
Citation: Simakovic, M.; Cica, Z.;

Drajic, D. Big-Data Platform for

Performance Monitoring of

Telecom-Service-Provider Networks.

Electronics 2022, 11, 2224. https://

doi.org/10.3390/electronics11142224

Academic Editor: Ping-Feng Pai

Received: 19 June 2022

Accepted: 15 July 2022

Published: 16 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Big-Data Platform for Performance Monitoring of
Telecom-Service-Provider Networks
Milan Simakovic 1 , Zoran Cica 1,* and Dejan Drajic 1,2

1 School of Electrical Engineering, University of Belgrade, 11120 Belgrade, Serbia;
milanrus@hotmail.com (M.S.); ddrajic@etf.bg.ac.rs (D.D.)

2 Innovation Centre of School of Electrical Engineering, University of Belgrade, 11120 Belgrade, Serbia
* Correspondence: zoran.cica@etf.bg.ac.rs; Tel.: +381-11-3218-377

Abstract: Large telecom-service-provider networks are typically based on complex communications
infrastructures comprising millions of network devices. The performance monitoring of such net-
works is a very demanding and challenging task. A large amount of data is collected and processed
during performance monitoring to obtain information that gives insights into the current network per-
formance. Using the obtained information, providers can efficiently detect, locate, and troubleshoot
weak spots in the network and improve the overall network performance. Furthermore, the extracted
information can be used for planning future network expansions and to support the determination of
business-strategy decisions. However, traditional methods for processing and storing data are not
applicable because of the enormous amount of collected data. Thus, big-data technologies must be
used. In this paper, a big-data platform for the performance monitoring of telecom-service-provider
networks is proposed. The proposed platform is capable of collecting, storing, and processing data
from millions of devices. Typical challenges and problems in the development and deployment
process of the platform, as well as the solutions to overcome them, are presented. The proposed
platform is adjusted to HFC (Hybrid Fiber-Coaxial) network and currently operates in the real HFC
network, comprising millions of users and devices.

Keywords: big data; data engineering; performance monitoring; service provider networks

1. Introduction

Large telecom service providers provide services to millions of users using large,
heterogeneous, and continuously evolving network infrastructure. Keeping subscribers
satisfied is very important for telecom service providers. Thus, network performance
is a key aspect for service providers. In order to keep network performance at a high
level, providers must collect and process data from network devices to obtain relevant
information (the detection of traffic bottlenecks, the detection of poor-performance devices,
etc.). Furthermore, telecom service providers, based on the obtained information, can
efficiently plan future network expansions, such as installing higher-capacity links in
congested parts of the network, offering new services to users, equipment acquisition
planning, etc.

The amount of collected data is enormous given the large number of network devices
and the need for continuous data collection. Traditional methods for the storage and
processing of large data sets are practically useless due to the limited resources and lack of
scalability [1]. Only small data subsets are processed because a significant amount of col-
lected data is discarded due to hardware and computing limitations. Big-data technologies
are introduced to overcome these limitations [1,2]. There are many definitions of the term,
big data [2]. In general, all definitions of big data relate to amounts of data that are not
manageable using traditional processing systems and/or cannot be stored in traditional
data warehouses.

Electronics 2022, 11, 2224. https://doi.org/10.3390/electronics11142224 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11142224
https://doi.org/10.3390/electronics11142224
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-5288-8652
https://orcid.org/0000-0003-4456-5858
https://orcid.org/0000-0003-1314-6191
https://doi.org/10.3390/electronics11142224
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11142224?type=check_update&version=2

Electronics 2022, 11, 2224 2 of 27

Big-data technologies are used by telecom service providers for network-performance
monitoring. Providers use either commercially available (e.g., SolarWinds NPM, Man-
ageEngine OpManager) or custom-based big-data solutions. However, there is a research
gap in the literature regarding the detailed specifications and explanations of the overall
big-data architectures used in real telecom operator networks. Furthermore, deployment
experiences that can be very valuable are mostly missing in the available literature. Thus,
our motivation is to fill this research gap by proposing a scalable and flexible big-data archi-
tecture for telecom-service-provider network-performance monitoring, which is explained
in detail, along with our deployment experiences.

In this paper, we consider the HFC (Hybrid Fiber-Coaxial) network as a telecom-
service-provider network. HFC technology is a result of the CATV (cable television)
evolution [3]. CATV operators replaced large portions of their all-coaxial planes with fiber
to increase system capacity. CATV networks modified in such a way are known as HFC
networks. Currently, HFC networks provide extremely wide bandwidth to their users.
Additionally, HFC networks extend their functionality to deliver so-called “triple-play
service” (television, broadband internet access, and IP telephony) [4].

We propose a novel big-data platform for the performance monitoring (BDPfPM) of
telecom-service-provider networks based on open-source big-data tools. The proposed
BDPfPM is deployed and currently successfully operates in a real HFC network, comprising
millions of devices and users. BDPfPM is designed to be flexible and scalable. Thus,
BDPfPM can be adjusted to other large communications networks, and to other industries
that have similar monitoring challenges, such as the IoT (Internet of Things), smart cities,
smart grids, etc. The contributions of the paper are:

• A developed BDPfPM for telecom-service-provider networks that is successfully
deployed in a real HFC network, comprising millions of devices and users;

• A description of the requirements, challenges, and solutions analysis involved in intro-
ducing and deploying BDPfPM in telecom-service-provider HFC networks, including
a novel data schema for faster queries;

• The detection of weak spots in the network.

The rest of the paper is organized as follows. In Section 2, we give an overview of the
related work. In Section 3, we briefly present the HFC network architecture, since BDPfPM
is deployed in a real HFC network. In Section 4, a discussion regarding the BDPfPM
design objectives and challenges is given. Section 5 presents the proposed BDPfPM. In
this section, we describe all the BDPfPM components and functions in detail. Section 6
presents a performance estimation of devices in the network used for detection of poor-
performance devices, i.e., weak spots in the network. In Section 7, we present the challenges
that emerged during the BDPfPM deployment and the solutions proposed to overcome
these challenges. Section 8 concludes the paper and gives the directions of future work.

2. Related Work

Big data is a major topic in various applications, such as smart grids [5], healthcare [6],
IoT [7], etc. However, different applications face different big-data challenges. For ex-
ample, some applications focus on storage and data aggregation [8,9], other applications
focus on real-time and event processing [10,11], while some applications focus on efficient
search [12], etc. In this section, we give a brief overview of related work relevant to the
proposed BDPfPM.

An overview of big-data technologies is given in [13]. The Apache foundation is
introduced and the main tools from the Hadoop family are presented. Additionally,
different distributions of big-data systems are presented, along with an analysis of on-
premises and cloud implementations. Furthermore, an analysis of big-data applications in
different industries is provided. Finally, the challenges that big data technologies currently
face are presented. Cloud computing in big data solutions is an attractive topic that receives
special attention in the literature [14,15]. A survey on big data and cloud computing is

Electronics 2022, 11, 2224 3 of 27

given in [16], while the data-security aspects in the big-data cloud computing environment
are discussed in [17].

Atat et al. give a detailed panoramic survey of big-data applications in cyber-physical
systems [18]. An analysis of the available research related to big data and cyber-physical
systems is provided. The analysis covers all the layers of end-to-end big-data systems, a
variety of data sources and collections, caching and routing, an overview of available tools
and systems, security, environmental problems, current challenges, and open issues.

Jiang et al. focus on the big-data technologies in the energy industry [19]. An appro-
priate integrated big-data architecture is proposed for the smart grid. Furthermore, each
layer of the proposed architecture is analyzed in detail.

Given the large number of customers and devices in the network, big data is very
appealing to telecom service providers for improving business results and customer sat-
isfaction. The application of big data in mobile networks is described in [20]. Big data is
defined mathematically through random matrices, after which it is connected to the data
from mobile networks. Furthermore, cellular networks and the presence of big data in them
are explained in detail. Liu et al. propose a Hadoop-based network monitoring and analysis
system for big traffic data [21]. The system is designed as a multi-layer architecture. Finally,
the system is implemented in the core of 2G and 3G cellular networks with an appropriate
demonstration of the results. Akbar et al. discuss the application of machine learning and
complex-event processing through data streaming [22]. Using these technologies, a solution
for traffic-congestion prediction is proposed. The authors connect several data sources and
create decision rules. A traffic-jam prediction is performed based on the trained model.

Benhavan et al. [3] analyze quality monitoring in HFC networks. Additionally,
they propose a special method for performance analysis. The method is based on three-
dimensional analysis using data from CMTSs (Cable Modem Termination Systems) and
cable modems. In [23], all the challenges for performance management in HFC networks
are summarized. Furthermore, a list of the most important performance metrics for cable
modems and CMTSs is proposed.

Big-data systems often need to analyze and process time-series data, similarly to
the BDPfPM proposed in this paper. Rafferty et al. propose a solution for storing time-
series sensor data [24]. The solution is a scalable, modular platform for storing sensor
measurements. For communication with the sensor, a MQTT (Message-Queuing Telemetry
Transport) protocol is proposed, together with REST (Representational State Transfer) and
web socket. InfluxDB is used as the platform core. Wang et al. apply machine learning on
time-series data [25]. They propose the application of several different machine-learning
models to a stock-trading data set for specific scenarios.

Although BDPfPM is focused on batch-data processing, streaming-data processing
is another very important method. Streaming-data processing is even more challenging
because data need to be collected and processed in real time, and data generation can be
very fast [26]. In fact, some of the most challenging problems belong to the streaming
data processing such as repairing and cleaning data in real-time [27], the extraction of
metadata [28], and online data representation [29]. In [30], popular stream-processing
frameworks, such as Flink, Kafka, and Spark are compared.

Wu et al. investigate the impact of big-data processing on the environment and try to
correlate the two [31]. The impact is analyzed through the whole lifecycle of data processing.
The authors analyze metrics related to this topic and suggest new metrics.

Big data is used in many monitoring systems, such as weather monitoring [32], biogas-
detection-monitoring systems [33], the Internet of Vehicles [34], etc. Since monitoring
systems often deploy sensors for monitoring purposes, IoT-monitoring systems are very
common. Typically, these systems deploy simple hardware, such as Arduino, for data collec-
tion from sensors, and the collected data are sent to a centralized big-data platform [32,33].
The Internet of Vehicles (IoV) is an important and emerging area, in which monitoring is a
crucial component given the safety requirements. Furthermore, real-time and low-latency
data collection and processing are mandatory for such networks [34]. The IoV might require

Electronics 2022, 11, 2224 4 of 27

distributed big-data architecture, in which some of the processing is placed in fog closer to
data sources and consumers to reduce the latency.

Regarding network-performance monitoring, network traffic can be used as a data
source [35]. However, this approach might be impractical for large networks and core
networks that install high-capacity links (100 Gbps and beyond). However, for small
networks, this approach could be useful, especially for detecting malicious traffic and in-
trusion attempts. A big-data framework for performance management in mobile networks
is proposed in [36]. The proposed framework architecture uses the HDFS file system and
focuses on batch processing. The data from the data sources are collected in the XML
format and Flume is used for data collection. The framework is tested on 5G data sets.
Data replication is used to simulate the generation of performance-management files to test
the framework. The framework proposed in [36] has a similar approach to our proposed
BDPfPM; however, it is tested on simulated data sets, unlike BDPfPM, which is verified by
successfully operating in a real HFC network. Furthermore, deployment in real networks
is always accompanied by unpredictable challenges. The deployment of BDPfPM in a real
HFC network provided us with experience with some initially unpredicted challenges.
These are presented in this paper, along with their solutions.

3. HFC Network Architecture

Since BDPfPM is adjusted to the HFC network, we give a brief overview of the HFC
network architecture in this section to define typical devices and their role and position in
the HFC network. This brief overview of the HFC network architecture is also important
from a big-data point of view because it is not possible to collect data from all the types of
devices in the HFC network. For example, it is not possible to collect data from ONs (optical
nodes), AMPs (amplifiers), and APs (access points). Thus, it is very important to have
HFC network architecture and topology knowledge that can be combined with information
obtained from big-data processing to indirectly estimate the state of such devices (ONs,
AMPs, and APs).

Figure 1 shows a typical HFC network architecture. In the downstream direction, the
regional head-end (CMTS) receives services (TV signal, telephony, and data) and modulates
and combines them into a single signal that is distributed via fiber [23]. The optical signal
reaches the ON via the Hub. The ON converts the optical signal to the electrical signal and
distributes it to the CN (cable network). The CN is a tree-based topology comprising AMPs
and splitters. AMPs are used to overcome the coaxial cable attenuation of the electrical
signals. Finally, the signal reaches the end-user through the AP and ends in the CPE
(customer premises equipment), which can be a CM (cable modem), STB (set-top box), or
VoIP (voice over IP) phone. In the opposite (upstream) direction, signals are frequency-
division multiplexed, sent over the CN to the ON, converted into the optical signal, and
sent back to the CMTS [23].

High-speed broadband services using the HFC cable infrastructure are standardized by
DOCSIS (data-over-cable-service interface specification). From the initial cable broadband
technology (DOCSIS 1.0) through the VoIP service (DOCSIS 1.1), high throughputs, and
multichannel support, the DOCSIS standard has grown into a full-duplex communication
system with a capacity of 10 Gbps (DOCSIS 3.1 full-duplex) [23].

Electronics 2022, 11, 2224 5 of 27
Electronics 2022, 11, 2224 5 of 27

Figure 1. Architecture of the HFC network.

4. Objectives and Challenges of BPDfPM

To develop an efficient big-data platform for specific applications, the objectives of

the big-data platform must be defined. The analysis of the challenges involved in fulfilling

these objectives is also important, as it helps to properly address challenges during big-

data-platform development. Therefore, this section is dedicated to defining the objectives

of BDPfPM (Section 4.1), as well as to analyzing the big-data challenges from a BDPfPM

perspective (Section 4.2).

4.1. BDPfPM Objectives

One of the main objectives of BDPfPM is to establish a centralized performance-mon-

itoring platform. BDPfPM needs to periodically collect and store data from monitored de-

vices (data sources). This type of data is called time series. BDPfPM needs to be capable

of collecting data from a huge amount of data sources, which are theoretically infinite in

number (in practice, hundreds of billions). In general, there is no regulation regarding

data collection period; thus, the collection period depends on the operator policy. Depend-

ing on the importance of the collected data (performance metrics in the case of BDPfPM),

the typical collection period is in the range of 1 min to 1 h. However, the data access and

resolution for a particular monitored device in the case of troubleshooting needs to be in

the order of a second. Thus, BDPfPM must be capable of supporting data collection within

a period of one second. The retention period for the collected data can differ. BDPfPM

needs to be scalable and easily extendable in terms of future extensions, integration with

new domains, and the addition of new devices. Furthermore, BDPfPM needs to be based

on open-source tools to maximize its cost-effectiveness. Finally, BDPfPM must be highly

available.

The primary use of collected data is performance monitoring. In performance moni-

toring, the collected data are used in reports to observe the current status of a particular

segment of the network, as well as its history. The important objective is that the sup-

ported network segment be within range of the CPE equipment up to the company level.

In this way, network operators are able to detect problematic parts of the network and

efficiently plan future network upgrades and expansions.

BDPfPM is adjusted to the HFC network. Therefore, performance statistics are col-

lected from CMTSs and CPEs. One CMTS can serve thousands of subscribers, depending

on its type and configuration. For example, the Cisco uBR10000 Series can support up to

64,000 subscribers [37]. Usually, one HFC network operator has tens or even hundreds of

CMTSs, depending on the number of subscribers, defined throughput, and configuration.

Naturally, there are significantly more CPEs than CMTSs in the HFC network. For

Figure 1. Architecture of the HFC network.

4. Objectives and Challenges of BPDfPM

To develop an efficient big-data platform for specific applications, the objectives of
the big-data platform must be defined. The analysis of the challenges involved in fulfilling
these objectives is also important, as it helps to properly address challenges during big-
data-platform development. Therefore, this section is dedicated to defining the objectives
of BDPfPM (Section 4.1), as well as to analyzing the big-data challenges from a BDPfPM
perspective (Section 4.2).

4.1. BDPfPM Objectives

One of the main objectives of BDPfPM is to establish a centralized performance-
monitoring platform. BDPfPM needs to periodically collect and store data from monitored
devices (data sources). This type of data is called time series. BDPfPM needs to be
capable of collecting data from a huge amount of data sources, which are theoretically
infinite in number (in practice, hundreds of billions). In general, there is no regulation
regarding data collection period; thus, the collection period depends on the operator policy.
Depending on the importance of the collected data (performance metrics in the case of
BDPfPM), the typical collection period is in the range of 1 min to 1 h. However, the data
access and resolution for a particular monitored device in the case of troubleshooting
needs to be in the order of a second. Thus, BDPfPM must be capable of supporting data
collection within a period of one second. The retention period for the collected data can
differ. BDPfPM needs to be scalable and easily extendable in terms of future extensions,
integration with new domains, and the addition of new devices. Furthermore, BDPfPM
needs to be based on open-source tools to maximize its cost-effectiveness. Finally, BDPfPM
must be highly available.

The primary use of collected data is performance monitoring. In performance moni-
toring, the collected data are used in reports to observe the current status of a particular
segment of the network, as well as its history. The important objective is that the supported
network segment be within range of the CPE equipment up to the company level. In this
way, network operators are able to detect problematic parts of the network and efficiently
plan future network upgrades and expansions.

BDPfPM is adjusted to the HFC network. Therefore, performance statistics are col-
lected from CMTSs and CPEs. One CMTS can serve thousands of subscribers, depending
on its type and configuration. For example, the Cisco uBR10000 Series can support up to

Electronics 2022, 11, 2224 6 of 27

64,000 subscribers [37]. Usually, one HFC network operator has tens or even hundreds of
CMTSs, depending on the number of subscribers, defined throughput, and configuration.
Naturally, there are significantly more CPEs than CMTSs in the HFC network. For example,
according to [38], at the end of 2018 Unitymedia had 6,283,000 video and 3,615,500 internet
subscribers. Because both CM and STB are CPE, and given that the average subscriber
has both, the number of end devices to monitor is approximately twice the number of the
subscribers. In [23], a list of the most important performance metrics for the HFC network
is proposed. The list contains metrics for both CMTS and CPE. BDPfPM needs to be able to
collect and process such performance metrics from an enormous number of devices.

4.2. BDPfPM Challenges

Big-data challenges are typically analyzed using the 5V concept [9]. The 5V concept
comprises Volume, Variety, Velocity, Veracity, and Value challenges. In this section, we
present the big-data challenges for BDPfPM from the 5V perspective.

Volume challenge relates to enormous amounts of collected data. This challenge is
obvious in the case of BDPfPM, given the large number of devices in the HFC network.
For example, let us assume that there are one million CPEs in the HFC network, and data
are collected once per hour from each CPE. If, on average, every CPE is connected to two
streams, then two million rows are collected every hour for only one iteration and only one
metric. If BDPfPM were to need to store collected data for the last six months, then around
8.73 billion rows would be stored for only one KPI (key performance indicator). The KPI,
or performance metric, is a measurable value that describes the condition of a monitored
device. This simple example demonstrates the Volume challenge in the performance
monitoring of the HFC network [23].

Obviously, the storage of collected data represents a serious volume challenge in the
case of BDPfPM. Considering the amount of collected data that need to be stored and the
nature of time-series data, relational databases are not able to satisfy capacity and scalability
requirements. Thus, non-relational distributed databases need to be used. Furthermore,
query performance is a significant factor in the selection of appropriate storage solution.
Moreover, storage based on open-source technologies is preferable. Even when the optimal
database is selected, there is still the question of how to store data and gain maximal
performance on the device level.

Variety challenge relates to structured and unstructured data that are gathered from
multiple data sources. BDPfPM collects data from devices in the HFC network. There are
various types of devices in the HFC network. Furthermore, these devices are typically from
different vendors (for example, the CMTS vendors include Cisco, CASA, ARRIS, Motorola,
Huawei, etc.). Furthermore, even devices from the same vendor can differ. For example,
they can have different software versions or different capabilities (e.g., Cisco uBR, cBR, and
Remote PHY). The types of collected data differ, depending on the role and capabilities of
the device. For example, modems with embedded WiFi, in comparison to modems without
WiFi, have metrics associated withWiFi functionality. Furthermore, multiple protocols
exist for communication with the monitored devices in the network. The SNMP (Simple
Network-Management Protocol), IPDR (Internet Protocol Detail Record), and FTP (File
Transfer Protocol) are mostly used for this purpose. However, which protocols can be used
depend on the set of protocols supported by the monitored devices. Moreover, BDPfPM
should also be capable of receiving data from external sources (external data sources, third-
party applications), which increases the variety of collected data. The great aforementioned
diversity of devices as data sources represents the Variety challenge in the performance
monitoring of the HFC network.

Velocity challenge relates to the generation speed of data. Data collection at higher
frequency provides better granularity and insight into HFC network performance, but it
requires larger storage resources and processing capabilities due to the greater amount
of collected data. A trade-off between the data-collection frequency and the amount of
processing and storage resources is always necessary. BDPfPM should be able to allow a

Electronics 2022, 11, 2224 7 of 27

temporary collection frequency increase for a particular device to troubleshoot the device’s
suspicious behavior. The described Velocity challenge requires the careful selection of data-
collection frequency in BDPfPM to achieve an optimal balance between the required storage
and processing resources and the quality of information obtained from the collected data.

The data-collection process is a very significant challenge for BDPfPM because it has a
major impact on the overall BDPfPM performance. In fact, the data-collection challenge is
a combination of the Volume, Variety, and Velocity challenges. The collection layer requires
a significant amount of resources given the fact that there the HFC network features a
huge number and variety of monitored devices (Volume and Variety challenges). The
higher the data collection frequency, the more resources are required (Velocity challenge).
The fact that customer equipment is not highly available and can be unreachable for any
reason (such as a customer turning off a modem, power outages, the absence of a network
connection) additionally increases data-collection times. Furthermore, the range of IP
addresses associated with CPEs is dynamic. Custom mechanisms need to be defined to
create and maintain mapping between end-user devices and the IP addresses associated
with them.

Veracity challenge relates to data confidence, i.e., whether the collected data can be
trusted. If data are missing, the cause is uncertain. For example, the cause can be device
malfunction, inaccessibility (power loss, connectivity loss), or collector unavailability.
Furthermore, there is also uncertainty regarding the accuracy of collected data. Practice has
shown that situations leading to inaccurate data can arise. For example, if a telecom service
provider reconfigures a device without notifying the BDPfPM, inaccurate data might be
collected from the reconfigured device.

Value challenge relates to the ability to transform the vast amount of collected data
into useful information. Once data are collected, they are processed to obtain valuable
information. Collected data might contain valuable information that is not obvious at first
glance. Therefore, big-data platform developers need to understand collected data to be
able to define the form of processing that extracts the most valuable information. Based
on this understanding, proper data aggregations can be created that extract information
(value) from collected data. Data aggregations in BDPfPM are discussed in more detail in
Section 5.5.

The HFC network comprises a variety of network devices, as discussed under the
Variety challenge section. These devices can be grouped into intelligent (those that can
measure and send performance metrics) and non-intelligent. Devices such as ON, AMP,
and AP are not able to provide information about their condition. However, if the HFC
network topology is known, the data collected from CPEs can be used to estimate the
condition of non-intelligent devices. Network topology information needs to be correlated
with the data collected from CPEs to estimate the condition of non-intelligent devices. The
Value challenge is how to combine collected data with the network topology information
to make the best estimation. Note that, given the number of end devices, this is very
challenging in terms of processing power. A solution to this Value challenge (estimation of
non-intelligent devices) is presented in Section 6.

5. Big-Data Platform for Performance Monitoring

In this section, we give a detailed description of the proposed and implemented
BDPfPM. Big-data technologies comprise several software tools. Thus, in Section 5.1, we
give a description of the big-data tools used in BDPfPM. The architecture of BDPfPM
is presented in Section 5.2, along with a detailed description of all its components. The
proposed data schema is explained in Section 5.3. The collection layer is introduced in
Section 5.4. Methods for data aggregation are proposed in Section 5.5.

5.1. Big-Data Tools

Big data is a collection of different software tools based on the same distributed
principle. These software tools are interdependent and, jointly, they represent a big-data

Electronics 2022, 11, 2224 8 of 27

solution. Such a rich portfolio is a response to market requirements for solving specific types
of big data problems. BDPfPM uses several open-source big-data tools. In this subsection,
we present basic information about the open-source big data tools used in BDPfPM.

BDPfPM uses the following big-data tools: HDFS (Hadoop Distributed File System),
Apache HBase, OpenTSDB (Open Time-Series Database), Apache Spark, Hadoop YARN
(Yet Another Resource Negotiator), and ZooKeeper.

HDFS is a file system distributed across multiple servers [39]. It is an open-source
technology designed to run on commodity hardware that meets the requirements for a
cost-effective solution. HDFS is a framework that enables a unique file system across
multiple servers. There are two role types on HDFS: namenodes, and datanodes. Together,
they form HDFS clusters in the master–slave structure. Namenodes split incoming data into
blocks and save them on datanodes. There are multiple copies for every block to increase
fault tolerance in hardware failures. The secondary namenode ensures high availability.
Furthermore, HDFS implements checksum for the stored data to provide data integrity.
Data replication, secondary namenode, and checksums jointly provide high availability
and reliability on both the hardware and the software layer. The HDFS capacity can be
easily expanded without any downtime, either by adding new disks to existing servers or
by adding new datanodes.

Traditional relational databases are not suitable for huge amounts of data. Even if
it were possible to save all the data onto a relational database, the size of tables would
be enormous and the query performance would be poor. Professional solutions might
provide adequate performance (e.g., IBM Netezza, Teradata, Vertica), but their price is a
limiting factor [23]. Even NoSQL (Not Only SQL) databases, such as MongoDB are not
able to satisfy BDPfPM requirements for scalability and query performance because of
the large amount of data. Apache HBase is a non-relational, distributed database that
uses HDFS as a file system to store tables. According to [40], HBase is designed to host
very large tables, with millions of columns and billions of rows. Furthermore, HBase
is optimized for random read–write access to large data volumes. Obviously, HBase is
suitable for real-time data processing, such as the processing of time-series data, as in our
case. Furthermore, high-performance random read–write data access ensures data reading
with minimal latency, which satisfies BDPfPM query-performance requirements.

OpenTSDB is a distributed time-series database. OpenTSDB simplifies the process
of storing and analyzing the large amount of time-series data generated by endpoints
(for example, sensors, servers, and applications). OpenTSDB uses the HBase service to
store and retrieve data [41]. HBase uses a data schema that is highly optimized for fast
data aggregations of similar time-series data to minimize storage space. Using OpenTSDB
endpoints (HTTP API, telnet protocol, or built-in graphical user interface), data can be
accessed directly, without the need for direct access to HBase. Multiple instances of
OpenTSDB can run on different hosts to achieve high availability. OpenTSDB instances
work independently using the same underlying HBase tables. Furthermore, multiple
instances are used to split the read–write load. According to [41], one data point comprises
the metric name, UNIX timestamp, value, and set of tags, where tags are key-value pairs
that describe the collected data point in more detail.

Apache Spark is an open-source, distributed, in-memory processing engine. It is one
of the most popular processing frameworks in the big-data industry. Similar to HDFS,
Spark is also based on the master–slave architecture, which comprises master and slave
nodes. Spark was initially developed for batch processing. Currently, this tool is used
for both batch and stream processing, structured data (Spark SQL), and machine learning.
Spark can be run on different environments, such as Hadoop, Apache Mesos, Kubernetes,
or standalone clusters [42]. Spark supplies developers with high-level APIs in Java, Scala,
Python, R, and SQL [42]. Since Spark is used for in-memory processing, Spark is slightly
more demanding in terms of RAM (Random-access memory). As an alternative to batch
processing, Apache MapReduce can be used. In comparison to Spark, MapReduce is up to
100 times slower due to I/O disk latency, but more cost-effective, since it requires less RAM.

Electronics 2022, 11, 2224 9 of 27

Apache YARN is a cluster-resource manager and job tracker. YARN separates the
resource-management layer from the processing layer. This framework enables different
processing engines to run jobs and perform data aggregations using shared hardware
resources. YARN dynamically allocates the resources and schedules the application pro-
cessing [43].

Apache ZooKeeper performs big-data cluster coordination and provides a highly
available distributed system. It is a centralized service for maintaining configurations,
naming, and providing synchronization in distributed services [44]. Zookeeper simplifies
the development process by enabling more robust cluster implementations [45].

Regarding the implementation aspect, big-data platforms (such as our proposed
BDPfPM) can be implemented on-premises or in the cloud. For on-premises implemen-
tation, in addition to pure Apache, other distributions can be used, such as Cloudera or
Hortonworks. Rather than maintaining on-premises hardware, many companies choose
to use cloud-computing services. This trend is becoming increasingly popular. Currently,
there are many cloud providers, such as AWS (Amazon Web Services), Microsoft Azure,
and GCP (Google Cloud Platform) [15]. There are two main approaches to cloud imple-
mentation: IaaS (Infrastructure as a Service) and PaaS (Platform as a Service). In the case of
IaaS implementation, the same approach as in on-premises implementation is used, with
the exception that virtual machines are provisioned instead of bare metal servers. In the
case of PaaS implementation, cloud providers offer their implementation for the mentioned
services. Accordingly, it is necessary to use appropriate services. For example, if the whole
architecture is implemented on GCP, Google Bigtable is used instead of HBase.

5.2. BDPfPM Architecture

In this subsection, we present the BDPfPM architecture and describe all its components.
Furthermore, we describe the collected-data flow across the architecture, and how the
BDPfPM achieves HFC-network-performance monitoring.

The logical architecture of BDPfPM is shown in Figure 2. The architecture com-
prises the following parts: monitored equipment, data collectors, big-data cluster, and
data consumers.

Electronics 2022, 11, 2224 9 of 27

Apache YARN is a cluster-resource manager and job tracker. YARN separates the

resource-management layer from the processing layer. This framework enables different

processing engines to run jobs and perform data aggregations using shared hardware re-

sources. YARN dynamically allocates the resources and schedules the application pro-

cessing [43].

Apache ZooKeeper performs big-data cluster coordination and provides a highly

available distributed system. It is a centralized service for maintaining configurations,

naming, and providing synchronization in distributed services [44]. Zookeeper simplifies

the development process by enabling more robust cluster implementations [45].

Regarding the implementation aspect, big-data platforms (such as our proposed

BDPfPM) can be implemented on-premises or in the cloud. For on-premises implementa-

tion, in addition to pure Apache, other distributions can be used, such as Cloudera or

Hortonworks. Rather than maintaining on-premises hardware, many companies choose

to use cloud-computing services. This trend is becoming increasingly popular. Currently,

there are many cloud providers, such as AWS (Amazon Web Services), Microsoft Azure,

and GCP (Google Cloud Platform) [15]. There are two main approaches to cloud imple-

mentation: IaaS (Infrastructure as a Service) and PaaS (Platform as a Service). In the case

of IaaS implementation, the same approach as in on-premises implementation is used,

with the exception that virtual machines are provisioned instead of bare metal servers. In

the case of PaaS implementation, cloud providers offer their implementation for the men-

tioned services. Accordingly, it is necessary to use appropriate services. For example, if

the whole architecture is implemented on GCP, Google Bigtable is used instead of HBase.

5.2. BDPfPM Architecture

In this subsection, we present the BDPfPM architecture and describe all its compo-

nents. Furthermore, we describe the collected-data flow across the architecture, and how

the BDPfPM achieves HFC-network-performance monitoring.

The logical architecture of BDPfPM is shown in Figure 2. The architecture comprises

the following parts: monitored equipment, data collectors, big-data cluster, and data con-

sumers.

Figure 2. BDPfPM architecture.

The monitored equipment are the devices in the HFC network capable of communi-

cating with data collectors, such as CMTSs, cable modems, and set-top boxes. Cable mo-

dems and set-top boxes are CPE equipment on users’ premises. Performance metrics are

collected from the network devices (CMTSs and CPEs) using SNMP. SNMP is chosen be-

cause all the intelligent devices (CMTSs, CPEs) in the HFC network support SNMP.

Table 1 shows a recommendation for the performance metrics collected from the

CMTSs and CPEs that can be used for performance-monitoring purposes. All the metrics

in Table 1 are used in BDPfPM. Other metrics can be added to the collector in case they

Figure 2. BDPfPM architecture.

The monitored equipment are the devices in the HFC network capable of communicat-
ing with data collectors, such as CMTSs, cable modems, and set-top boxes. Cable modems
and set-top boxes are CPE equipment on users’ premises. Performance metrics are collected
from the network devices (CMTSs and CPEs) using SNMP. SNMP is chosen because all the
intelligent devices (CMTSs, CPEs) in the HFC network support SNMP.

Electronics 2022, 11, 2224 10 of 27

Table 1 shows a recommendation for the performance metrics collected from the
CMTSs and CPEs that can be used for performance-monitoring purposes. All the metrics
in Table 1 are used in BDPfPM. Other metrics can be added to the collector in case they are
required. This table presents a more detailed representation of the performance metrics
proposed in [23], with a given collection frequency (CF). The main difference between the
list given in [23] and Table 1 is in the separate presentation of the metrics collected from
CMTS, but related to the CPE equipment. The CMTS performance metrics in Table 1 are
given for one Cisco CMTS model (uBR10000), while CPE performance metrics are given for
Cisco’s CM model (EPC3928) because it is not possible to show all the performance metrics,
given the variety of manufacturers and devices in the HFC network (Variety challenge).
More details (like OID values) regarding performance metrics given in Table 1 can be found
in [46]. Furthermore, Table 1 provides the performance-metrics collection frequency set for
the real HFC network in which BDPfPM operates. Note that the CF values can be modified
if necessary.

Table 1. Performance metrics.

Data Source Performance Metric CF
[min]

CMTS cpmCPUTotal5sec (overall CPU utilization in the last 5 s) 5

CMTS ciscoMemoryPoolFree (free RAM memory) 5

CMTS ciscoEnvMonTemperatureStatusValue (current temperature
measurement) 5

CMTS cdxCmtsCmTotal (total count of the CMs) 1

CMTS cdxCmtsCmActive (total count of the active CMs) 1

CMTS cdxIfUpChannelCmRegistered (total count of registered and
online CMs on upstream) 1

CMTS cdxCmtsCmRegistered (total count of registered and online
CMs on MAC domain) 15

CMTS docsIfSigQSignalNoise (signal-to-noise ratio for particular
channel) 5

CMTS ccsUpSpecMgmtCNR (carrier-to-noise ratio for particular
channel) 5

CMTS ifInErrors (total number of packets containing errors) 5

CMTS ifHCInOctets (total number of upstream octets received on
interface) 5

CMTS ifHCOutOctets (total number of downstream octets sent on
interface) 5

CMTS docsIfUpChannelFrequency (center of frequency band
associated with this upstream interface) 30

CMTS docsIfCmtsCmStatusValue (CM status value) 60

CMTS ccsFlapTotal (total number of flaps) 60

CMTS docsIf3CmtsCmUsStatusSignalNoise (signal-to-noise ratio for
upstream data from the CM on this upstream channel) 60

CMTS docsIf3CmtsCmUsStatusRxPower (receiving power of this
upstream channel) 60

CMTS docsIfDownChannelPower (operational transmission power) 60

CMTS docsIfCmStatusTxPower (operational transmission power for
the attached upstream channel) 60

Electronics 2022, 11, 2224 11 of 27

Table 1. Cont.

Data Source Performance Metric CF
[min]

CMTS docsIfSigQSignalNoise (average signal-to-noise ratio on
upstream level) 60

CMTS ifInOctets (total count of octets received from CM) 60

CMTS ifOutOctets (total count of octets sent to CM) 60

CPE docsIfDownChannelPower (received power level) 60

CPE docsIfCmStatusTxPower (operational transmission power for
the attached upstream channel) 60

CPE docsIfSigQSignalNoise (signal-to-noise ratio of downstream
channel) 60

CPE ifInOctets (total count of received octets) 60

CPE ifOutOctets (total count of sent octets) 60

Data collectors are responsible for collecting data from the monitored equipment
and transmitting the collected data to the big-data cluster. However, the importance of
data collected from CMTSs and from CPEs differs. Furthermore, the responsiveness and
availability of CMTSs are significantly higher compared to CPEs. Furthermore, not all
performance metrics are equally important. Thus, the regular collection frequencies for
CMTSs and CPEs differ. The same applies to the performance metrics. In BDPfPM, the
collection frequency for CPEs, TCPE, is set to 1 h, while for CMTSs collection frequency,
TCMTS, is set in the range from 1 to 60 min, depending on the collected performance
metric. Note that the parameters TCPE and TCMTS can be set differently if required.
Furthermore, the collection period for devices that are troubleshot is set to seconds during
the troubleshooting process.

The data-collection layer has a manager that assigns to each collector a list of devices
from which data, i.e., performance metrics, are collected. The assignment algorithm is
simple. The manager uses a data-collector configuration to access a list of the CMTSs
and CPEs connected to them. The data-collector configuration is a result of the MAC-
IP-mapping mechanism described in Section 5.6. The manager passes a list of CMTSs
in round-robin fashion. The round-robin method was selected because it is simple to
implement. Given that the round-robin method achieved satisfying performances in our
case, other methods were not considered. When data from CPEs served by currently passed
CMTS in the list need to be collected, the manager sends a list of CPEs to a randomly
chosen collector from the list of free collectors. The list of the CPEs passed to the collector
also contains the IP addresses of the CPEs. These IP addresses are necessary because SNMP
is used for data collection. One collector (four cores, eight GB RAM) can support collection
from up to 25,000 CPEs for a TCPE value set to 1 h. In a similar fashion, CMTSs are assigned
to collectors. CMTSs are assigned with a collection frequency set to a minimum TCMTS
value, and the manager passes a list of performance metrics that need to be collected in
that collection period. For example, according to the CF values in Table 1, cdxCmtsCmTotal
would be collected in every collection period, while ifInErrors would be collected in every
fifth collection period.

The collected data are enriched with appropriate tags, as explained in Section 5.4.
Once the data are collected and enriched, they are sent directly to OpenTSDB using a web
socket. Furthermore, a copy of the same data is saved to a file and written to the HDFS for
data-aggregation purposes.

The big-data cluster performs storage and processing functions. The big-data cluster
can additionally use data from external data sources and third-party applications. The
total capacity of the cluster depends on the number of monitored devices, collection
frequency, and defined retention policy. Since there is no official standard, the data-retention

Electronics 2022, 11, 2224 12 of 27

policy depends on operator preferences. Since the collected data are not related to the
personal data, there is no regulation that enforces the data-retention policy. Our practice has
shown that the data-retention period should be in the range of 3–6 months, depending on
operator preferences and storage capacities. This retention period is sufficient for network
troubleshooting and performance management. In BDPfPM, the data-retention period is
set to 6 months. The information obtained from the processing of collected data is used by
data consumers. Data consumers can be, for example, alarm systems, network operation
center dashboards, call-center reporting software, etc.

Figure 2 shows that the big-data cluster comprises several big-data tools: OpenTSDB
(Open Time-Series Database), Apache HBase, HDFS (Hadoop Distributed File System),
Apache Spark, Hadoop YARN (Yet Another Resource Negotiator), and ZooKeeper. Col-
lectors send messages that carry collected data to OpenTSDB. OpenTSDB accepts the
incoming messages, reads them and verifies their format, and stores them in appropriate
HBase tables. HBase stores table files to the HDFS, which stores the data on physical discs.
Spark performs data aggregations. YARN allocates resources to jobs and enables different
processing frameworks to use common hardware. YARN is used as a resource manager
for batch jobs in the BDPfPM. Zookeeper provides synchronization between distributed
services. The proposed big-data cluster satisfies all the initial requirements in terms of
BDPfPM robustness, scalability, high availability, fault tolerance, and performance. The
big-data cluster represents the central point of the overall architecture shown in Figure 2.

Figure 3 summarizes the previously described data collection and processing in the
form of a collected-data flow from data sources in the HFC network to BDPfPM and data
consumers. The collector sends the requests to the monitored devices and receives the data
from data sources (1). The processed and enriched data are sent to the OpenTSDB using
web sockets (2a). In parallel, the collector stores the copy of the data to the file and uploads
it to the HDFS (2b). The data in OpenTSDB are ready for consumption immediately upon
arrival (3). The data saved to the HDFS are further processed in batch jobs using the Apache
Spark framework (4). The aggregations are stored back on theHDFS (5) and uploaded to
OpenTSDB (6) for consumption (7).

Electronics 2022, 11, 2224 12 of 27

services. The proposed big-data cluster satisfies all the initial requirements in terms of

BDPfPM robustness, scalability, high availability, fault tolerance, and performance. The

big-data cluster represents the central point of the overall architecture shown in Figure 2.

Figure 3 summarizes the previously described data collection and processing in the

form of a collected-data flow from data sources in the HFC network to BDPfPM and data

consumers. The collector sends the requests to the monitored devices and receives the

data from data sources (1). The processed and enriched data are sent to the OpenTSDB

using web sockets (2a). In parallel, the collector stores the copy of the data to the file and

uploads it to the HDFS (2b). The data in OpenTSDB are ready for consumption immedi-

ately upon arrival (3). The data saved to the HDFS are further processed in batch jobs

using the Apache Spark framework (4). The aggregations are stored back on theHDFS (5)

and uploaded to OpenTSDB (6) for consumption (7).

Figure 3. Collected-data flow through BDPfPM architecture.

The collected data are used for the performance monitoring of the HFC network. The

main purpose of the collected data is the detection of weak spots in the network that need

to be repaired to increase the overall HFC network performance and user QoE (quality of

experience). This is explained in detail in a separate section (Section 6) as the main appli-

cation of the collected data in BDPfPM.

As discussed at the end of Section 5.1, there are several ways to implement BDPfPM.

BDPfPM is implemented and tested using on-premises hardware and Cloudera 5.14 dis-

tribution. The on-premises hardware approach was selected because the telecom service

provider for which the BDPfPM was originally developed requested it. The implementa-

tion is performed on the 2-namenode/6-datanode cluster and each server comprises 32-

core Intel Xeon CPUE5-2630 with 2.4GHz and 64GB RAM. This setup is deployed in a real

HFC network. During the initial phase of deployment, the BDPfPM parameters (such as

collection frequencies, number of retries, timeout values, and other parameters, discussed

in later subsections) were tuned to optimize the BDPfPM performance. Thus, all the pa-

rameter values proposed in the following sections and subsections are based on the results

of the experiments conducted in the real HFC network environment.

5.3. Data Schema

BDPfPM uses OpenTSDB to store the performance metrics collected from the HFC

network. According to [41], OpenTSDB provides several ways to analyze and manipulate

the collected data. In this subsection, we discuss the data-schema possibilities, and we

propose a data schema that improves the query performance.

By using tags, it is possible to separate data points from different data sources. In this

way, the data collected for one particular metric and a different set of tags can be easily

observed, either separately or in groups [41], by using filtering or grouping. For example,

Figure 4 shows the CMTS CPU (central processing unit) utilization per unit (tag

Figure 3. Collected-data flow through BDPfPM architecture.

The collected data are used for the performance monitoring of the HFC network. The
main purpose of the collected data is the detection of weak spots in the network that need
to be repaired to increase the overall HFC network performance and user QoE (quality
of experience). This is explained in detail in a separate section (Section 6) as the main
application of the collected data in BDPfPM.

As discussed at the end of Section 5.1, there are several ways to implement BDPfPM.
BDPfPM is implemented and tested using on-premises hardware and Cloudera 5.14 dis-

Electronics 2022, 11, 2224 13 of 27

tribution. The on-premises hardware approach was selected because the telecom service
provider for which the BDPfPM was originally developed requested it. The implemen-
tation is performed on the 2-namenode/6-datanode cluster and each server comprises
32-core Intel Xeon CPUE5-2630 with 2.4GHz and 64GB RAM. This setup is deployed in
a real HFC network. During the initial phase of deployment, the BDPfPM parameters
(such as collection frequencies, number of retries, timeout values, and other parameters,
discussed in later subsections) were tuned to optimize the BDPfPM performance. Thus, all
the parameter values proposed in the following sections and subsections are based on the
results of the experiments conducted in the real HFC network environment.

5.3. Data Schema

BDPfPM uses OpenTSDB to store the performance metrics collected from the HFC
network. According to [41], OpenTSDB provides several ways to analyze and manipulate
the collected data. In this subsection, we discuss the data-schema possibilities, and we
propose a data schema that improves the query performance.

By using tags, it is possible to separate data points from different data sources. In
this way, the data collected for one particular metric and a different set of tags can be
easily observed, either separately or in groups [41], by using filtering or grouping. For
example, Figure 4 shows the CMTS CPU (central processing unit) utilization per unit
(tag “entity_name”) for one day. The graph in Figure 4 was generated using raw data
collected from a CMTS device, named TEST-CMTS, that comprises five CPU units (their
“entity_name” values are used in the legend of Figure 4). Note that the values of the
tag, “entity_name”, are given in Table 2. Since filtering was not used, the CPU utilization
for all five units is shown in the graph. Using filtering by tag, it is possible to observe
data only for a particular unit instead of the whole set. For example, if the filter were
set to entity_name=Chassis, the graph in Figure 4 would show CPU utilization only for
the Chassis unit. On the other hand, grouping merges multiple individual time series
into one [41]. An example of grouping is shown in Figure 5. Figure 5 shows the average
CPU utilization for the same dataset as shown in Figure 4. The average CPU utilization is
generated automatically from the raw data by omitting the tag, “entity_name”, from the
query and setting “avg” as the aggregation type. The OpenTSDB web–user interface was
used to generate the graphs in Figures 4 and 5. In addition to the basic data aggregation
types, OpenTSDB supports downsampling, as well as some advanced data aggregation
types that are not within the scope of this paper.

Electronics 2022, 11, 2224 13 of 27

“entity_name”) for one day. The graph in Figure 4 was generated using raw data collected

from a CMTS device, named TEST-CMTS, that comprises five CPU units (their “en-

tity_name” values are used in the legend of Figure 4). Note that the values of the tag,

“entity_name”, are given in Table 2. Since filtering was not used, the CPU utilization for

all five units is shown in the graph. Using filtering by tag, it is possible to observe data

only for a particular unit instead of the whole set. For example, if the filter were set to

entity_name=Chassis, the graph in Figure 4 would show CPU utilization only for the

Chassis unit. On the other hand, grouping merges multiple individual time series into one

[41]. An example of grouping is shown in Figure 5. Figure 5 shows the average CPU uti-

lization for the same dataset as shown in Figure 4. The average CPU utilization is gener-

ated automatically from the raw data by omitting the tag, “entity_name”, from the query

and setting “avg” as the aggregation type. The OpenTSDB web–user interface was used

to generate the graphs in Figures 4 and 5. In addition to the basic data aggregation types,

OpenTSDB supports downsampling, as well as some advanced data aggregation types

that are not within the scope of this paper.

Figure 4. CMTS CPU utilization per unit.

Figure 5. Average CMTS CPU utilization.

Figure 4. CMTS CPU utilization per unit.

Electronics 2022, 11, 2224 14 of 27

Table 2. Average CMTS CPU utilization (cmtsCpuUtilisation).

Time CPU Use Entity_Name Device_Name
Cmts_Name Device_Type Cmts_Type Entity_Type Device_Ip Company

1584658859 6 Chassis TEST-CMTS CMTS Cisco CPU 192.168.0.1 company1

1584658859 4 PA_Slot_3 TEST-CMTS CMTS Cisco CPU 192.168.0.1 company1

1584658859 2 PA_Slot_2 TEST-CMTS CMTS Cisco CPU 192.168.0.1 company1

1584658859 14 PA_Slot_4 TEST-CMTS CMTS Cisco CPU 192.168.0.1 company1

1584658859 3 PA_Slot_5 TEST-CMTS CMTS Cisco CPU 192.168.0.1 company1

1584658859 68 PA_Slot_1 TEST-CMTS2 CMTS Cisco CPU 192.168.0.2 company1

1584658859 42 PA_Slot_2 TEST-CMTS2 CMTS Cisco CPU 192.168.0.2 company1

Electronics 2022, 11, 2224 13 of 27

“entity_name”) for one day. The graph in Figure 4 was generated using raw data collected

from a CMTS device, named TEST-CMTS, that comprises five CPU units (their “en-

tity_name” values are used in the legend of Figure 4). Note that the values of the tag,

“entity_name”, are given in Table 2. Since filtering was not used, the CPU utilization for

all five units is shown in the graph. Using filtering by tag, it is possible to observe data

only for a particular unit instead of the whole set. For example, if the filter were set to

entity_name=Chassis, the graph in Figure 4 would show CPU utilization only for the

Chassis unit. On the other hand, grouping merges multiple individual time series into one

[41]. An example of grouping is shown in Figure 5. Figure 5 shows the average CPU uti-

lization for the same dataset as shown in Figure 4. The average CPU utilization is gener-

ated automatically from the raw data by omitting the tag, “entity_name”, from the query

and setting “avg” as the aggregation type. The OpenTSDB web–user interface was used

to generate the graphs in Figures 4 and 5. In addition to the basic data aggregation types,

OpenTSDB supports downsampling, as well as some advanced data aggregation types

that are not within the scope of this paper.

Figure 4. CMTS CPU utilization per unit.

Figure 5. Average CMTS CPU utilization.

Figure 5. Average CMTS CPU utilization.

Table 2 contains the data points for one KPI (cmtsCpuUtilisation) from two different
data sources (TEST-CMTS and TEST-CMTS2) collected in one period of time (1584658859).
When a user creates a query to collect the data for a particular metric, OpenTSDB performs
data filtering based on given tags and time range. The query execution, i.e., data filtering
time is directly proportional to the number of data points collected for one metric in one
iteration. In HFC networks, there are millions of CPEs, each with several interfaces for
data collection. Thus, data filtering for one device and its entities can be extremely slow,
resulting in poor query performance.

To overcome this challenge, we propose a new data schema, in which the tag for the
name of the monitored device (for example, the MAC address for the CPE, the hostname for
the CMTS) is changed to the metric name (for example, cmtsCpuUtilisation is now named
as cmtsCpuUtilisation_TEST-CMTS). In this way, a new metric is created for each device.
This is a reasonable decision because queries relate to a particular device in most cases
(for example, in call-center reports or troubleshooting reports for one particular modem).
In this way, we increase the query performance by around 1300 times, according to our
test scenario. In our test scenario, there are one million devices with four interfaces. The
initial query time for extracting the data for one device from a group of one million devices
was 307.041 s, while obtaining the same data from the proposed new data schema took
234 milliseconds. The testing was performed on the big-data-cluster setup described at the
end of Section 5.2.

The downside of the proposed novel data schema is the impossibility of creating
the group queries related to a particular device for other tags (for example, the queries
grouped for all the modems per model type). However, it is not necessary to perform
this kind of aggregation in a timely manner. Therefore, it is performed using Spark daily

Electronics 2022, 11, 2224 15 of 27

aggregation jobs. If the proposed data schema is used, one should be careful with the
number of created metrics. According to [41], metrics are encoded with three bytes, giving
23×8 − 1 = 16,777,215 unique metrics. However, the number of bytes used for encoding the
metric can be tuned via configuration, as in OpenTSDB version 2.2.

5.4. Data Collectors

The data-collection layer needs to be defined after the initial architecture for data
storage is established. Data collectors are software components that collect data from
sources, enrich data, and then format and send these data to the storage layer. The storage
layer in BDPfPM comprises OpenTSDB for data consumption and HDFS as a stage for
data aggregation, as shown in Figure 3. Some publicly available collectors can be used [41].
However, publicly available collectors usually cannot cover specific use cases, domains,
and specific needs. Therefore, the custom development of data collectors is necessary.

Data collectors are created per integration domain. The integration domain is a logical
unit for which monitoring is performed. For example, the integration domains can be
DOCSIS, MPLS (multi-protocol label switching), UPS (uninterruptible power supply), QoS
(quality of service), etc. Even these integration domains are further broken down into
manufacturers, different models, and software versions. For example, Cisco CMTSs have
different OIDs (Object Identifiers) and MIB (Management Information Base) tree structures
from CASA or Motorola CMTSs; the Cisco CMTS Remote PHY platform differs from
traditional Cisco HFC deployment [47].

The integration domain of interest for the BDPfPM is the DOCSIS domain for CMTS
and CPE equipment. The DOCSIS domain covers the performance metrics defined in [23],
such as the user, environment, and interface statistics for CMTSs, and the CPE statistics
collected from CMTSs (metrics collected from CMTSs but concerning the CPEs) and directly
from CPEs. Other domains, such as MPLS, WiFi, and others, will be a part of future work.
Special attention is given to data-collector latency and efficiency because there are many
monitored devices in the HFC network.

Client–server communication is used between the data collectors and data sources, in
which the data collectors have a client role and the data sources have a server role. Since a
custom data collector was developed, the integration with data sources can be established
in a variety of ways, depending on its communication capabilities. REST API, JDBC (Java
Database Connectivity), SNMP, HTTP (web crawling), subscriber–broker communication,
file parsing (for example, log, or any other type of file that can be processed) are some of
the possible approaches. The SNMP protocol is used for both CMTS and CPE equipment in
BDPfPM. The SNMP was selected because all the CMTS and CPE devices currently installed
in the HFC network support this protocol. However, other protocols and approaches will
be added to BDPfPM in the future.

The SNMP protocol is configured with read-only permission on the monitored devices.
The data collector uses appropriate community string and IP addresses to communicate
with the monitored devices. Communication is established via SNMPGET and SNMPBULK-
WALK, depending on whether one or multiple responses are expected. SNMPBULKWALK
is used instead of SNMPWALK because of its superior efficiency and faster query response.

In terms of timeout and number of retries, the SNMP configuration can significantly
affect the data collector’s overall performance. In situations in which a monitored device
is highly available, such as CMTS, the retry and timeout can be set to reasonable values,
such as a timeout of two seconds and three retries (we propose these values based on the
tests conducted in the real network). However, in the case of CPE monitoring, there is no
guarantee that a monitored CPE device is available. Furthermore, the number of these
devices in the HFC network is in the order of hundreds of thousands or millions. Thus, a
significant increase in execution time occurs because data collectors spend a huge number
of processing resources that are reserved a priori only for waiting for the responses from
unavailable CPEs. The timeout and retry time should be carefully selected to minimize
the impact of this phenomenon. After conducting tests in the real network, we suggest

Electronics 2022, 11, 2224 16 of 27

a one-second timeout and one retry for CPEs in order to provide optimal results. If the
monitored device does not answer the query after 1 s, the device is most likely unavailable.

The collected data (performance metrics) are enriched with an appropriate set of tags.
Measurement by itself has little value without tags. The tags are information-packed in
key-value pairs that uniquely define the source of the measurement [41]. There are two
types of tag: mandatory and optional. During data-collector development, it is necessary
to find all the tags that describe the measurement, identify mandatory tags, and filter only
those that are of interest. The mandatory tags are all the tags necessary to distinguish data
by source. In the example shown in Table 2, the device_name and entity_name tags are
mandatory because these tags separate CPU utilization per device and processor unit. If
some of these tags were omitted, the collected measurements would have the same set of
tags, causing the overlap of collected data, leading to inaccurate information.

Optional tags are used to further enrich the measurement. The greater the number of
different tags, the greater the number of different aggregation types that can be performed.
For example, the CPE vendor and model are not relevant when data are collected. However,
these tags are used later for data aggregation and analysis, which provide insights into
performance for each of the vendors and models. These insights are valuable sources of
information when acquiring new equipment. One should not exaggerate the use of optional
tags, but use only those that are used for data aggregation. If a tag is found to be important,
it can be added later without disturbing the previous measurements. Aggregation per new
tag is available from the moment of its addition.

There are four types of metrics in CMTS data collection:

• Environment;
• Upstream;
• Downstream;
• MAC domain.

Environment metrics provide information regarding the physical health of a device
(such as processor utilization, free memory, and temperature), while upstream, downstream,
and MAC domain metrics are related to KPIs (such as SNR—signal-to-noise-ratio, CNR—
carrier-to-noise ratio, error rate, and throughput) collected on the levels they describe [23].
These metrics share common tags, such as device_name, device_type, device_vendor, and
company_name. However, the tags regarding interfaces differ according to their groups.
For example, upstream interfaces are connected to load balance groups, while downstream
interfaces are not.

Data can be sent to OpenTSDB in a variety of ways; web socket and file import are
the most common. Both of these approaches are used in BDPfPM. Web socket is used to
send data from data collectors to OpenTSDB, while file import is used for importing Spark
aggregation results into OpenTSDB.

Before data are sent through a web socket, the data collector needs to check whether
OpenTSDB is available and establish a connection. The OpenTSDB availability check
is performed because of the congestion problem that occurs due to the large amount of
incoming traffic. To overcome this problem, we defined a list of OpenTSDBs and their
appropriate communication ports. The data collector randomly selects one OpenTSDB
from the list, checks its availability, and sends the data. If the selected OpenTSDB is
unavailable, another option from the list is selected, and the procedure is repeated. The
data collector tries to send the data until it uses up all the OpenTSDBs from the list. In this
way, OpenTSDBs’ high availability and even load distribution are ensured.

Data can also be sent to OpenTSDB using file import. This is possible only in situations
in which collectors and OpenTSDB share hardware. This method is rarely used in data
collectors. However, this method can be extremely useful in situations in which Spark
aggregation results are imported in OpenTSDB. This is possible since these two are installed
on the same hardware, according to the proposed architecture. The results are imported
directly from the file. Thus, the socket load is reduced and the availability is increased.

Electronics 2022, 11, 2224 17 of 27

Due to the specific data schema that is used (metrics are further broken to
metric_device-name as described in Section 5.3), the data stored in OpenTSDB are not
suitable for batch aggregation. To overcome this challenge, the data collector, in addition to
sending messages to OpenTSDB, stores a copy of the collected data in text files and uploads
these files to HDFS. How long the data are stored on HDFS depends on the aggregation
requirements. Note that this retention period additionally increases the storage capacity
requirements. For example, to support weekly aggregations, the minimum required reten-
tion period for keeping the raw data on Apache HDFS is 7 days. A buffer for a couple of
additional days is usually added in case there is a problem with the aggregation. Therefore,
to support weekly aggregations, a 10-day retention period would be sufficient. In the case
of other aggregations, such as daily or monthly, the retention periods would be defined in
similar fashion.

5.5. Data Aggregations

Raw data collected directly from the network are useful for performance monitoring,
troubleshooting, and other daily operations. The collected data can be aggregated to
provide deeper insight into the state of the network. Using proper data aggregations,
telecom service providers can obtain valuable information for decision making and business
planning. This topic highlights all the possibilities of BDPfPM win terms of aggregations,
but does not list all those that have been developed, as they exceed the scope of this paper.
Each aggregation type is enforced by a concrete example.

There are several different types of data aggregation, depending on the desired goal.
Aggregations can be split into time and spatial aggregations. Time aggregations are ag-
gregations of data collected during a certain period (for example, daily, weekly, monthly)
into one data point. Spatial aggregations are aggregations of different data sources in each
period. Figure 5 from Section 5.3 represents an example of spatial aggregation. TEST-CMTS
CPU utilization is aggregated into a single average value for every collection interval.
In this way, the overall CPU utilization of the monitored device is obtained. This is a
much better way of monitoring devices’ CPU utilization because the temporary peaks of
individual cores are mitigated. Depending on the moment of execution, batch or stream
aggregation are used. Batch aggregation is performed after the data are collected. On the
other hand, stream aggregation catches the data at their source and performs aggregation
in real time. In this paper, we focus on batch aggregation.

BDPfPM uses big-data aggregation tools due to the large amount of data that need
to be processed. In comparison to traditional data-processing methods, big data performs
distributed processing in a master–slave manner. This approach is scalable because it uses
load distribution across multiple servers. We use Spark as a data-aggregation processing
tool in BDPfPM (for batch aggregation).

There are two types of data aggregation in BDPfPM: OpenTSDB and batch aggregation.
OpenTSDB can perform both time and spatial aggregations using its built-in functionalities.
Spatial aggregations are performed based on tag grouping in the request query. Time
aggregations are performed using the downsampling feature. Using these functionalities,
OpenTSDB provides a simple interface to perform complex and effective aggregations from
raw data. Thousands of data points are aggregated in the order of milliseconds. OpenTSDB
is especially useful when aggregation for one particular device is required (CMTS or CPE
in HFC network).

Batch aggregations are used to provide deeper insights based on the collection of large
data sets. Batch aggregations are slow because of the enormous amount of data that is
processed and are therefore not time-sensitive. Apache Spark is used for batch aggregations
in BDPfPM. In practice, batch aggregations are useful in many different applications. In
HFC networks, these aggregations are used to provide better insights into the network
performance on a variety of levels. These levels are defined per application. One example
of a hierarchy that is typically used is: upstream, MAC domain, CMTS, city, territorial
direction, state, and company, respectively. The levels up to CMTS are used to observe the

Electronics 2022, 11, 2224 18 of 27

statistics for a particular device, while higher levels are used for company analysis. Most
batch aggregations are performed using the data collected from CPEs because they give
insights into the state of the network from the end-user’s perspective.

One example is network availability based on CPE data, which gives telecom service
providers information about the network availability on different hierarchy levels from
the end-user’s point of view. This metric is created based on CPE availability time; the
availability of every CPE is calculated on a daily basis. The end-user’s point of view
is important because measuring network unavailability from this perspective gives a
direct insight into users’ quality of experience. Another example of batch processing is
performance monitoring for network devices that cannot provide statistics about their
health (non-intelligent devices). The raw data collected from CPEs are combined with the
network topology to obtain information regarding the health of devices that cannot be
monitored directly, such as APs, AMPs, and ONs.

Data aggregations can be used beyond the performance-monitoring application in our
proposed BDPfPM. For example, the raw data collected from CPEs can be combined with
user-service-agreement information. The first potential application of such data aggregation
is to isolate all the clients that have premium packets, but poor quality of service. The
second potential application is to isolate heavy users with small subscription packets
to offer them larger subscription packets. These simple examples show the promising
potential of BDPfPM for applications beyond performance monitoring.

5.6. Performance Comparison

In this subsection, we compare the proposed BDPfPM to other solutions. However,
the solutions used by telecom service providers are usually not presented in the available
literature. In this paper, we compare BDPfPM to the big-data framework for performance
management in mobile networks (BDFMN) presented in [36], since it is the most similar
solution to BDPfPM in the literature.

BDFMN is not actually implemented in the real network, but it uses data sets from
the real network. Based on these data sets, data-set replicas are generated for testing
purposes. BDFMN is simulated for a mobile network of 15 million subscribers in [36].
Base stations are data sources in the case of BDFMN. Other network elements (e.g., core
network elements) are not considered in BDFMN. Thus, monitoring in BDFMN does not
cover all the devices in the network. BDPfPM monitors the complete network and all its
elements, including non-intelligent network elements, as discussed in the following section.
Base stations for different mobile network generations (2G, 3G, 4G, 5G) were thought to
coexist in the experiment, and the number of base stations simulated in the experiment was
13,300. Thus, the number of data sources in BDPfPM is significantly larger than in BDFMN,
because BDPfPM collects data from devices associated with subscribers, i.e., CPE devices.
Regarding availability and responsiveness, CMTSs and base stations are similar. However,
in BDPfPM, there are CPE devices from which data are also collected. Subscribers can
power off their CPE devices whenever they wish. This represents an additional challenge
for the data-collection layer because data-collector resources can be wasted in trying to
collect data from unavailable devices. BDPfPM successfully addresses these challenges,
and there is no certainty that BDFMN would successfully address these challenges, since it
was not tested for such cases.

BDFMN uses a collection period of 15 min. Regarding BDPfPM, the collection period
is similar for metrics collected from CMTSs—for most of these metrics, the collection
period is set to 5 min. CPE metrics are typically collected on an hourly basis, except in
troubleshooting cases, in which the data collection period is set in the order of seconds.
BDFMN collects XML files from the base stations and, for this reason, Flume is used for
data collection, along with the SFTP (SSH File Transfer Protocol). On the other hand,
BDPfPM uses custom-made data collectors that use the SNMP to collect performance
metrics. Thus, differences regarding data collectors are a consequence of different network-
element capabilities and data presentations. An additional difference is that BDPfPM

Electronics 2022, 11, 2224 19 of 27

enriches the collected data with appropriate tags, which gives extra flexibility and a higher
level of granularity during data aggregations, as explained in Section 5.3. To store data,
both BDPfPM and BDFMN use HDFS. The storage requirements in BDFMN are around
26 GB on a daily basis [36]. In the case of BDPfPM, for a network comprising around one
million subscribers (the real HFC network in which BDPfPM is deployed), the storage
requirements are around 320 GB. Obviously, the Volume challenge is greater in the case
of BDPfPM, which is a consequence of the performance-monitoring coverage of all the
network devices, including a great number of CPEs. For batch processing, BDPfPM uses
Spark, while BDFMN uses Hive.

An important aspect is deployment. BDPfPM operates in the real network, while
BDFMN uses the proposed framework, which uses data sets from the real network (along
with data-set replicas). This makes an important difference, because actual deployments
usually carry some unpredictable problems and challenges, as we discuss in Section 7
(BDPfPM deployment experiences). Furthermore, BDPfPM is used to estimate the health
of devices that are not capable of performing measurements (non-intelligent devices), as
explained in the following section. This is a challenge that is not analyzed in BDFMN.
Table 3 summarizes the comparison between BDPfPM and BDFMN. BDFMN is noted as
being partially deployed in the real network because it uses data sets from the real network.

Table 3. BDPfPM and BDFMN comparison.

Feature BDPfPM BDFMN

Number of data sources Millions Tens of thousands

Collection period 1–60 min 15 min

Daily storage requirements 320 GB 26 GB

Data collectors Custom made, SMTP Flume, SFTP

Data-storage technology HDFS HDFS

Batch-processing tool Spark Hive

Network-device coverage Complete Partial

Deployed in the real network Yes Partially

6. Performance Estimation of Network Devices

The data collected from monitored devices are used to grade their QoO (quality of
operation). However, there are also non-intelligent devices in the HFC network that affect
the quality of the network, but whose performance cannot be collected directly (ONs, AMPs,
and APs). Therefore, the data collected from CPEs are combined with network-topology
information to perform QoO estimations for these devices. The estimation results are
written to the OpenTSDB and available for consumption as any other KPI. Using a custom
web application, telecom service providers can perform various data aggregations to check
the HFC network performance. One example used in BDPfPM is the estimation of the QoO
of monitored devices. The QoO of a device can be estimated and graded from the collected
data for a given period (daily, weekly, or monthly) to check its overall performance. Such
information is used for predictive maintenance. In cases in which a device has low grade
for long periods of time, the device is a weak spot that should be replaced or repaired. In
this section, we describe in detail the method used for grading the performances of CPE
devices, and the usage of these grades to estimate the performance of the non-intelligent
devices.

The performance metrics used for grading the performance of CPE device are:

• cpe.docsIfDownChannelPower—collected from CPE;
• cpe.docsIfSigQSignalNoise—collected from CPE;
• cpe_cmts.docsIf3CmtsCmUsStatusRxPower—collected from CMTS;
• cpe_cmts.docsIfSigQSignalNoise—collected from CMTS

Electronics 2022, 11, 2224 20 of 27

The explanations of these metrics are given in Table 1, in Section 5. These selected
performance metrics provide information about the signal power in the transmitting and
receiving directions. The first step in the estimation of CPE performance is the individual
grading of each collected performance-metrics sample. Sample grading enables the same
grade scale for all metrics and all samples. In this way, further processes of performance
estimation based on the combination of selected metrics areenabled. The grade scale
comprises three possible values: 1—poor, 2—medium, and 3—good. Table 4 shows the
mapping of the four selected performance metrics onto the grade scale used.

Table 4. Mapping of performance metrics onto the unified grade scale.

Performance Metrics 1—Poor 2—Medium 3—Good

cpe.docsIfDownChannelPower X ≤ −10 or X ≥ 17 others −6 ≤ X ≤ 10

cpe.docsIfSigQSignalNoise X ≤ 28 others X ≥ 33

cpe_cmts.
docsIf3CmtsCmUsStatusRxPower X ≤ −21 or X ≥ 21 others −11 ≤ X ≤ 11

cpe_cmts.docsIfSigQSignalNoise X ≤ 21 others X ≥ 28

Note that the values shown in Table 4 can be modified and adjusted to the specific
needs and requirements of telecom service providers. The same applies to the grading
scale, which can be redefined to be more granular. However, the conducted tests in the real
network have shown that the grade scale defined in this section achieves satisfying results.
Figure 6 shows the grade results for one CPE, which is connected to three downstream and
two upstream channels. Grade 1 is represented by a red, grade 2 by a yellow, and grade 3
by a green circle.

Electronics 2022, 11, 2224 20 of 27

Table 4. Mapping of performance metrics onto the unified grade scale.

Performance Metrics 1—Poor 2—Medium 3—Good

cpe.docsIfDownChannelPower X ≤ −10 or X ≥ 17 others −6 ≤ X ≤ 10

cpe.docsIfSigQSignalNoise X ≤ 28 others X ≥ 33

cpe_cmts.

docsIf3CmtsCmUsStatusRxPower
X ≤ −21 or X ≥ 21 others −11 ≤ X ≤ 11

cpe_cmts.docsIfSigQSignalNoise X ≤ 21 others X ≥ 28

Note that the values shown in Table 4 can be modified and adjusted to the specific

needs and requirements of telecom service providers. The same applies to the grading

scale, which can be redefined to be more granular. However, the conducted tests in the

real network have shown that the grade scale defined in this section achieves satisfying

results. Figure 6 shows the grade results for one CPE, which is connected to three down-

stream and two upstream channels. Grade 1 is represented by a red, grade 2 by a yellow,

and grade 3 by a green circle.

Figure 6. Performance grades for CPE (red circle—grade 1, yellow circle—grade 2, green circle—

grade 3).

Since the CPE can be connected to multiple upstream and downstream channels,

multiple grades can be sampled for each performance metric in the same collection pe-

riod—one for each channel (upstream or downstream, depending on the metric). How-

ever, it is preferable to have only one grade for each performance metric because this sim-

plifies the combination of all the selected performance metrics. Thus, the multiple grades

for the same performance metric are merged into one grade by using the worst-case

method, in which the worst grade is selected. Figure 7 shows the results of the merge

method for the example shown in Figure 6.

Figure 6. Performance grades for CPE (red circle—grade 1, yellow circle—grade 2, green circle—
grade 3).

Since the CPE can be connected to multiple upstream and downstream channels,
multiple grades can be sampled for each performance metric in the same collection period—
one for each channel (upstream or downstream, depending on the metric). However, it
is preferable to have only one grade for each performance metric because this simplifies
the combination of all the selected performance metrics. Thus, the multiple grades for the
same performance metric are merged into one grade by using the worst-case method, in

Electronics 2022, 11, 2224 21 of 27

which the worst grade is selected. Figure 7 shows the results of the merge method for the
example shown in Figure 6.

Electronics 2022, 11, 2224 21 of 27

Figure 7. Merged performance grades for CPE (red circle—grade 1, yellow circle—grade 2, green

circle—grade 3).

The next step is to combine these merged grades of all the performance metrics to

obtain the final performance grade of the CPE. However, different performance metrics

collected at the same collection period do not have the same timestamps, i.e., they are not

collected at exactly the same moment. This can be seen in Figure 7, where there is an ob-

servable offset between the grades of different metrics in time domain. For this reason, the

actual collection times are modified to the corresponding collection period start. In this

way, all four performance metrics are aligned in time.

After the alignment, the merged grades that correspond to the same collection period

are combined for all the collection periods that fall into the observation period for which

the performance is estimated. The observation periods can be, for example, daily, weekly,

monthly, etc. The combination of the performance grades of different metrics for one col-

lection period is performed in the following way:

=

j j

j jj

i
W

PGW
G

where Gi is the combined performance grade for the collection period i, PGj is the grade

of the performance metrics j for collection period i, and Wj is the weight factor of the per-

formance metrics j. The obtained results for grade Gi are then adjusted to the grade scale

by using the definitions given in Table 5.

Table 5. Thresholds for combined grade Gi.

Gi Thresholds

1 X < 2

2 others

3 X ≥ 2.75

Finally, the last step is to use grades Gi to determine the final performance grade FG

of the CPE for the observation period. Table 6 defines how the FG is determined. The

values defined in Tables 5 and 6 were obtained based on tests in the real HFC network.

Note that the values in Tables 5 and 6 can be modified and adjusted to specific telecom-

service-provider needs. Figure 8 shows the final performance grade FG for the example

shown in Figure 6. Note that the performance-metrics collection times are aligned in Fig-

ure 8. Furthermore, all the weight factors Wj are set to equal value in the given example.

Figure 7. Merged performance grades for CPE (red circle—grade 1, yellow circle—grade 2, green
circle—grade 3).

The next step is to combine these merged grades of all the performance metrics to
obtain the final performance grade of the CPE. However, different performance metrics
collected at the same collection period do not have the same timestamps, i.e., they are
not collected at exactly the same moment. This can be seen in Figure 7, where there is an
observable offset between the grades of different metrics in time domain. For this reason,
the actual collection times are modified to the corresponding collection period start. In this
way, all four performance metrics are aligned in time.

After the alignment, the merged grades that correspond to the same collection period
are combined for all the collection periods that fall into the observation period for which
the performance is estimated. The observation periods can be, for example, daily, weekly,
monthly, etc. The combination of the performance grades of different metrics for one
collection period is performed in the following way:

Gi =
∑j WjPGj

∑j Wj

where Gi is the combined performance grade for the collection period i, PGj is the grade
of the performance metrics j for collection period i, and Wj is the weight factor of the
performance metrics j. The obtained results for grade Gi are then adjusted to the grade
scale by using the definitions given in Table 5.

Table 5. Thresholds for combined grade Gi.

Gi Thresholds

1 X < 2

2 others

3 X ≥ 2.75

Finally, the last step is to use grades Gi to determine the final performance grade FG of
the CPE for the observation period. Table 6 defines how the FG is determined. The values
defined in Tables 5 and 6 were obtained based on tests in the real HFC network. Note
that the values in Tables 5 and 6 can be modified and adjusted to specific telecom-service-
provider needs. Figure 8 shows the final performance grade FG for the example shown
in Figure 6. Note that the performance-metrics collection times are aligned in Figure 8.
Furthermore, all the weight factors Wj are set to equal value in the given example.

Electronics 2022, 11, 2224 22 of 27

Table 6. Thresholds for the final performance grade FG.

FG Thresholds

1 more than 20% samples have grade 1

2 others

3 more than 85% samples have grade 3

Electronics 2022, 11, 2224 22 of 27

Table 6. Thresholds for the final performance grade FG.

FG Thresholds

1 more than 20% samples have grade 1

2 others

3 more than 85% samples have grade 3

Figure 8. Final performance grade for CPE (red circle—grade 1, yellow circle—grade 2, green cir-

cle—grade 3).

Based on the CPE performance grades, it is possible to estimate the performances of

non-intelligent devices. The requirement is to obtain network-topology knowledge that

provides information for each non-intelligent device about the CPEs that are hierarchi-

cally below the corresponding non-intelligent device. If this requirement is fulfilled, then

the performance grades of the corresponding CPEs are used to estimate NFG—the perfor-

mance grade of a non-intelligent device—according to the rules given in Table 7. Again,

we emphasize that the values given in Table 7 were obtained via test conducted in the real

HFC network, and that these values can be modified and adjusted according to the spe-

cific needs of the telecom service provider. Practice has shown that, over time, the average

grade of all the devices in the HFC network increases because weak spots are detected

and replaced or repaired in a timely manner.

Table 7. Thresholds for the performance grade of non-intelligent devices.

NFG Thresholds

1 more than 50% of CPEs have FG = 1

2 others

3 more than 70% of CPEs have FG = 3

7. Deployment Experience

During the development of BDPfPM, the main goal was to establish a highly availa-

ble, scalable, and cost-effective platform capable of storing a huge amount of data, satis-

fying query-performance requirements, and performing advanced data aggregations. The

big-data architecture proposed in Section 5 satisfies this main goal. However, new chal-

lenges emerged during the BDPfPM deployment. In this section, we present our experi-

ence during the BDPfPM deployment.

One set of challenges during the BDPfPM deployment relates to the OpenTSDB com-

ponent configuration and implementation. The first problem was OpenTSDB traffic con-

gestion. The congestion was a consequence of the huge amount of incoming data that the

OpenTSDB component needed to parse and store into HBase. Furthermore, the query re-

quests waited in a queue for OpenTSDB to parse them. Our first approach was to increase

the OpenTSDB memory size by setting appropriate Xms and Xmx JAVA parameters. This

approach improved the performance, but did not completely solve the congestion prob-

lem.

Figure 8. Final performance grade for CPE (red circle—grade 1, yellow circle—grade 2, green
circle—grade 3).

Based on the CPE performance grades, it is possible to estimate the performances of
non-intelligent devices. The requirement is to obtain network-topology knowledge that
provides information for each non-intelligent device about the CPEs that are hierarchically
below the corresponding non-intelligent device. If this requirement is fulfilled, then the
performance grades of the corresponding CPEs are used to estimate NFG—the performance
grade of a non-intelligent device—according to the rules given in Table 7. Again, we
emphasize that the values given in Table 7 were obtained via test conducted in the real
HFC network, and that these values can be modified and adjusted according to the specific
needs of the telecom service provider. Practice has shown that, over time, the average
grade of all the devices in the HFC network increases because weak spots are detected and
replaced or repaired in a timely manner.

Table 7. Thresholds for the performance grade of non-intelligent devices.

NFG Thresholds

1 more than 50% of CPEs have FG = 1

2 others

3 more than 70% of CPEs have FG = 3

7. Deployment Experience

During the development of BDPfPM, the main goal was to establish a highly available,
scalable, and cost-effective platform capable of storing a huge amount of data, satisfying
query-performance requirements, and performing advanced data aggregations. The big-
data architecture proposed in Section 5 satisfies this main goal. However, new challenges
emerged during the BDPfPM deployment. In this section, we present our experience during
the BDPfPM deployment.

One set of challenges during the BDPfPM deployment relates to the OpenTSDB
component configuration and implementation. The first problem was OpenTSDB traffic
congestion. The congestion was a consequence of the huge amount of incoming data that
the OpenTSDB component needed to parse and store into HBase. Furthermore, the query

Electronics 2022, 11, 2224 23 of 27

requests waited in a queue for OpenTSDB to parse them. Our first approach was to increase
the OpenTSDB memory size by setting appropriate Xms and Xmx JAVA parameters. This
approach improved the performance, but did not completely solve the congestion problem.

The second approach was to add multiple OpenTSDB instances. This approach solved
the congestion problem. In this approach, all instances share common tables in HBase.
HBase manages the access, thus maintaining the consistency of the tables. Each data
collector sends data to a randomly selected OpenTSDB instance from the list of existing
instances. In this way, incoming traffic is evenly distributed among the OpenTSDB instances.
Furthermore, some OpenTSDB instances are set only to read query requests to maximize
query response time. To minimize the traffic latency between HBase and OpenTSDB,
OpenTSDB instances are installed on existing big-data servers, i.e., on namenodes and
datanodes. This second approach solved the OpenTSDB traffic-congestion problem and
even introduced scalability to the OpenTSDB component of the big-data cluster.

The second OpenTSDB-related problem was associated with the metric UID (unique
identifier). OpenTSDB creates UIDs to save metrics. The number of bytes used for the
metric UID value is called the UID size parameter. The UID size is three bytes, as mentioned
in Section 5. Using the data schema proposed in Section 5.3, this pool of possible UID
values can be quickly spent. One approach to solving this problem is to increase the UID
size (available from OpenTSDB version 2.2). For example, if the UID size is four bytes, it is
possible to have 232 − 1 different values of UIDs. The optimal UID size value is estimated
based on the number of monitored devices and the number of metrics. However, it is still
possible to spend all the UID values due to the increasing number of devices or integration
with new domains. This limits the BDPfPM scalability and integration to new domains.
Once the UID size parameter is set, it cannot be easily changed in the future. Therefore, if
there were a need to increase UID size value, HBase tables would be recreated with a new
UID size value, which would cause a loss of historic data. Thus, we propose the second
approach, which prevents the aforementioned problem.

In the proposed approach, we use a separate set of tables per integration domain
with an appropriate set of OpenTSDB instances instead of using one set of HBase tables.
This approach should be applied not only in the integration to new domains, but also in
multitenancy cases, as well as any other cases in which data do not need to stay together.
The proposed approach has several benefits:

1. In general, the main data table is split, which additionally increases the query perfor-
mance.

2. For every set of tables, an appropriate UID size can be set, providing a better estima-
tion of incoming traffic.

3. It offers a better multitenancy approach. Each country has its own set of tables. If the
data for some countries need to be deleted, this is easily performed by dropping the
appropriate set of tables. Otherwise, it is very difficult and time-consuming, because
data need to be deleted per metric and per device.

4. It offers a flexible data-retention period. The retention period is set on the HBase
level by configuring table properties (time to live parameter). Using the proposed
approach, each set of tables can have a different retention period.

The next challenge during the BDPfPM deployment was associated with the problem
of needing IP addresses to identify the CPEs in the HFC network. As we mentioned in
Section 5.2, IP addresses are required because the SNMP is used for data collection. Thus,
the IP address of the CPE is needed to establish SNMP communication between the data
collector and the CPE. The CPE device in the HFC network has a dynamic IP address.
When a CPE connects to a network, it receives a local IP address from a predefined pool.
This approach is common in HFC networks. The first problem is to monitor CPEs, because
they can change their IP addresses overtime. Consequently, the IP address cannot be
selected as the unique identifier for CPE. Instead, the MAC address is used as a primary
key. However, BDPfPM needs IP addresses to communicate with CPEs to collect data.

Electronics 2022, 11, 2224 24 of 27

Thus, it is necessary to establish mapping between the MAC and IP addresses of CPEs. We
propose a MAC-IP-mapping mechanism, which is described in the following paragraph.

Information about the mapping between CPE’s MAC and IP address is periodically
collected from the corresponding CMTS. The collected information is used to create a data-
collector configuration. This configuration is later used to establish a connection with the
monitored CPEs for data collection. The MAC-IP-mapping mechanism runs a few times a
day, usually three. This approach has one downside. CPEs that change IP address between
the MAC-IP-mapping updates is unavailable for data collection until the next update.
Fortunately, the practice shows that the address for one CPE rarely changes. Changes may
occur after CPE restart. Even then, in the majority of cases, the CPE receives the same
IP address. However, we eliminate this downside by minimizing the MAC-IP-mapping
mechanism execution period to one data-collection period. This is justified because the
greater number of generated CMTS queries is negligibly small compared to the total number
of queries generated by the data-collector side. Thus, minimizing the MAC-IP-mapping
mechanism’s execution period does not significantly affect the CMTS performance.

The next set of challenges during the BDPfPM deployment was associated with the
data-collection process. There are multiple instances of data collectors due to the large
number of monitored devices. Each collector collects data from as many devices as it can in
a defined time frame (with some extra capacity left). The collector processes one device at a
time until it has processed all the assigned devices. When the monitored device is offline, or
communication with the collector is slowed down, the processing time is greater than usual.
In situations in which group failure occurs (e.g., power failure, network failure), a group of
devices becomes unavailable. This significantly increases the collector’s processing time.
Thus, the collector cannot collect data in a defined time frame from the available devices.

We propose parallel processing instead of serial processing to overcome this problem.
Each device is processed in a separate thread. If adevice is unavailable, this affects only the
thread that it uses. Furthermore, this approach speeds up the collection process by multiple
times. The approach requires collectors with more processing power, but fewer processing
machines. In addition to solving the problem of unavailable devices, this approach reduces
the total CPU and memory resources needed for the collectors. However, the number of
parallel processes on data collectors should be carefully selected. After the conducting tests
in the real network, we suggest that 30–50 devices per processing core should be set to
run in parallel to achieve excellent results. If the selected number is too large, collector
congestion may occur. Note that the optimal number of parallel processes directly depends
on the collector architecture. For this reason, we recommend tests after a new data collector
is developed to determine the optimal number of parallel processes.

The data collected from CPEs are essential during troubleshooting and performance
monitoring. Every CPE is connected to the CMTS and the appropriate set of upstreams.
Unfortunately, monitored CPEs do not know to which CMTS and upstreams it is connected.
Thus, it would be beneficial to enrich the data collected from the CPE with information from
the CMTS. We propose an add-upstream-info mechanism to enrich the data collected from
the CPE with information from the CMTS. The add-upstream-info mechanism performs
data collection from the CMTS. A combination of CPE MAC addresses and upstream
frequency is taken as a key for one CPE and its upstream. This key is later used at the
CPE-collector level to obtain the lookup data. The enriched data are stored in a lookup file
and forwarded to the collector. The data collector collects the upstream frequencies from
the CPE. Based on these data and the MAC address, the collector finds tags from the CMTS.
When the add-upstream-info mechanism was deployed, slow file reading was encountered.
On average, one collector (four cores, eight GB RAM) collects data from 25,000 devices.
This means that the lookup file can have up to 100,000 lines. Intuitively, this file is large
and slow to read. To overcome this problem, we propose the following method. Instead of
creating one big file, several smaller files are created. Now, one lookup file only contains
information for one modem and its upstreams. This significantly reduces the collector’s

Electronics 2022, 11, 2224 25 of 27

processing time. Furthermore, when one device is processed, its lookup data are discarded;
thus, the occupied amount of the collector’s memory is reduced.

8. Concluding Remarks and Future Work

Telecom service providers can collect a large amount of data. Thus, the application of
big-data technologies is very attractive to telecom service providers as it can allow them
to extract and obtain valuable information from collected data. The obtained information
can be used to improve the network performance. In this paper, we propose BDPfPM. The
proposed BDPfPM is successfully deployed and used in practice. The average grade of
network devices has been steadily increasing over time because poor-performance devices
have been detected and replaced in a timely manner. Consequently, this has reduced the
number of failures in the network and the number of complaints from subscribers. The
responses to questionnaires showed the increased satisfaction of subscribers because of the
better and more reliable network performance. The solutions and experiences presented
in this paper can help others to building their own performance-monitoring solutions.
However, we will continue to work on BDPfPM to further improve its performance and to
extend it with additional features that reach beyond the performance-monitoring scope. In
the remainder of this section, we discuss the limitations of BDPfPM and our future work
regarding them.

There is an ongoing tendency to eliminate the time between the creation and consump-
tion of data. Regarding this tendency, BDPfPM needs to support both real-time (streaming)
and batch processing. Popular architectures for streaming data processing that are currently
in use are lambda and kappa [48]. The most important limitation of BDPfPM is its lack of
support for streaming-data processing. For the initial purpose of network-performance
monitoring, BDPfPM does not require significant streaming-data processing support. How-
ever, adding this support would raise BDPfPM’s portfolio to an even higher level and
enable the potential use of BDPfPM in domains and industries that have a significant need
for streaming-data processing. Thus, our future work will focus on expanding BDPfPM to
efficiently support streaming-data processing. For this reason, we will consider software
components such as Kafka, Flink, etc. The second limitation is the partially addressed
Veracity challenge. The important part of the Veracity challenge that is solved is the fact
that BDPfPM enables the collection, storage, and processing of complete data sets instead of
partial data subsets. Out-of-bounds metric values are detected and marked as invalid; thus,
these values are not taken into account during data aggregations. Furthermore, if, in multi-
ple collection periods, out-of-bounds values are collected from the same device, an alarm
notification is sent to the alarm system to notify the operator about the suspicious behavior
of the device (e.g., there might be a mismatch between the firmware version expected by
the data collector and actual version loaded in device). A further work in progress is the
automatization of the detection of the reason for absent performance-metric values—these
might include power outage, link failure, users powering-off the CPE device, and device
malfunction. BDPfPM is used for the collection, storage, and aggregation of performance
metrics from the HFC network. However, BDPfPM can be used in other domains and
industries. In our future work, we intend to expand BDPfPM to support domains such
as MPLS, WiFi, etc. Furthermore, the IoT and sensor networks aresources of time-series
data that can be collected, stored, and processed by BDPfPM. In our future work, BDPfPM
will be expanded to support these data sources. The BDPfPM expansion for other domains
(MPLS, WiFi, IoT, etc.) is possible due to BDPfPM’s flexible and scalable architecture. The
main adjustments need to be made in the data collection layer by adding the data collectors
designed to collect data from new devices that exist in the added domain. Furthermore,
depending on the type of information these data contain, a new set of aggregations should
be written to extract the information for the consumers of data in this domain. However,
these adjustments do not affect the overall BDPfPM architecture, which remains the same.

Electronics 2022, 11, 2224 26 of 27

Author Contributions: Conceptualization, M.S. and Z.C.; methodology, M.S. and D.D.; software,
M.S.; validation, M.S. and Z.C.; formal analysis, M.S.; investigation, Z.C.; resources, M.S.; data
curation, D.D.; writing—original draft preparation, M.S. and Z.C.; writing—review and editing, D.D.;
visualization, D.D.; supervision, Z.C.; project administration, D.D.; funding acquisition, Z.C. and D.D.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Education, Science and Technological Devel-
opment of the Republic of Serbia. The APC is partially covered by the Ministry of Education, Science
and Technological Development of the Republic of Serbia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, M.; Mao, S.; Liu, Y. Big data: A Survey. Mob. Netw. Appl. 2014, 19, 171–209. [CrossRef]
2. Emani, C.K.; Cullot, N.; Nicolle, C. Understandable Big data: A Survey. Comput. Sci. Rev. 2015, 17, 70–81. [CrossRef]
3. Benhavan, T.; Songwatana, K. HFC network performance monitoring system using DOCSIS cable modem operation data in a 3

dimensional analysis. In Proceedings of the JICTEE 2014, Chiang Rai, Thailand, 5–8 March 2014; pp. 1–5. [CrossRef]
4. Park, J.; Lee, M. QoS Provisioning Method for Downstream VoIP Service Flows in HFC Networks. IEEE Trans. Consum. Electron.

2007, 53, 448–453. [CrossRef]
5. Ghorbanian, M.; Dolatabadi, S.H.; Siano, P. Big Data Issues in Smart Grids: A Survey. IEEE Syst. J. 2019, 13, 4158–4168. [CrossRef]
6. Chen, M.; Yang, J.; Hu, L.; Hossain, M.S.; Muhammad, G. Urban Healthcare Big Data System Based on Crowdsourced and

Cloud-Based Air Quality Indicators. IEEE Commun. Mag. 2018, 56, 14–20. [CrossRef]
7. Wang, T.; Liang, Y.; Zhang, Y.; Zheng, X.; Arif, M.; Wang, J.; Jin, Q. An Intelligent Dynamic Offloading from Cloud to Edge for

Smart IoT Systems with Big Data. IEEE Trans. Netw. Sci. Eng. 2020, 7, 2598–2607. [CrossRef]
8. Siddiqa, A.; Karim, A.; Gani, A. Big data storage technologies: A survey. Front. Inf. Technol. Electron. Eng. 2017, 18, 1040–1070.

[CrossRef]
9. Boubiche, S.; Boubiche, D.E.; Bilami, A.; Toral-Cruz, H. Big Data Challenges and Data Aggregation Strategies in Wireless Sensor

Networks. IEEE Access 2018, 6, 20558–20571. [CrossRef]
10. Flouris, I.; Giatrakos, N.; Deligiannakis, A.; Garofalakis, M.; Kamp, M.; Mock, M. Issues in Complex Event Processing: Status and

Prospects in the Big Data Era. J. Syst. Softw. 2017, 127, 217–236. [CrossRef]
11. Gurcan, F.; Berigel, M. Real-Time Processing of Big Data Streams: Lifecycle, Tools, Tasks, and Challenges. In Proceedings of the

ISMSIT 2018, Ankara, Turkey, 19–21 October 2018; pp. 1–6. [CrossRef]
12. Srinavasa Rao, P.; Krishna Prasad, M.H.M.; Thammi Reddy, K. An Efficient Keyword Based Search of Big Data Using Map Reduce.

J. Adv. Inf. Technol. 2017, 8, 159–164. [CrossRef]
13. Simakovic, M.; Cica, Z. Big Data Applications and Challenges. In Proceedings of the Infoteh 2016, Jahorina, Bosnia and

Herzegovina, 16–18 March 2016; pp. 675–678.
14. Kaplancalı, U.T.; Akyol, M. Analysis of Cloud Computing Usage on Performance: The Case of Turkish SMEs. Multidiscip. Digit.

Publ. Inst. Proc. 2021, 74, 11. [CrossRef]
15. Dzulhikam, D.; Rana, M.E. A Critical Review of Cloud Computing Environment for Big Data Analytics. In Proceedings of the

DASA 2022, Chiangrai, Thailand, 23–25 March 2022; pp. 76–81. [CrossRef]
16. Surya Prabha, M.; Sarojini, B. Survey on Big Data and Cloud Computing. In Proceedings of the WCCCT 2017, Tiruchirappalli,

India, 2–4 February 2017; pp. 119–122. [CrossRef]
17. Wang, F.; Wang, H.; Xue, L. Research on Data Security in Big Data Cloud Computing Environment. In Proceedings of the IAEAC

2021, Chiangrai, Thailand, 12–14 March 2021; pp. 1446–1450. [CrossRef]
18. Atat, R.; Liu, L.; Wu, J.; Li, G.; Ye, C.; Yang, Y. Big Data Meet Cyber-Physical Systems: A Panoramic Survey. IEEE Access 2018, 6,

73603–73636. [CrossRef]
19. Jiang, H.; Wang, K.; Wang, Y.; Gao, M.; Zhang, Y. Energy big data: A survey. IEEE Access 2016, 4, 3844–3861. [CrossRef]
20. He, Y.; Yu, F.R.; Zhao, N.; Yin, H.; Yao, H.; Qiu, R.C. Big Data Analytics in Mobile Cellular Networks. IEEE Access 2016, 4,

1985–1996. [CrossRef]
21. Liu, J.; Liu, F.; Ansari, N. Monitoring and analyzing big traffic data of a large-scale cellular network with Hadoop. IEEE Netw.

2014, 28, 32–39. [CrossRef]
22. Akbar, A.; Kousiouris, G.; Pervaiz, H.; Sancho, J.; Ta-Shma, P.; Carrez, F.; Moessner, K. Real-Time Probabilistic Data Fusion for

Large-Scale IoT Applications. IEEE Access 2018, 6, 10015–10027. [CrossRef]
23. Simakovic, M.; Masnikosa, I.; Cica, Z. Performance monitoring challenges in HFC networks. In Proceedings of the TELSIKS 2017,

Nis, Serbia, 18–20 October 2017; pp. 385–388. [CrossRef]
24. Rafferty, J.; Synnott, J.; Nugent, C.D.; Ennis, A.; Catherwood, P.A.; Mcchesney, I.; Cleland, I.; Mcclean, S. A Scalable, Research

Oriented, Generic, Sensor Data Platform. IEEE Access 2018, 6, 45473–45484. [CrossRef]
25. Wang, F.; Li, M.; Mei, Y.; Li, W. Time Series Data Mining: A Case Study with Big Data Analytics Approach. IEEE Access 2020, 8,

14322–14328. [CrossRef]

http://doi.org/10.1007/s11036-013-0489-0
http://doi.org/10.1016/j.cosrev.2015.05.002
http://doi.org/10.1109/JICTEE.2014.6804074
http://doi.org/10.1109/TCE.2007.381714
http://doi.org/10.1109/JSYST.2019.2931879
http://doi.org/10.1109/MCOM.2018.1700571
http://doi.org/10.1109/TNSE.2020.2988052
http://doi.org/10.1631/FITEE.1500441
http://doi.org/10.1109/ACCESS.2018.2821445
http://doi.org/10.1016/j.jss.2016.06.011
http://doi.org/10.1109/ISMSIT.2018.8567061
http://doi.org/10.12720/jait.8.3.159-164
http://doi.org/10.3390/proceedings2021074011
http://doi.org/10.1109/DASA54658.2022.9765168
http://doi.org/10.1109/WCCCT.2016.36
http://doi.org/10.1109/IAEAC50856.2021.9391025
http://doi.org/10.1109/ACCESS.2018.2878681
http://doi.org/10.1109/ACCESS.2016.2580581
http://doi.org/10.1109/ACCESS.2016.2540520
http://doi.org/10.1109/MNET.2014.6863129
http://doi.org/10.1109/ACCESS.2018.2804623
http://doi.org/10.1109/TELSKS.2017.8246305
http://doi.org/10.1109/ACCESS.2018.2852656
http://doi.org/10.1109/ACCESS.2020.2966553

Electronics 2022, 11, 2224 27 of 27

26. Bandi, A.; Hurtado, J.A. Big Data Streaming Architecture for Edge Computing Using Kafka and Rockset. In Proceedings of the
ICCMC 2021, Erode, India, 8–10 April 2021; pp. 323–329. [CrossRef]

27. Tian, Y.; Michiardi, P.; Vukolić, M. Bleach: A Distributed Stream Data Cleaning System. In Proceedings of the BigData Congress
2017, Honolulu, HI, USA, 25–30 June 2017; pp. 113–120. [CrossRef]

28. Caruccio, L.; Deufemia, V.; Naumann, F.; Polese, G. Discovering Relaxed Functional Dependencies Based on Multi-Attribute
Dominance. IEEE Trans. Knowl. Data Eng. 2020, 33, 3212–3228. [CrossRef]

29. Abedjan, Z.; Golab, L.; Naumann, F.; Papenbrock, T. Chapter 8, Data Profiling Tools. In Data Profiling. Synthesis Lectures on Data
Management; Springer: Cham, Switzerland, 2019. [CrossRef]

30. Van Dongen, G.; Van Den Poel, D. A Performance Analysis of Fault Recovery in Stream Processing Frameworks. IEEE Access
2021, 9, 93745–93763. [CrossRef]

31. Wu, J.; Guo, S.; Li, J.; Zeng, D. Big Data Meet Green Challenges: Greening Big Data. IEEE Syst. J. 2016, 10, 873–887. [CrossRef]
32. Mabrouki, J.; Azrour, M.; Dhiba, D.; Farhaoui, Y.; Hajjaji, S.E. IoT-based data logger for weather monitoring using arduino-based

wireless sensor networks with remote graphical application and alerts. Big Data Min. Anal. 2021, 4, 25–32. [CrossRef]
33. Mabrouki, J.; Azrour, M.; Fattah, G.; Dhiba, D.; Hajjaji, S.E. Intelligent monitoring system for biogas detection based on the

Internet of Things: Mohammedia, Morocco city landfill case. Big Data Min. Anal. 2021, 4, 10–17. [CrossRef]
34. Li, T.; Li, C.; Luo, J.; Song, L. Wireless recommendations for Internet of vehicles: Recent advances, challenges, and opportunities.

Intell. Converg. Netw. 2020, 1, 1–17. [CrossRef]
35. Hu, X.; Xiang, Y.; Li, Y.; Qiu, B.; Wang, K.; Li, J. Trident: Efficient and practical software network monitoring. Tsinghua Sci. Technol.

2021, 26, 452–463. [CrossRef]
36. Martinez-Mosquera, D.; Navarrete, R.; Lujan-Mora, S. Development and Evaluation of a Big Data Framework for Performance

Management in Mobile Networks. IEEE Access 2020, 8, 226380–226396. [CrossRef]
37. Cisco uBR10012 Universal Broadband Router Hardware Installation Guide. Available online: https://www.cisco.com/c/en/us/

td/docs/cable/cmts/ubr10012/installation/guide/hig.html (accessed on 13 June 2022).
38. Unitymedia Q4 2018 Report. Available online: https://www.libertyglobal.com/wp-content/uploads/2019/03/Unitymedia-Q4

-2018-Report.pdf (accessed on 13 June 2022).
39. HDFS Architecture. Available online: https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.

html (accessed on 13 June 2022).
40. Apache HBase. Available online: https://hbase.apache.org/ (accessed on 13 June 2022).
41. Documentation for OpenTSDB 2.4. Available online: http://opentsdb.net/docs/build/html/index.html (accessed on 13 June

2022).
42. Apache Spark. Available online: https://spark.apache.org/ (accessed on 13 June 2022).
43. Apache Hadoop YARN. Available online: https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.

html (accessed on 13 June 2022).
44. Apache ZooKeeper. Available online: https://zookeeper.apache.org/ (accessed on 13 June 2022).
45. The Hadoop Ecosystem Table. Available online: https://hadoopecosystemtable.github.io/ (accessed on 13 June 2022).
46. Global OID Reference Database. Available online: http://oidref.com/ (accessed on 13 June 2022).
47. Advantage Remote PHY. Available online: https://www.cisco.com/c/en/us/solutions/service-provider/industry/cable/

advantage-remote-phy.html (accessed on 13 June 2022).
48. Lin, J. The Lambda and the Kappa. IEEE Internet Comput. 2017, 21, 60–66. [CrossRef]

http://doi.org/10.1109/ICCMC51019.2021.9418466
http://doi.org/10.1109/BigDataCongress.2017.24
http://doi.org/10.1109/TKDE.2020.2967722
http://doi.org/10.1007/978-3-031-01865-7_8
http://doi.org/10.1109/ACCESS.2021.3093208
http://doi.org/10.1109/JSYST.2016.2550538
http://doi.org/10.26599/BDMA.2020.9020018
http://doi.org/10.26599/BDMA.2020.9020017
http://doi.org/10.23919/ICN.2020.0005
http://doi.org/10.26599/TST.2020.9010018
http://doi.org/10.1109/ACCESS.2020.3045175
https://www.cisco.com/c/en/us/td/docs/cable/cmts/ubr10012/installation/guide/hig.html
https://www.cisco.com/c/en/us/td/docs/cable/cmts/ubr10012/installation/guide/hig.html
https://www.libertyglobal.com/wp-content/uploads/2019/03/Unitymedia-Q4-2018-Report.pdf
https://www.libertyglobal.com/wp-content/uploads/2019/03/Unitymedia-Q4-2018-Report.pdf
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hbase.apache.org/
http://opentsdb.net/docs/build/html/index.html
https://spark.apache.org/
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://zookeeper.apache.org/
https://hadoopecosystemtable.github.io/
http://oidref.com/
https://www.cisco.com/c/en/us/solutions/service-provider/industry/cable/advantage-remote-phy.html
https://www.cisco.com/c/en/us/solutions/service-provider/industry/cable/advantage-remote-phy.html
http://doi.org/10.1109/MIC.2017.3481351

	Introduction
	Related Work
	HFC Network Architecture
	Objectives and Challenges of BPDfPM
	BDPfPM Objectives
	BDPfPM Challenges

	Big-Data Platform for Performance Monitoring
	Big-Data Tools
	BDPfPM Architecture
	Data Schema
	Data Collectors
	Data Aggregations
	Performance Comparison

	Performance Estimation of Network Devices
	Deployment Experience
	Concluding Remarks and Future Work
	References

