
Citation: Shu, C.; Luo, Y.; Liu, F.

Exploiting Duplications for Efficient

Task Offloading in Multi-User Edge

Computing. Electronics 2022, 11, 2244.

https://doi.org/10.3390/

electronics11142244

Academic Editors: Zhiwei Zhao,

Jorge Ortiz and Guohao Lan

Received: 14 June 2022

Accepted: 14 July 2022

Published: 18 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Exploiting Duplications for Efficient Task Offloading in
Multi-User Edge Computing
Chang Shu, Yinhui Luo * and Fang Liu

School of Computer Science, Civil Aviation Flight University of China, Guanghan 618307, China;
shuchang0530@163.com (C.S.); fangliu@cafuc.edu.cn (F.L.)
* Correspondence: loyinhv@163.com

Abstract: The proliferation of IoT applications has pushed the horizon of edge computing, which
provides processing ability at the edge of networks. Task offloading is one of the most important
issues in edge computing and has attracted continuous research attention in recent years. With
task offloading, end devices can offload the entire task or only subtasks to the edge servers to meet
the delay and energy requirements. Most existing offloading schemes are limited by the increasing
complexity of task topologies, as considerable time is wasted for local/edge subtasks to wait for
their precedent subtasks being executed at the edge/local device. This problem becomes even worse
when the dependencies among subtasks become complex and the number of end-users increases.
To address this problem, our key methodology is to exploit subtask duplications to reduce the inter-
subtask delay and shorten the task completion time. Based on this, we propose a Duplication-based
and Energy-aware Task Offloading scheme (DETO), which duplicates critical subtasks that have
a large impact on the completion time and thus enhances the parallelism between local and edge
computing. In addition, among numerous choices of subtask duplications, DETO evaluates the
gain/cost ratio for each possible duplication and chooses the most efficient ones. As a result, the
extra resource for duplications is greatly reduced. We also design a distributed DETO algorithm
to support multi-user, multi-server edge computing. Extensive evaluation results show that DETO
can effectively reduce the task completion time (by 12.22%) and improve the resource utilization (by
15.17%), in particular for multi-user edge computing networks.

Keywords: task offloading; urban; Internet of Things

1. Introduction

The proliferation of IoT applications, e.g., object recognition, vehicular systems and
self-driving [1–3], have pushed the horizon of a novel computing paradigm—Multi-access
Edge Computing (MEC) [4]. In MEC, a number of edge servers are deployed close to the
user, and the computation-intensive tasks from end users are uploaded to and processed in
the network of edge servers. After that, the results are returned to end user devices [5,6].
As a result, the completion time of services and the energy consumption of end user devices
can be reduced.

Traditional offloading schemes [7] upload the entire task to edge servers. These
approaches fail to utilize the parallelism between end devices and edge servers. To address
this issue, the recent studies [8,9] decompose the task into a number of subtasks and
upload some of them to edge servers. In this way, end devices and edge servers can
execute their subtasks in parallel, such that the overall completion time is reduced. For
example, the authors in [8] synthetically considered the computation workload of subtasks,
dependency among subtasks and wireless transmission time. In doing this, the subtasks
can be rationally scheduled in the edge server or local devices, and the makespan of
applications can be reduced.

However, in the approaches based on task decomposition, more communication delay
is introduced as the information exchange among subtasks that are not located in the same

Electronics 2022, 11, 2244. https://doi.org/10.3390/electronics11142244 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11142244
https://doi.org/10.3390/electronics11142244
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics11142244
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11142244?type=check_update&version=1

Electronics 2022, 11, 2244 2 of 19

processor needs to be done through the wireless links. To better understand the limitations
of the existing works and reveal further optimization space, we study an example of task
offloading for the object recognition applications [10], as shown in Figure 1.

The task topology is depicted as a directed acyclic graph (DAG) as shown in Figure 1a.
Each rectangle denotes a subtask with the execution delay labeled. An arrowed line from
rectangle A to rectangle B denotes that subtask B depends on the results of subtask A.
We can see that the object recognition first inputs the target image to the “Pre-processing”
subtask. Based on the results of “Pre-processing”, “Shape” and “Texture” will extract
the object shapes and texture, respectively. Based on the extractions, the “Classification”
subtask can recognize the object as a specific class of objects.

Figure 1. Case study. (a) the DAG of object recognition. (b) entire task offloading strategy (c) subtask
offloading strategy. (d) Duplication subtasks offloading strategy

Figure 1b shows the basic idea of traditional offloading works [7,11,12], which treat
the four subtasks as a whole and offload them to edge servers. This approach overlooks the
parallelism between users and edge servers. Figure 1c shows the basic idea of the recent
works based on task decomposition [8,13], which chooses some of the subtasks to offload,
and thus the overall delay is reduced. From Table 1, through the offloading strategies based
on task decomposition, the latency is reduced from 110 to 100 ms due to parallelism.

Table 1. The delay comparison.

Energy Cost (Local Execution Time) Overall Delay

Figure 1b 0 ms 110 ms

Figure 1c 50 ms 100 ms

Figure 1d 80 ms 86 ms

However, from Figure 1c, we can see that considerable time (from 0 to 50 ms) is wasted
in the “idle” slot because the subtask “Texture” needs to wait for the computational results
from the subtask “Pre”. The reason is that uploading subtasks requires the information
exchange among them to be done through wireless links (an additional communication
round is needed from “Pre” to “Texture”). To further reduce the execution delay and fully
exploit the parallelism between local devices and edge servers, an intuitive yet reasonable
solution is to duplicate the Pre-processing module in the local devices (Figure 1d), and the
overall execution delay can be further reduced to 86 ms.

Electronics 2022, 11, 2244 3 of 19

The key idea behind the duplication-based approach is trading the computation
resources (CPU cycles required to accomplish task) for reducing communication delay.
Considering that wireless interference widely exists in multi-user edge computing net-
works [14,15] and has a high impact on the overall performance [16,17], trading compu-
tation resources for communication efficiency is likely to achieve significant performance
gains. However, implementing such an idea in real-world systems is a non-trivial task due
to the following challenges:

1. How to reveal the duplication and offloading opportunities from complex task
topologies. Before trading resources for communication efficiency, we need to
first identify which subtasks are the most appropriate to be duplicated and offloaded.
Different combinations of the two kinds of subtasks can lead to largely different perfor-
mances. Considering the diversity and complexity of potential edge applications [10],
the searching space can be surprisingly large, as analyzed in Section 3.

2. How to coordinate the duplication and offloading strategies among multiple users.
Apart from the “actual” execution time, the overall execution time consists of com-
munication delay and task queuing delay. Each user’s duplication and offloading
decisions will affect wireless contentions and the subtask scheduling at both local
users and edge servers and further affect the communication delay and task queuing
delay. As a result, we need to coordinate the duplication and offloading strategies
among multiple users to improve the overall system performance.

To address the above challenges, we propose a Duplication-based and Energy-aware
Task Offloading scheme (DETO) to find a good tradeoff between resource consumption
and communication overhead. DETO has three salient features. First, DETO jointly con-
siders the impact of duplication and offloading to model the tradeoff between resource
and communication overhead. Second, from the task DAGs, DETO is able to identify the
duplication/offloading opportunities by analyzing the subtask dependencies. Third, we
propose a distributed DETO algorithm to establish the coordination between multiple
users and multiple servers. We conduct extensive simulation experiments to study DETO’s
performance gains. The results show that, under multi-user and multi-server edge net-
works, the average completion time for tasks with four typical topologies can be reduced
by 12.22%.

The major contributions of this paper are summarized as follows:

1. We propose a novel duplication-based and energy-aware task offloading algorithm
(DETO), which exploits task duplications to enhance the parallelism between users
and edge servers. The overall task completion time can be shortened as less time is
wasted on the subtask communications.

2. We consider the multi-user interference and multi-task scheduling and further design
a distributed DETO algorithm, which is able to coordinate the duplication/offloading
decisions among multiple users.

3. We conduct extensive simulation experiments and the performance results demon-
strate that DETO can effectively minimize the overall completion time by 12.22%
and improve the resource utilization of the edge servers by 15.17% compared to the
existing fine-grained offloading strategy.

The rest of this paper is organized as follows. Section 2 introduces the related work.
Section 3 presents the system model and problem formulation. Section 4 introduces the
three phases of the energy-aware task duplication-based scheduling algorithm (DETO).
Section 5 extends the DETO algorithm to multi-user, multi-server scenarios in a centralized
and distributed manner. Section 6 presents the evaluation results.

2. Related Work

Recently, multi-access edge computing was recognized by the European 5G PPP
(5G infrastructure public, private partnership) research body as one of the key emerging
technologies for 5G networks. There have been numerous works on the computation

Electronics 2022, 11, 2244 4 of 19

offloading problem in the literature, and various offloading policies have been proposed,
which can be classified into two stages.

For the first stage, the researchers do not distinguish subtasks inside the application
and upload the entire task as a whole to the edge servers. In [18], they study the multi-
user offloading problem for edge computing in a multi-channel wireless interference
environment and prove that this is NP-hard to obtain the optimal solution, and then
they adopted a heuristic approach for achieving efficient computation offloading in a
distributed manner.

Simulation results show that the proposed algorithm achieves superior computation
offloading performance and scales well as the user size increases. Furthermore, the au-
thors [19] studied a distributed offloading scheme for a multi-user and multi-server based
on orthogonal frequency-division multiple access in small-cell networks. They formulated
a distributed overhead minimization problem and then adopted the potential game theory
to prove that their proposed decision is a potential game problem.

Finally, compared with other existing computation algorithms, the simulation results
show that this new algorithm can guarantee saving overheads. The other works in the first
stage, such as [20–22], also consider a multi-user and multi-server scenario and propose
a heuristic offloading decision algorithm to assign different tasks to the corresponding
channel and server to minimize the average completion time.

With the increasing complexity of applications, the offloading related work comes into
the second stage. This task has been considered as DAGs in order to identify a fine-grained
offloading opportunity. In [23], the authors considered that the application consists of a
series of sequential modules and then decide which module to be offloaded and how these
modules should be executed (cloud computing or edge computing). Furthermore, the
authors in [8] investigated the problem of fine-grained task offloading in edge computing
for low-power IoT systems.

They aim to map the subtasks of different applications onto the heterogeneous server
and order their executions so that task-precedence requirements are satisfied and a mini-
mum overall completion time is obtained. Moreover, in order to improve the efficiency of
the offloading decisions, they further designed a distributed computation offloading algo-
rithm (DEFO) based on game theory. However, this work introduces extra communication
delay between subtasks.

Along a different line, in our work, we utilize the processor idle time to duplicate
the predecessor task to further reduce the completion time of services. We duplicate the
task selectively only if it helps in improving the performance to avoid superfluous energy
consumption. There has been extensive work on a duplication-base clustering algorithm
for the datacenter [24–26].

Our work has the following main differences: (1) The existing studies mainly target
an unbounded number of computing machines in the datacenter. (2) Communications in
the edge network are via wireless channels, thus it suffers more severe interference than
communications in the datacenter. (3) The duplication-based algorithms in the datacenter
will replicate all possible ancestors of a given task. However, it is unreasonable and
impractical to consider the resource-constraint character of IoT devices.

This paper is the first of its kind that work proposes a fine granularity duplication-
based offloading strategy in the edge network in order to reduce the end-to-end delay of
application while considering the energy consumption of the devices.

3. System Model

In our offloading scenario, there are a certain number of heterogeneous servers in the
edge network, defined byM = [1, 2, . . . , m, . . . , M]. We consider a set ofN = [1, 2, . . . , i, . . . , N]
user. Each user has a task to be offloaded to the edge network. The execution procedure of
the application of user i can be represented by directed acyclic graphs (DAGs) Gi = (Vi, Ei),
where Vi = [Ti1, Ti2, . . . , Tij, . . . , Tie] denotes the set of subtasks to be executed, and Tij′

denotes the possible duplication of Tij.

Electronics 2022, 11, 2244 5 of 19

Ei represents the set of directed edges characterizing the dependency between the
subtasks, and the weight of each edge edgejk represents the amount of data communication
between subtasks, in which the subtask j is one of the immediate predecessors of subtask
k. Our problem is to upload and schedule these subtasks and the possible duplication of
them from different users on edge servers to minimize the overall completion time of all
the applications. A feasible schedule should satisfy the following constraints:

1. Constraints on tasks: Considering the low-power character of IoT devices, these devices
are always equipped with only one radio. Thus, only one of the edge servers can
be selected by an IoT device during the task execution. Furthermore, each subtask
cannot be interrupted during the execution.

2. Constraints on communication: The subtask cannot start until all its immediate prede-
cessors have been finished, and their results have been received. The transferring time
is affected by the size of communication data and the communication rate if these two
tasks are not assigned to the same processor.

3. Constraints on processors: The processors can only run tasks serially—that is to say,
the execution of any two subtasks on the same processor cannot overlap. To facili-
tate the discussion, we assume that the IoT devices and the edge servers have only
one processor.

Since our target is to minimize the average completion time in a multi-user and multi-
server edge network scenario under the energy-consumption constrain, the transmission
time and the execution time should be considered at the same time. In this section, we
first present the communication and execution model, and then we propose the energy-
consumption model. Finally, we present our optimization problem. The notations used in
this paper are summarized in Table 2.

Table 2. Notations used in the paper.

Notation Description

N The set of user

M The set of edge servers

Vi The set of subtasks of devices i

Ti,j The subtask j of the device i

Ti,j′ The duplication of Ti,j

edgei,j The data communication from subtask i to subtask j

di The offloading scheme of device i

di,j The offloading strategy of subtask Ti,j

D A possible offloading scheme of all subtasks in the edge

Ratei,k The communication rate between device i and server k

ti,j,k The execution time of Ti,j in processor k

tD
i,j,k The time when all the data is ready for Ti,j

tF
i,j The actual finish time of subtask Ti,j

tS
i,j,k The actual starting time of subtask Ti,j

Ck
j,l Data exchange time between subtask j and subtask l

tk
i,j The processor k is available to execute Ti,j

Electronics 2022, 11, 2244 6 of 19

Table 2. Cont.

Notation Description

Ec
i The computation consumption of user devices

Et
i The transmission consumption of user devices

Et
i The overall energy consumption of user devices

I(i, j) An indicator of duplicate subtask

m(i, j) The required CPU cycle to accomplish the Ti,j

I A possible duplication strategy of all subtasks in the edge

3.1. Communication and Computation Model

We consider a multi-access edge network scenario, and each IoT device can select
only one edge server to offload its subtask or the possible duplicated subtask. Let di be an
indicator to denote where IoT device i execute its subtasks:

di =

{
−i if the application executed locally
k if it uploads the task to server k

(1)

Thus, for any subtask of user i, the offloading scheme dij = −i means this subtask
will be executed locally, dij = k denotes it will be executed with the help of server k.
Especially, if dij′ = dij represents that the subtask Ti,j has no duplications. We adopt
Di = {di,1, di,1′ , di,2, di,2′ , . . . , di,|vi |} to represent the a possible offloading decision for all
subtasks of device i, so the D = D1 × D2 × . . .× DN define a possible offloading strategy
of all the users in the edge network. Furthermore, we can compute the wireless communi-
cation rate between user i and edge server k for a given offloading decision according to
the Shannon Equation:

Ratei,k(D) = Blog2(1 +
qigi,k

v + ∑j∈N:Di=Dj
qjgj,s

) (2)

Here, we can see that the wireless transmission rate is affected by the bandwidth B, the
transmission power of the device qi, and most important influence factor is the offloading
strategy of the nearby user: ∑j∈N:Di=Dj

qjgj,s. The more users select the same edge server
to execute their task. The more drastic interference will be suffered by the users. Thus, we
coordinate the offloading strategies (a more reasonable D) of the nearby user devices to
obtain the most suitable wireless transmission rate for edge computing. We assume that
the users will keep connected with the edge servers during the task execution.

It should be stressed here that the Shannon Equation tells the maximum rate at which
data can be transmitted over a communication channel of the specified bandwidth in the
presence of noise. The noise includes not only the background noise but also the same-
frequency inference. The Shannon Equation can well express the wireless transmission time
of physical layer channel access scheme (e.g., CDMA) in cellular communication scenarios.
We can also extend our study to some WiFi-like protocols (e.g., CSMA). In this case, the
wireless transmission rate can be obtained as follows:

Ratei,k(D) = Rn(
Bn

Bn + ∑j∈N:Di=Dj
Bj
) (3)

where Rn denotes the data rate of the user if it can transmit the data through the channel all
its own. Bn denotes the weight of user n in channel sharing. In this case, the transmission
rate of each user depends on the weight (Bj) of each user.

The execution time of subtask Ti,j in the processor k is easily obtained as:

ti,j,k = ci,j/ fk ∀k ∈ {i} ∪M (4)

Electronics 2022, 11, 2244 7 of 19

where the ci,j means the CPU cycle required to accomplish the Ti,j, and the fk denotes the
computation capability of user i or the edge server k.

In our scenario, the actual finish time of subtask Ti,j in server k is more complex, as
it is affected by three factors: (1) the execution time in server k. (2) The time when all the
data needed by subtask has arrived at server k. (3) The scheduling result of server k. The
execution time is according to Equation (3). The time when all the data needed for Ti,j is
ready in server k can be denoted by:

tD
i,j,k = max

l∈pred(j)
{min{(tF

i,l + Ck
j,l), (t

F
i,l′ + Ck

j,l′}} (5)

where the pred(j) is the immediate predecessor subtasks of subtask j. The ready time of
Ti,j is determined by the lasted time when all the predecessors have transmitted its result
to server k. Furthermore, each predecessor subtask may have a duplication, and thus the
inner min block in the equation returns the time when the result of a predecessor subtask
has transferred to the Ti,j either from the Ti,l or its duplication Ti,l′ , note that if a subtask
has no duplications the tF

i,l′ is infinite. The tF
i,l denotes the actual finish of the subtask Ti,l ,

and it will be defined in the following. Furthermore, the Ck
j,l denotes the data exchange

time between subtask j and its predecessor subtask l:

Ck
j,l =

{
0 if di,l = di,j
edgejl/Ratei,k otherwise

(6)

After that, we finally obtain the actual finish time of subtask Ti,j:

tF
i,j = min

k∈{−i}∪M
{tS

i,j,k + ti,j,k} (7)

tS
i,j,k = max{tk

i,j, tD
i,j,k} (8)

The tk
i,j denotes the time server k is available to execute ti,j, which depends on the

scheduling result of all the subtask from nearby devices. From Equation (8), we can see
that in order to obtain the starting execution time of a task (tS

i,j,k) on a processor, all the data
required by the subtask must be received and the processor must be available. Furthermore,
the actual finish time of Ti,j is to select the minimum time by enumerating all the possible
processors. It is worth mentioning that Equations (7) and (8) are also suitable for the
possible duplicate subtask, as the dependency relationship of duplication is the same as the
original subtask.

3.2. Energy-Consumption Model

In our duplication-based task offloading algorithm, we utilize the processor idle time
to duplicate predecessor tasks, This can avoid the transfer of data between edge network
and user devices and finally improve the overall completion time of applications. However,
extra energy consumption will be caused by the duplicate subtask. Thus, in our work,
we maintain the focus on the energy consumption of user devices. The computation
consumption (Ec

i) and communication consumption(Et
i) constituted the main parts of the

energy cost of user devices i . The overall energy consumption (Ei) is effect by the offloading
scheme (Di) and the duplication decision Ii,j, which is defined as follows:

Ii,j =

{
1 if Ti,j has a duplicate subtask Ti,j′

0 otherwise
(9)

Furthermore, the Ii = {Ii,1, Ii,2, . . . , Ii,|vi |} represents the duplication scheme of user
device i, and thus I = I1 × I2 × . . .× IN denotes a possible duplication strategy of user
devices in the edge network.

Electronics 2022, 11, 2244 8 of 19

The computation consumption depends on the subtasks executed locally:

Ec
i =

|vi |

∑
j=1:dij=−i

mi,jδi +
|vi |

∑
j=1:dij 6=−i

Ii,jmi,jδi (10)

where the mi,j denote the required CPU cycle to accomplish the Ti,j, and the δi denotes the
energy consumption per CPU cycle in user devices i.

The transmission consumption is mainly affected by the data exchange between user
devices and the edge server. It can be formulated as follows:

Et
i =

|vi |

∑
j=2:di(j−1)=−i

dij∗dij′ 6=i2

(1− Ii,j)Ck
(j−1),j × qi (11)

The qi is the transmission power of user devices i, and the Ck
(j−1),j is the data ex-

changing time between the Ti,(j−1) and Ti,j. From Equation (11), the essential condition of
communication consumption: (1) The predecessor subtask Ti,j−1 is executed in the local pro-
cessor. (2) The Ti,j−1 has no duplicate subtask. (3) Either the subtask Ti,j or its duplication
is executed in the edge server.

3.3. Optimization Problem

From Equation (8), we can see that the scheduling result of subtasks from different
users can also affect the overall completion time. Thus, we define Sk

i,j={sk
i,j, ∀k ∈ {i} ∪

M, ∀i ∈ N , ∀j ∈ Vi} to denote the scheduling order of subtasks. Our aim is to find
a suitable task offloading decision D, duplication scheme I and a scheduling result Si,j
for all the subtasks from different users to minimize total latency while satisfying the
energy constraints. The duplication-based energy-aware task offloading problem can be
formulated as:

Opt : min
{Ii,j ,di,j ,si,j}

(
N

∑
i=1

tF
i,|vi |))∀i ∈ M ∀k ∈ N (12)

s.t Ec
i + Et

i ≤ B ∀i ∈ N (13)

We need to enumerate all the possible strategies of offloading, duplication and schedul-
ing, to find the one that can minimize the result of completion time of all the users. Note
that tF

i,|vi |
denote the actual finish time of the exit subtask, which also represent the comple-

tion time of the application. We can easily reduce this problem into 0-1 knapsack problem;
thus, this problem is NP-hard. In the following sections, we propose heuristic algorithms
to solve our duplication-based and energy-aware task offloading problem efficiently.

4. Duplication-Base Offloading Strategy

In this section, we present an efficient duplication-base and energy-aware task offload-
ing (DETO) algorithm according to the optimization problem defined in Equation (12). In
the DETO algorithm, we only consider a single-user MEC system with one edge server, and
then we further extend the DETO algorithm to multi-user edge networks in the next section.
The DETO algorithm can be divided into three phases: the (1) listing phase, (2) processor
selection phase and (3) energy-aware duplication phase.

4.1. Listing Phase

Considering the intricate dependencies of the subtasks in the application. At first, we
need to order the subtasks by their priorities, which depend not only on the dependency
relations among subtasks but also on the important degrees of the subtask in DAG. In
this way, the more critical subtask and its duplication can be assigned to the processor
preferentially to reduce the overall completion time.

Electronics 2022, 11, 2244 9 of 19

Given an application DAG, as shown in Figure 2, we utilize the average execution time
ti,j to label the value on each node and use the average transmission Ci,j to mark the weight

on each link. Furthermore, the average earliest start time tES
i,j can be computed recursively

by traversing the DAG downward, starting from the entry node, where the tES
i,1 = 0:

tES
i,j = max

l∈pred(j)
{(tES

i,l + ti,l + Cl,j} (14)

The average latest start time tLS
i,j can be obtained recursively by traversing the DAG

downward, starting from the exit node, where the tES
i,|vi |

= tLS
i,|vi |

:

tLS
i,j = max

k∈succ(j)
{(tLS

i,k − Cj,k} − ti,k (15)

After we obtained tES
i,j and tLS

i,j from these equations, shown in Table 3, according to
the DAG in Figure 2, the DAG is divided into a set of sub-tree. The root of each sub-trees is
defined as a critical node (CN), whose tES

i,j is equal to the tLS
i,j . The critical nodes are shown

by the thick edges connection them, which are node a, node c and node e. The list algorithm
starts with critical node (node a) with the minimum value of average earliest time and if
the node has parent nodes, assign the highest priority to them. Then, we assign the priority
to this critical node. By repeating the above steps, we can obtain the rank of all the nodes
shown in Figure 2.

1

2

4

2 1

1
31

11
2

1

2

4

2 1

b

c

d

eaa c

b

d

e Rank:1

Rank:2

Rank:4

Rank:3 Rank:5

5 2

Figure 2. Subtask list algorithm.

Table 3. Earliest start/finish time.

Earliest Start Time Earliest Finish Time

Node a 0 ms 0 ms

Node b 2 ms 3 ms

Node c 6 ms 6 ms

Node d 3 ms 5 ms

Node e 10 ms 10 ms

4.2. Processor Selection Phase

After we obtain the priority of each subtask, we need to schedule them and their
duplication on its “best” processor. The duplication-based task offloading scheme is
described in Algorithm 1. Before that, we give the definition of the Critical Predecessor
(CP). According to Equation (5), the subtask start time depends on the data arrival time of
the predecessor task. Furthermore, the predecessor task from which the data arrives at the
latest time is defined as the critical predecessor (CP).

Electronics 2022, 11, 2244 10 of 19

Algorithm 1 The duplication-based task offloading algorithm.
1. Sort all the subtasks in DAG into a Ranklist by increasing the order of their rank
2. while there are unscheduled subtasks in the Ranklist
3. select the first unscheduled subtask Ti,j in Ranklist;
4. Let Et = ∞;
5 For each process S1 in S
6. compute the tF

i,j,s1
without duplication

7. if tF
i,j,s1

< Et

8. Et = ti,j,s1
F , save scheduling result to P

9. end if;
10. Let Ti,l = CP(Ti,j)
11. For each processor S2 in S
12. recompute tF

i,j,s1
while duplicating Ti,l on S2

13. if tF
i,j,s1

< Et

14. Et = tF
i,j,s1

, save scheduling result to P
15. Recompute the Ti,l = CP(Ti,j)
16. Goto line12
17. end if
18. end For
19. end For
20. Schedule Ti,j according to the scheduling result P
21. Mark Ti,j as scheduled
22. end while

In the algorithm, there are three nested loops: (1) In the first loop (step from 2 to
22), all the subtasks and possible duplications will be assigned and scheduled by order
of increasing rank value. (2) The second “for loop” (step from 5 to 19) is to consider each
processor in P as a potential processor to which the subtask Ti,j could be scheduled and
will find the “best” processor that minimizes its finish time. (3) Inside the second loop, the
third loop (step from 11 to 17) introduces the task duplication into the algorithm. In line 12,
we duplicate the critical predecessor of Ti,j on each processor to see whether the finish time
of Ti,j can be further reduced.

Since the critical predecessor is the one from which data will be received the latest
by Ti,j, duplicating other predecessor tasks other than the CP will not decrease the finish
time of Ti,j. In addition, if the duplicate the CP of Ti,j will reduce the finish time of Ti,j,
the duplication decision and scheduling result will be saved to P. After the duplication
operation, the previously critical node may not be the latest one that transfers the date
to the Ti,j. Thus, in line 14 and line 15, we recompute the critical predecessor and return
back the third loop attempt to further reduce the finish time of Ti,j by replicating the new
critical predecessor.

4.3. Energy-Aware Duplication Phase

From the above duplication-based task offloading algorithm, it can be found that all
the subtasks are scheduled by order of its priority, and the optimization objective is the
finish time of current subtasks. However, minimizing the finish time of each critical subtask
cannot always guarantee the optimization of the overall delay of application. Moreover, an
inappropriate duplication may achieve the local optimization solution; however, it may
occupy the CPU cycle for successor subtasks, which leads to an increase in the overall
completion time and unnecessary energy consumption. Thus, in this subsection, we
introduce the energy-aware duplication algorithms (as in Algorithm 2).

Electronics 2022, 11, 2244 11 of 19

Algorithm 2 The energy-aware duplication algorithm.
1. While there are unchecked subtask in Ranklist
2. select the first unchecked subtask Ti,j in Ranklist
3. For each duplication Ti,j′

4. Reschedule all the subtask after Ti,j in
Ranklist without Ti,j′ by Algorithm 1.

5. Compute the time and energy reduction δt, δe

7. if δt ≤ 0 or −δt
δe
≤ Ratio

8. Delete Ti, j′ and save the current rescheduling
9. else
10. Rollback the delete operation of Ti, j′

11. end if
12. end For
13. Mark Ti,j as checked
14. end while

In this algorithm, we remove the duplications that did not help in improving the
performance (energy consumption and delay reduction must be comprehensive consider-
ation). Following Algorithm 1, we check each duplication one after another by order of
its rank (line 2). Note that in this algorithm, we did not distinguish the duplicate task and
an original task, which uniformly called duplication. In the “for loop” (line 3 to line 12),
we attempt to remove each subtask to see whether it can improve the performance or not.
In (line 7) , the metric Ratio can be adjusted based on the remaining energy of a specific
user device.

Note that the δe only refers to energy reduction in the user devices, and if the duplica-
tion the executed in the edge server, the energy cost is equal to 0. It is also worth noting
that, once any subtask is removed, the scheduling result of all the succeeded subtasks will
be changed (otherwise Algorithm 1 is meaningless), and thus we need to call Algorithm 1
for successor subtasks.

Through the above-mentioned three phases of the algorithm, we finally obtain an
efficient duplication-base and energy-aware task offloading algorithm (DETO) in a single-
user MEC system with only one server. In the next section, we extend the DETO algorithm
to the multi-user and multi-server edge networks.

5. The DETO Algorithm in the Ultra-Dense Network

The explosive number of users in the edge network is challenging for the most ad-
vanced fourth-generation network. Furthermore, the ultra-dense network has been consid-
ered as a promising candidate for future 5G networks to meet this explosive user demand.
The basic idea is to have multiple servers as close as possible to the end users. Furthermore,
each user can offload their tasks to either one of them according to the condition of each
server (such as the channel condition and the computation load of a server).

However, considering the high dynamic characteristics of the edge scenario, each
user has little information about others. Thus, the user cannot estimate the wireless
communication rate and the execution time in the server according to Equations (6) and
(7). To overcome this dilemma, we use the centralized DETO algorithm in the ultra-dense
network (as shown in the Algorithm 3):

Electronics 2022, 11, 2244 12 of 19

Algorithm 3 The centralized DETO algorithm.
1. enumerate all optional offloading decision D = {d1,d2. . . ,dn}
2. for all server m ∈ M do
3. Create the user group Um, in which di = m
4. integrate Gi of the users in Um to Guk
5. Update the transmission delay Ratei,k(D)
6. Call DETO algorithm to obtain the subtask scheduling, subtask duplication scheme
of all users
7. end for all
8. find the optimal offloading strategy D and its related subtask scheduling, subtask
duplication scheme for each user

In the centralized DETO scheme, we first enumerate all the possible offloading strate-
gies and then call the DETO algorithm to obtain the subtask scheduling and duplication
scheme under a certain offloading strategy. In line 4, we integrate the task of graphs of the
users that offload to the same server, and thus the input of Algorithm 1 will be a large DAG,
which consists of a series of disconnected subgraphs, and it is impossible for us to find a
critical path as shown in Listing Phase. Thus, we need to propose a new metric to order
the subtasks.

rank(i, j) = ti,j + max
l∈succ(j)

{rank(i, l) + Cl,j} (16)

The rank(i, j) is the length of the critical path from task j to the exit task. The higher
the value is, the higher the priority. For example, in Figure 2, the rank of each node is as
follows: rank(a) = 10, rank(b) = 8, rank(c) = 5, rank(d) = 6, rank(c) = 1. In this way, we can
rank all the subtasks from the different disconnected subgraphs.

Theorem 1. The computational complexity of centralized DETO in Algorithm 3 is no less than
O[(S+ 1)N · (n+ 2e)], where S and N are the numbers of edge servers and IoT devices, respectively.
n and e denote the number of subtask and the edge of DAG.

Proof. We assume that there are S users who need to offload their tasks to the edge network,
which consists of N edge servers. The number of possible optional offloading strategies are:

(0
N) · S

0 + (1
N) · S

1 + (N
N) · S

N =
p

∑
i=0

(p
N) · S

p (17)

where p denotes the number of users who decide to offload their tasks. According to
Newton’s binomial theorem:

i

∑
i=0

(p
N) · S

p = (S + 1)N (18)

Each potential offloading strategy needs to invoke the DETO algorithm to obtain the
server scheduling result and its computation delay. The time complexity of the first part in
DETO is O(n + 2e), and the time complexity of the second step in DETO is O(n). Therefore,
the computational complexity of centralized DETO is no less than [O(S+ 1)N · (n+ 2e)].

From Theorem 1, we find that the centralised DETO algorithm would cause con-
siderable overhead with the increasing number of users and edge servers, as it always
enumerates all the optional offloading decisions. Even worse, it would possibly lead
to system failure if the centralized controller were involved in hardware failure. In this
section, we adopt a game-theoretic approach to address such a challenge. Game theory
is a useful framework for designing decentralized scheme, such that user devices in the
edge network can self-organize into mutually satisfactory computation offloading and
duplication decisions.

Electronics 2022, 11, 2244 13 of 19

In the game-theory-based offloading and duplication strategy in the ultra-dense net-
work, the user can make the decision locally according to the information broadcast by the
edge server at each step and make an optimal local decision. After finite steps, none of the
users can further improve its execution time by changing its offloading and duplication
strategy unilaterally. The details of distributed DETO are described below:

1. Initialize step: Each device executes all its subtasks locally to obtain the completion
time. The edge servers will broadcast their communication rate and computation
capability to all the users.

2. Iterative steps:Each user calls the DETO algorithm discussed in Section 4, assuming
that if it uploads its task to each server based on the previous information broadcasted
by the server. After that, each user will inform the maximum completion time re-
duction result and corresponding offloading strategy to the edge network. After the
edge network receives all the information transferred by the user, they will accept the
offloading request of only one device with the greatest gain, and then only the selected
user can update its offloading and duplication strategy. Finally, the related server
will broadcast the updated information about the transmitting rate and its scheduling
result to the network, which then facilitate the users to make further choices in the
next iteration.

3. Convergence step: After a finite step, when all the user cannot further reduce its own
delay by changing strategy unilaterally, the distributed algorithm is terminated.

Although the distributed DETO algorithm may achieve a higher completion time, it
has much higher computation efficiency and provides a workable solution in the ultra-dense
network. In the distributed DETO algorithm, each IoT device adjusts its own offloading
strategies rely solely on the offloading scheme of other users in the lasted international
step. Thus, the computational complexity of distributed DETO is O(n + 2e), where n and e
denote the number of subtasks and edges in DAG.

A possible drawback is that the convergence time may add further overhead to the
offloading system. We argue that this process incurs only an initial delay as normally the
task DAGs do not change drastically for a given IoT system. Once the process is finished,
each IoT device can perform its offloading decisions to reduce the overall task delay.In the
next section, we prove the convergence of the distributed DETO by simulation.

6. Evaluation

In this section, we conduct simulations experiments to evaluate the performance of
our proposed offloading algorithm. At first, we study the convergence of the Distribute
DETO algorithm and then compare our proposed algorithm with the existing work. Finally,
we present the computation resource utilization.

6.1. Experiment Settings

We consider an ultra-dense network (UDN) with a certain number of edge servers and
users, which are randomly distributed in a 1 × 1 km area with some heterogeneous edge
servers. In this multi-access UDN network, many edge servers are in the vicinity of a given
IoT device. Thus, each user has various options in making the offloading scheme. Our
goal is to find the appropriate offloading strategies for all the users in the UND efficiently.
Each user has a task to be completed with the help of an edge network, which consists
of inter-dependency subtasks, and their DAG is generated based on some popular user
applications, such as object recognition [27], gesture recognition [10] and video navigation
application [28].

We also randomly generate some DAG to verify the adaptability of our offloading
algorithm, in which the CPU cycles required by subtasks vary from 30 Megacycle to
120 Megacycle. Other experimental settings are made as follows: The wireless channel
bandwidth is B = 150 kHz. The transmission power is ranged from 100 to 200 mW [29]
randomly among different devices, the background noise is set to −120 dBm [30]. We also

Electronics 2022, 11, 2244 14 of 19

assume that the CPU frequency of the edge server (30 GHz) is ten times that of user devices
(3 GHz) [29].

6.2. The Convergence of Distributed DETO Algorithm

In the multi-user UDN networks, the distributed DETO algorithm is a game-based
algorithm; therefore, its convergence must be guaranteed. Figure 3 shows the numerical
results of the convergence behavior of distributed DETO algorithm with different number
of users and servers.

10 20 30 40 50 60 70
Iteration num

100

200

300

400

500

A
ve

ra
ge

 d
el

ay
/m

s

Figure 3. The convergence of the distributed DETO algorithm.

From this figure, we find that: (1) The distributed DETO algorithm always can reach
a Nash equilibrium. (2) The increased number of users will contribute to increasing the
convergence time. (3) In a certain number of users, the more edge servers, the lower the
average latency, as the user can share more edge computation resources (taking more
CPU cycles). However, since the user faces more offloading choices, which comes with the
increase in convergence time. (4) The different value of the average delay between the initial
step and the convergence step represents the performance gains from edge computing.

6.3. Compared with Existing Work

The distributed DETO algorithm proposed in this work is compared with two different
offloading schemes: the PGOA [19] scheme and DEFO [8] scheme.

1. PGOA: In [19], they considered the multi-device and multi-MEC scenario of an SCN
integrated with MEC and formulated a distributed overhead minimization problem,
proposed as the potential game-based offloading algorithm (PGOA), which minimizes
the overhead of each user. However, they did not distinguish the subtasks among the
applications, and they treated them as an entire task. Thus, they always offloaded
these subtasks as a whole to the edge network.

2. DEFO: In [8], the author investigated the problem of fine-grained task offloading in
edge computing. They proposed a distributed earliest finish time offloading scheme
(DEFO) for subtasks from different users, which considered not only the computation
workload of the subtask but also the dependency among subtasks in DAG. However,
they did not consider utilizing the processor idle time to duplicate predecessor tasks
to further reduce the completion time of the application.

Electronics 2022, 11, 2244 15 of 19

Figure 4 shows the average delay for different network scales in terms of edge servers.
The number of edge servers is increased from 1 to 7, and there are twenty users in the
edge network. It can be inferred that the average delay will reduce with the increasing
number of the server since the users could utilize more edge computation resources (taking
more CPU cycles). As the PGOA did not distinguish the subtasks among the application,
it always achieves a higher average delay than the fine-grained offloading DEFO and
DETO algorithms.

Through utilizing the processor idle time to duplication for certain critical subtasks,
our DETO algorithm can further reduce the makespan of all the applications. Figure 5
shows the average delay for the different numbers of users for the same network scale. The
number of users grows from 1 to 12, and there are only two edge servers in the network.
We find that the average delay will increase with the competing users, and our algorithm
can also achieve the minimum delay compared to the other two offloading strategies.

1 2 3 4 5 6 7
The number of server

0

40

80

120

A
ve

ra
ge

 d
el

ay
/m

s

DETO Algorithm
DEFO Algorithm
PGOA Algorithm

Figure 4. The delays for different networks.

2 4 6 8 10 12
The number of user

0

10

20

30

40

50

60

A
ve

ra
ge

 d
el

ay
/m

s

DETO Algorithm
DEFO Algorithm
PGOA Algorithm

Figure 5. The delays for different users.

Electronics 2022, 11, 2244 16 of 19

In order to verify the effectiveness of our proposed game-theory-based DETO al-
gorthe ithm, we compare the running time and the average delay with the centralized
DETO algorithm.

Figures 6 and 7 depict the results and show the comparison between them. The X-axis
denotes the number of users. Considering the exponential computational complexity of
centralized DETO algorithm, the number of servers is set to 2, and the number of users
increases from 1 to 8. As illustrated in these figures, although the centralized algorithm
achieves a slightly higher average delay, it has much a higher computation efficiency and
provides a workable solution in the ultra-dense network.

1 2 3 4 5 6

The number of user

0

20

40

60

80

100

120

140

A
ve

ra
ge

 d
el

ay
/m

s

Centralized DETO

Distributed DETO

Figure 6. The average delay.

1 2 3 4 5 6
The number of user

0

1

2

3

4

5

R
un

ni
ng

 ti
m

e/
s

Centralized DETO

Distributed DETO

Figure 7. The running time.

6.4. Computation Resource Utilization

The computation resource utilization mainly refers to CPU utilization, the CPU utiliza-
tion can be calculated by using the following formula: 100%—(the percentage of time that is
spent in idle task). The computation resource utilization is shown in Figures 8 and 9. There
are three servers in the edge network, and the number of users increases from 5 to 25. Since
our work introduces the duplication subtasks to reduce the completion time, the utilization

Electronics 2022, 11, 2244 17 of 19

of the edge server is higher than the DEFO algorithm—that is to say, our offloading scheme
reduces the makespan of an application by making full use of the edge server.

As shown in Figure 9, there is a small difference between the local processor utilization
of our algorithm and the DEFO algorithm. As in the energy-aware duplication phase, we
remove some duplications in the local server if it incurs much extra energy cost. From these
figures, with the increasing number of users, the edge computation resource (CPU cycles)
comes to the saturation condition, and the user would not offload their task to the edge
server. As a result, the computation resource utilization of two different algorithms tends
to be the same.

5 10 15 20 25
The number of user

0

20

40

60

80

E
dg

e
se

rv
er

 u
til

iz
at

io
n

%

DETO algorithm
DEFO algorithm

Figure 8. Edge server utilization.

5 10 15 20 25
The number of user

0

20

40

60

Lo
ca

l d
ev

ic
e

ut
ili

za
tio

n
%

DETO algorithm

DEFO algorithm

Figure 9. Local device utilization.

7. Conclusions

In this paper, we first proposed the DETO algorithm, which exploits task duplications
to enhance the parallelism between users and edge servers. We then further designed
a distributed DETO algorithm, which was able to coordinate the duplication scheme

Electronics 2022, 11, 2244 18 of 19

among multiple users. Finally, we conducted extensive simulation experiments, and the
performance results showed that DETO can reduce the overall completion and improve the
resource utilization of the edge servers.

Author Contributions: Conceptualization, C.S.; methodology, C.S. and Y.L.; software, F.L.; validation,
C.S., Y.L. and F.L.; formal analysis, C.S. and F.L.; investigation, Y.L.; writing—original draft prepa-
ration, C.S.; writing—review and editing, C.S., Y.L. and F.L.; project administration, C.S.; funding
acquisition, C.S. and F.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by 1. The Fundamental Research Funds for the Central Universi-
ties: No.J2022-045; 2. Sichuan Youth Software Innovation Project Funding Project (2021023).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This research was funded by 1. The Fundamental Research Funds for the Central
Universities: No. J2022-045; 2. Sichuan Youth Software Innovation Project Funding Project (2021023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liang, M.; Hu, X. Recurrent convolutional neural network for object recognition. In Proceedings of the IEEE Conference On

ComputerVision And Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3367–3375.
2. Mallik, A.; Ding, W.; Khaligh, A. A comprehensive design approach to an EMI filter for a 6-kW three-phase boost power factor

correction rectifier in avionics vehicular systems. IEEE Trans. Veh. Technol. 2016, 66, 2942–2951. [CrossRef]
3. Bojarski, M.; Del Testa, D.; Dworakowski, D.; Firner, B.; Flepp, B.; Goyal, P.; Jackel, L.D.; Monfort, M.; Muller, U.; Zhang, J.; et al.

End to end learning for self-driving cars. arXiv 2016, arXiv:1604.07316.
4. Luo, Q.; Hu, S.; Li, C.; Li, G.; Shi, W. Resource scheduling in edge computing: A survey. IEEE Commun. Surv. Tutor. 2021,

23, 2131–2165. [CrossRef]
5. Miao, W.; Min, G.; Zhang, X.; Zhao, Z.; Hu, J. Performance modelling and quantitative analysis of vehicular edge computing with

bursty task arrivals. IEEE Trans. Mob. Comput. 2021, 13, 1357–1368. [CrossRef]
6. Cong, R.; Zhao, Z.; Min, G.; Feng, C.; Jiang, Y. EdgeGO: A mobile resource-sharing framework for 6g edge computing in massive

IoT systems. IEEE Internet Things J. 2021. [CrossRef]
7. Mach, P.; Becvar, Z. Mobile edge computing: A survey on architecture and computation offloading. IEEE Commun. Surv. Tutor.

2017, 19, 1628–1656. [CrossRef]
8. Shu, C.; Zhao, Z.; Han, Y. Dependency-Aware and Latency-Optimal Computation Offloading for Multi-User Edge Computing

Networks. In Proceedings of the IEEE Conference on Sensing, Communication and Networking, Boston, MA, USA, 10–13
June 2019.

9. Xiao, L.; Lu, X.; Xu, T.; Wan, X.; Ji, W.; Zhang, Y. Reinforcement learning-based mobile offloading for edge computing against
jamming and interference. IEEE Trans. Commun. 2020, 68, 6114–6126. [CrossRef]

10. Ra, M.R.; Sheth, A.; Mummert, L.; Pillai, P.; Wetherall, D.; Govindan, R. Odessa: Enabling interactive perception applications on
mobile devices. In Proceedings of the Ninth International Conference on Mobile Systems, Applications, and Services, Portland,
OR, USA, 27 June–1 July 2022; ACM: New York, NY, USA, 2011; pp. 43–56.

11. Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A survey on mobile edge computing: The communication perspective. IEEE
Commun. Surv. Tutor. 2017, 19, 2322–2358. [CrossRef]

12. Abbas, N.; Zhang, Y.; Taherkordi, A.; Skeie, T. Mobile edge computing: A survey. IEEE Internet Things J. 2017, 5, 450–465.
[CrossRef]

13. Kao, Y.H.; Krishnamachari, B.; Ra, M.R.; Bai, F. Hermes: Latency optimal task assignment for resource-constrained mobile
computing. IEEE Trans. Mob. Comput. 2017, 16, 3056–3069. [CrossRef]

14. Zhao, Z.; Min, G.; Gao, W.; Wu, Y.; Duan, H.; Ni, Q. Deploying edge computing nodes for large-scale IoT: A diversity aware
approach. IEEE Internet Things J. 2018, 5, 3606–3614. [CrossRef]

15. Zhao, Z.; Min, G.; Dong, W.; Liu, X.; Gao, W.; Gu, T.; Yang, M. Exploiting Link Diversity for Performance-Aware and Repeatable
Simulation in Low-Power Wireless Networks. IEEE/ACM Trans. Netw. 2020, 28, 2545–2558. [CrossRef]

16. Wang, F.; Xu, J.; Wang, X.; Cui, S. Joint offloading and computing optimization in wireless powered mobile-edge computing
systems. IEEE Trans. Wirel. Commun. 2017, 17, 1784–1797. [CrossRef]

17. Wang, C.; Liang, C.; Yu, F.R.; Chen, Q.; Tang, L. Computation offloading and resource allocation in wireless cellular networks
with mobile edge computing. IEEE Trans. Wirel. Commun. 2017, 16, 4924–4938. [CrossRef]

http://doi.org/10.1109/TVT.2016.2590462
http://dx.doi.org/10.1109/COMST.2021.3106401
http://dx.doi.org/10.1109/TMC.2021.3087013
http://dx.doi.org/10.1109/JIOT.2021.3065357
http://dx.doi.org/10.1109/COMST.2017.2682318
http://dx.doi.org/10.1109/TCOMM.2020.3007742
http://dx.doi.org/10.1109/COMST.2017.2745201
http://dx.doi.org/10.1109/JIOT.2017.2750180
http://dx.doi.org/10.1109/TMC.2017.2679712
http://dx.doi.org/10.1109/JIOT.2018.2823498
http://dx.doi.org/10.1109/TNET.2020.3016056
http://dx.doi.org/10.1109/TWC.2017.2785305
http://dx.doi.org/10.1109/TWC.2017.2703901

Electronics 2022, 11, 2244 19 of 19

18. Chen, X.; Jiao, L.; Li, W.; Fu, X. Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Trans.
Netw. 2015, 24, 2795–2808. [CrossRef]

19. Yang, L.; Zhang, H.; Li, X.; Ji, H.; Leung, V. A Distributed Computation Offloading Strategy in Small-Cell Networks Integrated
With Mobile Edge Computing. IEEE/ACM Trans. Netw. (TON) 2018, 26, 2762–2773. [CrossRef]

20. You, C.; Huang, K.; Chae, H.; Kim, B.H. Energy-efficient resource allocation for mobile-edge computation offloading. IEEE Trans.
Wirel. Commun. 2016, 16, 1397–1411. [CrossRef]

21. Lyu, X.; Tian, H.; Sengul, C.; Zhang, P. Multiuser joint task offloading and resource optimization in proximate clouds. IEEE Trans.
Veh. Technol. 2016, 66, 3435–3447. [CrossRef]

22. Chen, X. Decentralized computation offloading game for mobile cloud computing. IEEE Trans. Parallel Distrib. Syst. 2014,
26, 974–983. [CrossRef]

23. Ning, Z.; Dong, P.; Kong, X.; Xia, F. A cooperative partial computation offloading scheme for mobile edge computing enabled
Internet of Things. IEEE Internet Things J. 2018, 6, 4804–4814. [CrossRef]

24. Sajid, M.; Raza, Z. Turnaround time minimization-based static scheduling model using task duplication for fine-grained parallel
applications onto hybrid cloud environment. IETE J. Res. 2016, 62, 402–414. [CrossRef]

25. Lin, W.M.; Gu, Q. An efficient clustering-based task scheduling algorithm for parallel programs with task duplication. J. Inf. Sci.
Eng. 2007, 23, 589–604.

26. Baskiyar, S.; Dickinson, C. Scheduling directed a-cyclic task graphs on a bounded set of heterogeneous processors using task
duplication. J. Parallel Distrib. Comput. 2005, 65, 911–921. [CrossRef]

27. Collet, A.; Berenson, D.; Srinivasa, S.S.; Ferguson, D. Object recognition and full pose registration from a single image for robotic
manipulation. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May
2009; pp. 48–55.

28. Mahmoodi, S.E.; Uma, R.; Subbalakshmi, K. Optimal joint scheduling and cloud offloading for mobile applications. IEEE Trans.
Cloud Comput. 2016, 7, 301–313. [CrossRef]

29. Access, E. Further advancements for E-UTRA physical layer aspects. 3GPP Tech. Specif. TR 2010, 36, V2.
30. Wu, D.; Wang, J.; Hu, R.Q.; Cai, Y.; Zhou, L. Energy-efficient resource sharing for mobile device-to-device multimedia

communications. IEEE Trans. Veh. Technol. 2014, 63, 2093–2103. [CrossRef]

http://dx.doi.org/10.1109/TNET.2015.2487344
http://dx.doi.org/10.1109/TNET.2018.2876941
http://dx.doi.org/10.1109/TWC.2016.2633522
http://dx.doi.org/10.1109/TVT.2016.2593486
http://dx.doi.org/10.1109/TPDS.2014.2316834
http://dx.doi.org/10.1109/JIOT.2018.2868616
http://dx.doi.org/10.1080/03772063.2015.1075911
http://dx.doi.org/10.1016/j.jpdc.2005.01.006
http://dx.doi.org/10.1109/TCC.2016.2560808
http://dx.doi.org/10.1109/TVT.2014.2311580

	Introduction
	Related Work
	System Model
	Communication and Computation Model
	Energy-Consumption Model
	Optimization Problem

	Duplication-Base Offloading Strategy
	Listing Phase
	Processor Selection Phase
	Energy-Aware Duplication Phase

	The DETO Algorithm in the Ultra-Dense Network
	Evaluation
	Experiment Settings
	The Convergence of Distributed DETO Algorithm
	Compared with Existing Work
	Computation Resource Utilization

	Conclusions
	References

