the BRIEF descriptor have been proposed in order
to make it more efficient and resistant to rotation. The authors have tested two solutions.
In the first approach, called steered BRIEF, they rotated a set of n pairs of coordinates of
binary tests along a predetermined set of orientations, according to Equation (9). For this
purpose, they used angles equal the increments of 2π/30 (12◦). As a result, they constructed
a lookup table of precomputed BRIEF patterns. However, experiments have shown that
this approach is not effective as it increases the correlations in the binary tests set.

S =

(
x1, . . . xn
y1, . . . yn

)
Sθ = RθS

(9)

where: S is the set of n binary tests in location (xi, yi), Sθ is the steered version of S, rotated
set of n binary tests, Rθ is the rotation matrix corresponding to the orientation of the
feature point.

In order to reduce the correlation in the binary tests set, i.e., to get a better quality
descriptor, a different solution was proposed. The authors developed a special algorithm
using machine learning to select a set of tests that are as uncorrelated as possible to get
high diversity and good performance of the descriptor. This algorithm is a greedy search
for a set of uncorrelated tests with means near 0.5. As a result, 256 pairs of points are
selected, which are then rotated according to the orientation of the feature point (based on
Equation (10)) to make it invariant to rotation. This modification is called rotation-aware
BRIEF (rBRIEF).

x′ = x · cosθ − y · sinθ

y′ = y · cosθ + x · sinθ
(10)

where: (x, y) is the initial location, (x′, y′) is the location after rotation, θ is the orientation
of the feature.
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Rotation-aware BRIEF, also called rotated BRIEF, is a component of the ORB algorithm.
Among its many advantages, worth mentioning are good performance, robustness, and
computational efficiency of matching feature points due to its binary structure.

3. Related Work

Many feature point detection and description algorithms were proposed in the lit-
erature. However, in the unknown space exploration task using Visual SLAM, the ORB
algorithm [9–11] is the most widely used. This method for feature point detection has
a capability of a high acceleration due to the possibility of parallelising the calculations.
This observation is evidenced by a number of publications that describe its hardware
implementations using heterogeneous computing platforms, including FPGAs.

Existing hardware architectures can be categorised into non-stream and stream process-
ing. Non-stream processing approaches, such as [9,12], assume the availability of a buffer
that stores the image frame. This enables the BRIEF descriptors to be computed only for
patches that are centred on the detected FAST corners. On the other hand, stream processing
architectures such as [13,14] do not require external memory to store the input video frames
and can achieve higher throughput. However, in this approach, where the incoming pixels
are processed on-the-fly without being stored in frame buffers, many pipeline and parallel
processing elements are needed to keep up with the rate of the incoming pixel stream. The
use of algorithms on UAVs’ embedded platforms requires very high throughput, speed,
and accuracy. Low energy consumption must also be taken into account, which involves
a marginal use of memory and additional buffers. For this reason, implementing the ORB
algorithm according to the stream processing paradigm is a better option.

The authors of the articles [15–17] focused on the hardware implementation of the ORB
algorithm in its basic version, introducing changes only to the mechanism of determining
the value of the corner score and adding modules responsible for filtering the obtained
feature points. An image pyramid was also used to make the detector robust to scale
differences between images. In papers [16,17] systems were proposed that process Full
HD images (1920× 1080 pixels) at 63 fps and 42 fps, respectively. In the articles [9,18], an
approach for a more hardware-friendly implementation was proposed. In particular, the
BRIEF descriptor was modified. A rotationally symmetric ORB descriptor pattern was
used, which drastically reduced the computational complexity and memory usage. In this
solution, it was not necessary to rotate the set of binary tests according to the feature point
orientation for each image patch, nor to store the BRIEF patterns for all discretised feature
point orientations, i.e., 30 sets, each containing 256 pairs of points. Additionally, heap
sorting was used to reduce the number of detected feature points, leaving only the most
robust ones. The tests were carried out on images with a resolution of 640× 480 px from the
TUM dataset [19]. Also noteworthy is the work of [20], in which the authors presented the
concept of a hardware implementation on an FPGA. They performed experiments using
functions from the OpenCV library, in which they indicated modifications to be made to
speed up the computation.

To compute the BRIEF descriptor of a feature point, two approaches are usually
used. The first assumes storing 256 pairs of points and performing the rotation according
to Equation (10). However, this requires the calculation of 512 new coordinate values
for each feature point. A more popular method is to precompute the rotated BRIEF
patterns [3] instead of computing them directly each time. In this approach, the orientation
of features is discretised into 30 different values. Then, 30 BRIEF patterns after rotation
are precomputed and saved as a lookup table. This reduces the computation cost but
increases memory utilisation, while the introduced orientation discretisation deteriorates
the accuracy. However, both described approaches are difficult to implement in FPGAs
and require very high amount of logical resources, which may also affect energy efficiency.
The authors of the work [9] proposed using a 32-fold rotationally symmetric BRIEF pattern
(RS-BRIEF), which is more hardware-friendly. They assumed the selection of 2 sets of
locations in the neighbourhood around the feature according to the Gaussian distribution.
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Each of these 2 sets contained 8 locations, which were rotated by discrete angle values
every 11.25 degrees. The final test locations contained 256 pairs of coordinates that were
used to determine a binary feature descriptor.

In the works discussed so far, the hardware implementations were adapted to process
data with a maximum resolution of Full HD (1920× 1080 px). Most important parameters
of these implementations are gathered in Section 5. In this paper, we describe a hardware
implementation of the ORB algorithm for a 4K UHD resolution (3840× 2160 px) imple-
mented on a ZCU 104 SoC FPGA platform with a Zynq UltraScale+ MPSoC chip from AMD
Xilinx. In our ORB implementation, we used the FAST detector and a modified version of
the RS-BRIEF descriptor without filtering the points during the subsequent steps. To our
best knowledge, this is the first real-time implementation of the ORB algorithm for such
a high-resolution video stream.

4. The Proposed ORB (FAST+BRIEF) Implementation

Processing a 4K UHD video stream on a SoC FPGA is a significant challenge. The 4K
signal contains 4×more data than Full HD (1920× 1080 px). Assuming the same frequency
(typically 60 fps), the so-called pixel clock needs to be then increased from about 150 MHz
to 600 MHz. Using such a clock value in currently available reprogrammable devices is
impossible (except for very basic logic elements). Hence, it is necessary to process video
data in vector formats—2, 4 or 8 pixels per clock (ppc). This allows to reduce the pixel
clock to 300, 150 or 75 MHz respectively [21]. The vector data format implies a different
approach during the implementation of individual operations in the ORB (FAST+BRIEF)
algorithm. Therefore, the performance of the system described in this paper is not only
the result of using a modern SoC FPGA platform, but also the appropriate novel design of
particular computational modules. The general scheme of our hardware implementation is
shown in Figure 2. This architecture processes the video stream in a fully pipelined manner
using AXI4-Stream as the data bus. The input to the module is a stream of greyscale images
in 4 ppc format. Note that in the following subsections we present our solution in the 4 ppc
format, but the same approach can be applied to 2 ppc or 8 ppc.

FAST NMS Border cleaning

IC anglesGaussian blur

rBRIEF

oFAST

rBRIEF

Figure 2. Overall scheme of our hardware implementation of the ORB algorithm on a SoC FPGA platform.

As described in Section 2, the ORB algorithm contains an oriented FAST detector and
a rotated BRIEF descriptor. Our proposed implementation of the ORB algorithm consists
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of several components listed below, which form a modular architecture. Each module
can operate independently, like a black box. In our implementation of oriented FAST, we
distinguish several stages:

1. Performing the fast accelerated segment test to determine the corners (FAST).
2. Filtration using non-maximum suppression (NMS).
3. Elimination of feature points for which it is not possible to determine the context

31× 31 px (border cleaning).

Similarly, in our implementation of rotated BRIEF, there are several steps:

1. Determination of the context 31× 31 px and blurring with a Gaussian filter.
2. Calculation of the orientation of the feature point (IC angles).
3. Determination of the binary feature descriptor (rBRIEF).

Compared to the originally proposed ORB algorithm, we have decided not to im-
plement the modules that are responsible for determining the Harris score and selecting
the best N points. This is motivated by a fully pipelined approach and the need to adapt
the algorithm to the hardware implementation. These modifications do not affect the
performance of the ORB algorithm in any way, as the computational platform and the
processing structure require the processing of all pixels in the image frame. The filtering of
points was intended only to reduce the number of calculations in further steps. If necessary,
a module can be added that globally sorts the feature points by a corner score. We have
also modified the BRIEF descriptor, which we describe in detail in Section 4.3.

In our hardware implementation we use fixed-point operations. Width and precision
of data representation in consecutive modules are gathered in Table 1. In each case we
use a software model to select numbers’ representations as a trade-off between resource
utilisation and computing accuracy.

Table 1. Fixed-point precision applied at different stages of the ORB algorithm.

Name Width Precision

Fast Score values 8 0

Gaussian coefficient 24 16

Pixel values after Gaussian filter 8 0

Moments 21 0

Tangent values 10 7

Orientation interval number 5 0

Pattern pairs 5 0

BRIEF descriptor 256 0

4.1. Context Generation in 4K

The ORB algorithm repeatedly uses operations that exploit pixel values in a close
neighbourhood of a given image point. Therefore, appropriately sized contexts created
from a 4K video stream are needed. Due to the vector format of the data stream (4 ppc),
a typical approach to context generation is not suitable and results in increased resource
consumption. In Figure 3 we show a schematic of a context generation with a size of 3× 3 px
(for clarity, we present a context with a small size, but it can be generalised to larger ones).
The fully pipelined module contains registers to store pixel values (9× 4 pixels) and delay
lines using Block RAM (BRAM).
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AXI Stream Line 1

Delay lines

Line 2

4 contexts of 3  3 px

Flattened context for 4 ppc

Figure 3. Typical scheme for the generation of contexts 3× 3 px for 4 ppc vector format. The dark
green, pink, blue and purple pixels are the centres of 3× 3 px contexts.

4.2. FAST Feature Detector

Determining feature points using the FAST method requires simultaneous access to
pixels from a context of 7× 7 px. To create it, we use the module described in Section 4.1.
In Figure 4 we show the scheme of our hardware implementation of the FAST detector.

score value

AXI Stream
Check if exists a set of
n contiguous pixels in

the circle

Brighter than Ip + t

Darker than Ip - t

7 7 context 16 comparisons 16 conditions

Computing FAST
corner score

4 ppc streaming  
video format

feature point �ag

Figure 4. Scheme of our hardware implementation of the FAST detector. First, we generate 7× 7 pixel
contexts (4 due to the 4 ppc format). Then, for each of them, we test whether its centre is a feature point
(feature point flag) and determine its stability (score value). The feature point flag is a signal which
indicates that a feature point has been found. It is worth noting the high degree of parallelisation
of calculations (e.g., 16 comparisons between centre and circle’s points and score value computed
simultaneously with the feature point flag), which in addition are performed simultaneously for all
generated contexts.

First, each pixel is subjected to a corner check. We perform 16 simultaneous compar-
isons of the brightness of the candidate point Ip with pixels located on a Bresenham circle
of radius 3. The candidate point is considered as a valid feature point if the brightness of
n consecutive pixels in the circle is simultaneously lower than Ip − t, or simultaneously
higher than Ip + t, where t is an intensity threshold. We assume n to be 9 and an intensity
threshold to be 20, according to the paper [3]. However, these parameters are fully config-
urable. The resulting vector is compared with all possible combinations representing a 9-bit
uninterrupted sequence of ones in a 16-bit vector (also wrapped), e.g., 0011111111100000,
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1111000000011111. To get the final result we perform a logical OR operation which com-
bines the obtained results of the comparisons and returns information whether in any of
the considered cases at least one correct pattern of bits has appeared. Finding it implies
that a given pixel is a possible feature point. Figure 5 shows the way of determining the
feature point flag for an exemplary image patch.
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Figure 5. Determining the feature point flag for an exemplary image patch. In that case none of
the 16 pixels on the Bresenham circle have an intensity above Ip + t (229 for t = 20), while 14 of
them have an intensity below Ip − t (189). This results in two 16-bit vectors, which are compared
with 16 different patterns, each consisting of 16 bits: 9 ones and 7 zeros. The vector representing
pixels with intensity higher than Ip + t does not match any pattern, while the second one matches
6 different patterns in total. Therefore, we determine the centre pixel is a feature point (it fulfils the
FAST’s “lower than” condition).

It is worth noting that in a typical implementation on a CPU the process of finding
the feature points is performed in a different way. Firstly, the top and bottom pixels (the
only two on the Bresenham circle with x coordinate the same as the centre pixel) are
examined—at least one of them must fulfil one of the FAST’s conditions. Next, a similar
operation is performed for the outer left and right pixels (the only two on the Bresenham
circle with y coordinate the same as the centre pixel)—at least one of them must fulfil the
same condition as top or bottom pixel. Only after positive verification in both mentioned
steps, the rest of the pixels on the Bresenham circle are examined. This method helps to
reject many candidate points using relatively few computations (simple comparisons), thus
significantly increasing the data processing frequency. However, in the fully pipelined
hardware implementation this method cannot work in the same way. We cannot simply
reject the candidate, because each pixel must be synchronised with others to ensure an un-
interrupted data stream. Therefore, we have decided to compare all pixels at once. Thanks
to the FPGA’s capabilities (parallel computations), we get the feature point flag just after 3
clock cycles, which is comparable with the CPU’s implementation for rejected candidates
and significantly lower than in the CPU’s implementation for accepted candidates.

The next step is to determine the stability of the selected feature point. Due to the high
computational complexity of the Harris corner score, we decide to implement the function
used in the OpenCV library—Fast Score according to Equation (4). During the computation,
we consider all 9-pixel arcs of the Bresenham circle. In each of them, we determine the
smallest absolute difference. Then, we choose the largest of the minimum values from all
considered arcs. All the described operations are performed in parallel in order to obtain
16 minimum values simultaneously. To determine the minimum and maximum values, we
use binary comparison trees. Figure 6 shows the way of computing the Fast Score for an
exemplary image patch (the same as in Figure 5). To our best knowledge, this is the first
implementation of this module on an FPGA.
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Figure 6. Computing Fast Score for an exemplary image patch. Firstly, we get 16 absolute differences
between the intensity of the centre pixel and the intensities of the pixels on the Bresenham circle. From
computed values we form 16 arcs (all possible) with the length of 9 pixels and find the minimum in
each arc. Fast Score is the maximum from the obtained minimums.

Based on the obtained values, we perform filtering of the determined feature points
using non-maximum suppression with context 3× 3 px and thus eliminate points with
lower corner scores. The context is created from the corner scores. We pass a non-zero
value (input Fast Score) to the output if the centre value is the maximum from the entire
context and zero otherwise to indicate that a given point is rejected. Then, we also discard
feature points that are too close to the edge of the processed image, as we will not be able
to create the full context 31× 31 px needed to compute the descriptor. For this purpose,
we use coordinate counters and appropriate logical conditions that remove these feature
points from the data stream.

The final step is to determine the orientation of the feature point based on the intensity
centroid. In the original ORB algorithm, the computing of the image moments needed
for this purpose was made before the Gaussian blur and the binary descriptor calculation.
In the case of our implementation, we decide to perform the Gaussian blur before the
calculation of the image moments and to move these operations to the part directly related
to the BRIEF descriptor. Our decision is motivated by the need to reduce the hardware
resources used in the FPGA device. We save about 1000 registers, which store a context
of 31× 31 px, and 30 Block RAM modules, which store 30 image lines (each containing
2139 pixels). In addition, we eliminate the latency between calculating the orientation of
a feature point and determining its description. For both image moments and descriptor
calculations, a context of the same size 31× 31 px is used. At the same time, performing
Gaussian filtering on the image before determining the orientation does not significantly
affect the value of the resulting angle. A similar approach was used in paper [9]. In view of
this, it is reasonable to generate the context once on the already blurred image and then use
it both to calculate the image moments and to determine the descriptors.

4.3. BRIEF Descriptor

As we mentioned in Section 4.2, the first step of our hardware implementation of the
BRIEF descriptor is to compute the moments of the image patch around a given point. In
Figure 7 we show a schematic of the hardware architecture that we design for this purpose.
We first perform a Gaussian blur with a window size of 5× 5 px (as it is implemented in
OpenCV), in parallel for 4 pixels in the video stream. Then, we generate contexts of size
31× 31 px. To determine the image moments, we use only the pixels within a Bresenham
circle of radius 15 pixels. In Figure 8 we show 4 consecutive contexts 31× 31 px together
with the mentioned circles. Note that when processing a 4 ppc data stream in real-time,
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it is necessary to perform computations on 4 contexts simultaneously. As can be seen in
Figure 8, most of the pixels are common to the four contexts. In view of this, we decide to
split the computation into a common part and a residual part belonging to each context
separately. Sums in each column and row are calculated in parallel using summation trees.
Then we add the resulting sums (common and residual) together to get the total sum of the
pixel values in each column and row. Then, they are multiplied by the respective x and y
coordinates of the local reference system (with its origin in the point under consideration—
the centre of the circle), according to Equation (5). Finally, we sum all the values using
summation trees and obtain the moments m10, m01 for each context. It is worth noting how
we adapt the image moments computation to process the 4 ppc video stream. The proposed
division into common and residual parts enables saving a lot of hardware resources that
would be consumed by the ordinary multiplication of modules processing a 1 ppc stream.

AXI Stream

5 5  
Gaussian �lter

31 31 circular patch

Gaussian
blur 

4 ppc streaming  
video format

Residual sums
in cols 

Common sum
in cols 

Common sum
in rows 

Residual sums
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Operations in sum trees

Sums in cols

Sums in rows

m10 

m01 

Image moments  
for 4 contexts

x coords 
y coords 

Figure 7. Scheme of the hardware architecture used to calculate the image moments of a patch of
the image around a given point. First, we blur the image using the Gaussian filter. Next, we analyse
successive image patches, which cover circles (radiuses of 15 px) with centres in four neighbouring
points. For each circle, we determine the image moments m10 and m01. For this, we use the sum
of the common parts for all circles, thus avoiding performing the same operations repeatedly and
saving hardware resources.
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Figure 8. Schematic representation of the pixels included in the four consecutive contexts of
31× 31 px. The coloured Bresenham circles mark the circular sections that we use to compute
the image moments. In red we indicate the consecutive centres of the circles (the points under
consideration).
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Then, we need to determine the orientation of the feature point according to Equation (6).
In hardware implementation, the most commonly used method for calculating various trigono-
metric functions is the CORDIC algorithm (Coordinate Rotation Digital Computer). It is based
on bit shifting and addition operations, and therefore is considered as a hardware-friendly
approach. Its significant drawback is the use of multiple iterations to obtain the best possible
precision. For this reason, a solution that involves creating a lookup table to determine the ori-
entation of m01/m10 and the signs of m10 and m01 was also proposed. However, this method
uses a divide operation, which is resource-consuming. Therefore, in our implementation,
we decide not to compute the exact value of the orientation. Instead of that, we assign the
feature point to one of the 32 intervals, for which we transform Equation (6) into an inequality
sequence (11):

tan θi ≤ tan θ(x, y) ≤ tan θi+1

m10(x, y) tan θi ≤ m01(x, y) ≤ m10(x, y) tan θi+1
(11)

where: θ(x, y) is the feature orientation, m10(x, y), m01(x, y) are the image moments, tan θi,
tan θi+1 are the tangent values of two adjacent intervals to which the orientation will be
assigned, 10-bit fixed-point.

Thanks to this, to determine the approximate orientation, we only need simple compar-
ison operations, which are hardware-friendly. In addition, we use the tangent values only
for the first quadrant and the sign information of m10 and m01 in the calculation. It enables
further decrease in the utilised hardware resources. In Figure 9 we show a schematic of the
mechanism for selecting the appropriate interval for the orientation of the feature.

m10 
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for 4 contexts
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quadrant �ag
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*

Co
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Figure 9. Scheme of the mechanism for determining the orientation by assigning a value to an appro-
priate interval.

In parallel with computing the moments of the image patch and the orientation of the
feature point, we determine the BRIEF descriptor using the same context. Following the
proposal in the paper [9], we select two sets containing 8 locations and rotate them every
11.25 degrees. In Figure 10 we show a comparison of the pattern for the BRIEF and our
implementation of RS-BRIEF. We use the resulting 256-point pairs to determine a 256-bit
feature descriptor.
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Figure 10. Comparison of the test location pattern used in the original BRIEF algorithm (left) with
that obtained by our RS-BRIEF implementation (right).

In the final step, we shift the descriptor according to the orientation of the feature point,
which provides the same results as rotating the test locations of RS-BRIEF [9]. Assuming
that the orientation of the feature point is n, where n ∈ {0, . . . , 31}, the BRIEF vector should
be bit-shifted by 8× n from the beginning of the descriptor to the end. This is exactly how
it is realised in our hardware implementation, which we show in Figure 11.

It is worth noting that the use of the RS-BRIEF algorithm may have a negative impact
on the quality of the resulting vectors by increasing tests correlation. Nevertheless, trying
to implement the BRIEF descriptor in hardware in its original form causes several problems.
These primarily concern the computational resources needed to perform the rotation of the
test points according to Equation (10). As we mentioned before, this problem is solved in
other works by discretising the orientations and storing the precomputed test patterns in
a lookup table. However, this leads to a significant increase in the use of memory resources,
which is a major drawback of this approach. In view of this, we have decided to use
RS-BRIEF. This algorithm reduces the complex implementation of rotation to basic bit-shift
operations and leads to a significant reduction in the used hardware resources, while the
obtained results are still satisfactory, as we show in Section 5.

Orientation
intervals 

 
Smoothed contexts of 31x31 px

11 0 0 1 1 0 00 1110

256-bit feature descriptor

11 0 00 1 1 1 1 1 01 0010

256-bit RS-BRIEF descriptor

10 0

bit-shift  
 by

from 0 to 31

Pattern pairs

Binary tests for each context

 

 31x31 px context

Figure 11. Scheme of the RS-BRIEF implementation. We read tests’ locations from the memory and
perform comparisons between pixels’ intensities from 31× 31 px contexts. In this way, we obtain
a 256-bit feature descriptor, which we shift according to the orientation.
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5. Results

We implement the ORB algorithm described in Section 4 on an AMD Xilinx ZCU
104 board equipped with a Zynq UltraScale+ MPSoC EV device, with a quad-core ARM
Cortex-A53 application processor, a dual-core Cortex-R5 real-time processor, and a Mali-
400 MP2 graphics processing unit. We use SystemVerilog HDL (Hardware Description
Language) to describe our implementation in the AMD Xilinx Vivado 2020.2 IDE (Integrated
Development Environment). Our system allows real-time processing of 4K resolution
(UHD, 3840× 2160 px) video at 60 frames per second (150 MHz clock). It is capable of
detecting and describing feature points in a fully pipelined and parallel manner. However,
our algorithm is only rotation-invariant (we use only one scale).

Despite that, we prepare our hardware implementation in a way that allows us to
adapt the ORB algorithm to make it scale-invariant in the future. First of all, it is modular,
i.e., each functionality depicted in Section 4 is designed as a separate hardware module. If
one (or more) of these has to be modified in a multi-scale implementation, this can easily be
done by replacing one (or more) modules. Moreover, our implementation is flexible. Each
of the aforementioned modules is highly parameterisable, thus allowing straightforward
adaptation to different image sizes or vector formats (in general X ppc, where X is a power
of 2). The entire system is capable of operating at a maximum clock frequency of 170 MHz
(value is estimated with Vivado IDE).

Table 2 shows a summary of the logic resources consumption on the Zynq Ultra-
Scale+ ZCU 104 FPGA platform. The use of the resources for the proposed system and
the comparison with other FPGA implementations is presented in Table 3. We compare
hardware implementations that implement only the FAST detector, only the BRIEF descrip-
tor, the ORB algorithm without the use of an image pyramid, and a fully rotation- and
scale-invariant algorithm.

Please note that in our work we use a vector data format (4 ppc) and process 4K
UHD @ 60 fps video stream in real-time. In view of this, a direct comparison with existing
implementations in terms of used hardware resources cannot be fully meaningful. Despite
this, it is worth noting that our work uses a similar number of LUT elements and BRAMs as
previous implementations using a multi-level image pyramid. However, we use noticeably
more registers (FFs) and DSP blocks. This is due to the hard constraints associated with
processing many pixels in a single clock cycle, especially during the determination of the
BRIEF descriptor. It should also be emphasised that our implementation uses a relatively
small part of hardware resources available in the used FPGA chip. It is therefore possible to
extend it with additional components (e.g., multi-level image pyramid) without changing
the hardware platform. In particular, our implementation can be used as one of the
components of a SLAM system.

Table 2. Resource utilisation of our implementation. A significant part of the presented logical
resources is consumed by the video pass-through. The high utilisation of DSP blocks is related to the
use of the Gaussian filter and the IC module (which performs multiplications for the circular patches
from the four contexts of 31× 31 px.

Resource Pass-Through FAST BRIEF ORB Entire System Available

LUT 38,383 11,041 51,182 62,223 (27%) 100,606 (44%) 230,400

LUTRAM 4564 386 11,951 12,337 (12%) 16,901 (17%) 101,760

FF 45,278 12,071 82,942 95,013 (21%) 140,291 (31%) 460,800

CARRY8 925 1056 9043 10,099 (35%) 11,024 (38%) 28,800

BRAM 7 9 36 45 (14.4%) 52 (17%) 312

DSP 15 0 668 668 (38.7%) 683 (40%) 1728
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Table 3. Comparison of our proposed solution with other algorithms reported in scientific papers. A direct comparison of our implementation can only be made
with works that also use video pass-through architectures, i.e., [13,14,16,22–24]. In comparison to previous works, we use noticeably more FFs and DSP blocks. This
is due to the 4 ppc real-time implementation of the BRIEF descriptor.

FPGA Algorithm # of LUTs # of Registers, FFs BRAM DSP Blocks FPS Freq. [MHz] Resolution

[25] AMD Xilinx Zynq-7000 ORB +,1 4257 3187 576 Kb - 55 100 640× 480

[13] AMD Xilinx ZedBoard ORB # 9866 17,412 1.33 Mb - 325 100 640× 480

[14] Altera Stratix V ORB #,4 25,648 21,791 9.44 Mb 8 67 203 640× 480

[26] Altera Aria V ORB +,8 206,000 231,973 8.58 Mb 449 72 150 1920× 1080

[27] AMD Xilinx Kintex-7 ORB+ 80,472 112,166 35 Kb 0 310 100 512× 512

[16] AMD Xilinx ZedBoard FAST #,2,6 5700 6272 1.984 Mb - 63 148.5 1920× 1080

[22] Altera Aria V BRIEF #,3 12,523 10,019 110 Kb 0 60 175 1920× 1080

[12] AMD Xilinx Ultrascale+ ORB +,5 28,168 9528 1.47 Mb 33 108 200 1920× 1080

[9] AMD Xilinx XCZ7045 ORB +,6 56,954 67,809 2.73 Mb 111 76 100 640× 480

[23] AMD Xilinx Kintex-7 ORB # 54,435 30,281 1.836 Mb 44 161 150 1280× 720

[28] Altera Cyclone V ORB +,9 5711 5453 0.3–2.3 Mb - 325 100 1280× 720

[24] AMD Xilinx Virtex-7 ORB #,6,9 71,423 49,649 3.132 Mb 285 68.8 142.8 1920× 1080

[18] AMD Xilinx ZCU 104 ORB +,6,7 146,572 74,166 7.43 Mb 173 - 100 -

Ours AMD Xilinx ZCU 104 ORB # 100,606 140,291 6.7 Mb 683 60 150 3840 × 2160
# Stream-based architecture. + Non-stream-based architecture. Image is stored in external memory. 1 This work is not rotation-invariant. 2 Only oFAST module is implemented. 3 Only
rBRIEF module is implemented. 4 This work uses a 2-level image pyramid. 5 This work uses a 3-level image pyramid. 6 This work uses a 4-level image pyramid. 7 This work uses
an 8-level image pyramid. 8 This work uses a 9-level image pyramid. 9 Matching module is also implemented.
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In order to verify our hardware implementation, we compare the results with a soft-
ware model. It is constructed using functions from the OpenCV library and consists of
the feature point matching from the FLANN submodule (Fast Library for Approximate
Nearest Neighbours), the RANSAC algorithm for finding the inliers, and the homography
matrix. As an input to the software model, we use outputs from the OpenCV’s ORB as
well as outputs from our hardware implementation. In this way, we can compare them
in terms of number of inliers, matching rate, rotation error and translation error—results
are gathered in Table 4. Please note that the orientation of the feature points varies in the
range ±11.25◦, according to the modifications used in our algorithm. We use sequences
from the Oxford Affine Covariant Feature dataset [29] for evaluation. We extract features
from each pair of images and attempt to find correspondences through a nearest-neighbour
search using the FLANN library (see Figure 12). Then, the number of correct matches is
computed by the RANSAC algorithm. We use the ground truth homography to compare
with the homography matrix obtained from the Oxford Affine Covariant Feature dataset
and to compute rotation and translation errors. The rotation error is a measure of the
similarity of the rotation matrices (a value of 0 means that they are identical) determined
by Equation (12):

v = Rodrigues(RGT RT)

εR = ||v||
(12)

where: RGT is the ground truth rotation, R is the estimated rotation, Rodrigues is the
function Rodrigues from OpenCV that converts the rotation matrix to a rotation vector
using the Rodrigues transformation [30], v is the rotation vector, εR is the rotation error.

Figure 12. Feature matching results using the proposed architecture on images from the Boat sequence
from the Oxford Affine Covariant Feature dataset (the matching part was performed in the CPU).

The translation error measure compares the angle difference between the true rotation
and the rotation estimated by Equation (13). The error is expressed in degrees.

εt = arccos
(

tGTt
||tGT || · ||t||

)
(13)

where: tGT is the ground truth translation, t is the estimated translation, εR is the transla-
tion error.

We must emphasise that the results presented in Table 4 indicate that the proposed
implementation of the ORB algorithm is correct and the obtained results are similar or
better than those of the OpenCV library. Therefore, our module can be successfully used
for tasks related to the VSLAM algorithm, for example, for Unmanned Aerial Vehicle
platforms. The resulting inconsistencies (e.g., in the number of detected feature points)
between our implementation and the functions from OpenCV may be related to minor
differences between the two implementations and the use of fixed-point representation.
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The number of feature points detected does not have an impact on the error, but a higher
number of inliers affects the accuracy of rotation and translation determination.

Table 4. Evaluation of the performance quality of our proposed implementation of the ORB algorithm.

Sequence # of Image Implementation # of
Keypoints # of Matches # of Inliers Matching

Rate Rotation Error Translation
Error [◦]

Boat

1 OpenCV 507 45 38 84% 0.01679 2.062 507

1 Hardware 872 118 74 63% 0.00116 1.502 892

Bikes

1 OpenCV 537 201 199 99% 0.00237 6.492 514

1 Hardware 486 235 221 94% 0.00062 4.952 462

Graffiti

1 OpenCV 509 48 41 85% 0.01002 1.242 508

1 Hardware 604 94 65 69% 0.01136 1.152 607

Table 5 compares the power consumption of our implementation with other works
in the literature that have reported this parameter. The dynamic power consumption of
our entire system is 4.3 W, the static one 0.8 W and the total one approximately 5 W. It
should be emphasised that our implementation in 4K resolution consumes less power than
the implementation using Full HD resolution [26] and is close to the energy value of the
work [14].

Table 5. Comparison of power consumption. We report total power (unless noted otherwise). It
can be seen that due to much higher processed resolution and meeting the real-time requirement,
our implementation consumes slightly more power compared to other works. However, this is an
acceptable level for potential use on Unmanned Aerial Vehicles.

Resolution FPS Freq. [MHz] Energy [mW]

[14] 640× 480 67 203 4559

[26] 1920× 1080 72 150 5340

[22] 1920× 1080 60 175 456

[12] 1920× 1080 108 200 873

[24] 1920× 1080 68.8 142.8 507 (dynamic)

Ours 3840 × 2160 60 150

4278 (dynamic power)

764 (static power)

5042 (total power)

6. Conclusions

In this paper, we presented a hardware implementation of the ORB algorithm in
a heterogeneous SoC FPGA device. Both of its components—a FAST detector and a BRIEF
descriptor —operate in a fully parallel and pipelined manner. We achieved real-time
processing of a 3840× 2160 @ 60 fps (150 MHz clock) video stream with an estimated
energy consumption of approximately 5 W. The proposed architecture works in the 4 ppc
vector format, but it can be adapted to another data format (in general X ppc, where X is
a power of 2).

The use of high resolution images allows to capture the fine details of objects and
therefore a more accurate description of feature points, which can affect their stability
and repeatability. The more precise the detection of feature points, the more accurate the
determination of the displacement (rotation, translation). Due to this, for example, we
can obtain a very precise trajectory of a UAV moving in an unknown space or generate
a better map of the environment. We strongly believe that our work will have a significant
impact on improving and developing other methods, such as Visual Odometry (VO) or
SLAM in very high resolutions. The proposed architecture is divided into modules that
perform individual tasks independently. Its advantage is the possibility to add further
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improvements or methods without modifying the entire system. Its modularity also
allows the components of the system to be reused for other tasks without any additional
readjustments.

As a part of future work, we will implement a scale-invariant version of the algorithm,
able to process several scales of the image pyramid in parallel. By designing a modular
and flexible architecture, we will achieve this goal by using the ORB module multiple
times in parallel. The next step is to perform feature matching and homography estimation
to determine the position of the camera, which is another component of the VSLAM
system. We also believe that the resource utilisation and the energy consumption can
be further optimised. Another interesting research direction will be data fusion from
multiple sources—vision camera, event cameras and IMU. This will allow to obtain good
performance in very challenging lighting conditions.
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