
Citation: Nowak, M.K. WeaveNet:

Solution for Variable Input Sparsity

Depth Completion. Electronics 2022,

11, 2222. https://doi.org/10.3390/

electronics11142222

Academic Editor: John Ball

Received: 12 May 2022

Accepted: 22 June 2022

Published: 16 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

WeaveNet: Solution for Variable Input Sparsity
Depth Completion
Mariusz Karol Nowak 1,2

1 Aptiv Services Poland S.A., 30-399 Cracow, Poland; mariuszknowak@ieee.org
2 Faculty of Electrical Engineering, Automatics, Computer Science, and Biomedical Engineering, AGH

University of Science and Technology, 30-059 Cracow, Poland

Abstract: LIDARs produce depth measurements, which are relatively sparse when compared with
cameras. Current state-of-the-art solutions for increasing the density of LIDAR-derived depth maps
rely on training the models for specific input measurement density. This assumption can easily be
violated. The goal of this work was to develop a solution capable of producing reasonably accurate
depth predictions while using input with a very wide range of depth information densities. To that
end, we defined a WeaveBlock capable of efficiently propagating depth information. To achieve
this goal, WeaveBlocks utilize long and narrow horizontal and vertical convolution kernels together
with MobileNet-inspired pointwise convolutions serving as computational kernels. In this paper,
we present the WeaveNet architecture for guided (LIDAR and camera) and unguided (LIDAR only)
depth completion as well as a non-standard network training procedure. We present the results of
the network on the KITTI test and validation sets. We analyze the network performance at various
levels of input sparsity by randomly removing between 0% and 99% of the LIDAR points from the
network inputs, and in each case, we obtain reasonable quality output. Additionally, we show that
our trained network weights can easily be reused with a different LIDAR sensor.

Keywords: depth completion; variable sparsity; LIDAR; neural nets; depth cues; machine learning

1. Introduction

Even high quality LIDARs used as depth sensors in automotive sector provide rela-
tively low output density when compared to cameras. This can be easily observed in the
KITTI dataset [1,2], one of the leading datasets related to perception in automotive settings.
Velodyne HDL-64E LIDAR, whose output is provided in the KITTI dataset, produces
approximately 20,000 detections in the field of view of the front camera, while the camera
itself provides an image with 465,750 pixels (375 × 1242). One problem with such disparity
in the input density is that early fusion of data from the camera and LIDAR in the camera
plane requires interpolation of the depth information to fill in the gaps between sparse
measurements. Another disadvantage of sparse and irregularly spaced depth predictions is
that processing of LIDAR pointclouds requires more complicated neural network designs,
such as PointNet [3] or VoxelNet [4], rather than simpler 2D convolutional networks that
can be utilized on camera data. Finally, the most obvious problem with sparse LIDAR
data is that they might not provide resolution high enough for the downstream processing
algorithms to recognize fine details of the scene.

The field of depth completion deals with transforming the sparse LIDAR output into
a dense depth map. In 2017, Uhrig et al. [1] published the KITTI Depth Completion dataset
together with a seminal work on sparsity invariant convolutions. Since then, the field
of LIDAR depth completion for automotive application has flourished, with the works
submitted to the KITTI Depth Completion challenge [1] being the de facto state of the art.
Almost all of the published works (e.g., [1,5–10]) deal exclusively with the default input
sparsity (the input detection density of a Velodyne HDL-64E LIDAR). The works of Cheng,
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Ma and Yan [11–13] are notable exceptions. Assuming relatively constant input density
is fine when operating on data collected using a high quality LIDAR in perfect weather
conditions. Unfortunately, this assumption does not hold in real-life scenarios. For example,
the density of LIDAR measurements can drop sharply in fog or heavy rain. In the case of a
cheap LIDAR sensor and big differences in reflectance of objects surrounding the car, the
situation becomes even more problematic—the measurement density can vary between
different regions of the same frame.

Automotive systems relying on a depth completion module must stay robust when
faced with changing weather conditions or scenes with objects of differing reflectance.
Therefore, we believe that it is crucial to explore depth completion in a setting with a highly
variable input density. It was our main motivation to create WeaveNet, a neural network
designed to use one set of trained weights to perform depth completion over 2 orders of
magnitude of input densities (200 to 20,000 of measurements in field of view (FOV)).

2. Related Work
2.1. Methods Based on Sparsity Invariant Convolutions

Uhrig et al. [1] published the KITTI depth completion dataset together with the defini-
tion of the sparsity invariant convolutions. The point behind the KITTI depth completion
dataset is to provide a way to train and test models capable of transforming sparse depth
measurements into a dense depth map. This dataset consists of 93 k frames, where each
frame consists of a camera image, sparse depth data obtained by projecting the lidar point-
cloud onto the camera plane and a semi-dense depth annotation on the camera plane.
The semi-dense depth annotations were produced by accumulating 11 LIDAR scans and
subsequently removing outliers (such as the outliers related to moving objects) by com-
paring the accumulated LIDAR data points to the depth map obtained using stereovision.
The sparsity invariant convolutions [1] are a method to perform 2D convolutions on an
input with variable sparsity. This is achieved by utilizing a mask which contains 1 s for
valid input pixels (e.g., pixels where a LIDAR point is projected) and 0 s for invalid pixels.
Before performing a convolution, the input is multiplied (pixelwise) by the validity mask.
After performing the convolution (but before adding bias), the output is normalized by
dividing it by the fraction of the valid pixels that were used to compute it. The mask is
propagated in such a way that a pixel is considered valid if and only if at least one valid
pixel was used to compute it. Using the notation from [1], the result of the convolution
with kernel (2k + 1, 2k + 1) at the position (u, v) is:

fu,v (x, o) =
∑k

i,j=−k ou+i,v+jxu+i,v+jwi,j

∑k
i,j=−k ou+i,v+j + ε

+ b (1)

and the value of validity mask is propagated according to:

gu,v (x, o) =
k

max
i,j=−k

ou+i,v+j (2)

where x denotes the array of pixel values at the previous layer, o denotes the array storing
information whether the pixel was valid in the previous layer (1 if it was valid, 0 if it was
not), w denotes the array storing information about convolutional weights and b is the bias.

Huang et al. [5] performed the task of depth completion using an encoder-decoder,
hourglass-style network utilizing sparsity invariant convolutions. To that end, they intro-
duced sparsity invariant averaging and sparsity invariant upsampling. These are operations
that enable a network to perform averaging and upsampling in a manner consistent with
the sparsity invariant framework (and define the way in which validity masks should
be propagated).

Eldesokey et al. [6] significantly expanded on the sparsity invariant convolution
framework by lifting the requirement that the validity mask is binary. Instead, they
allowed the confidence mask to take values between 0 and 1. Additionally, they restricted
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the convolutional weights to be non-negative and interpreted them as affinity between
different pixels. Hence, the propagated depth for a specific pixel is an average of depths
from neighboring pixels weighted by their affinities. They propagated the confidence for
a specific pixel, making it an average of the confidences of neighboring pixels, weighted
by their respective affinities. Eldesokey et al. [6] found it necessary to use a loss function
which aims to maximize confidence as part of the training procedure.

Yan et al. [13] utilized an encoder-decoder hourglass-style network to produce dense
depth output. They used separate yet identical encoders for image data and LIDAR
data. Interestingly, both the LIDAR encoder and image encoder used sparsity invariant
convolutions, together with masks generated using LIDAR datapoints (albeit the mask for
the image encoder switches each zero to one and each one to zero). Yan et al. [13] provided
an ablation analysis of the performance of the network when it was fed with data sparser
than usual; however, they decreased the data density at most 4 times.

2.2. Methods Not Based on Sparsity Invariant Convolutions

Many of the best-performing methods for guided depth completion borrow heavily
from the convolutional spatial propagation network (CSPN) by Cheng et al. [14], which
was itself influenced by the non-depth completion work of Liu et al. [15]. Cheng’s neural
network consisted of a conventional encoder-decoder network and an iterative depth prop-
agation layer. The outputs of the encoder-decoder network were initial depth prediction
and affinities to other pixels. The affinities between pixels were used as convolutional
weights to propagate depth information. The values of affinities used when propagating
depth information to a particular pixel were normalized, so that the sum of their absolute
values equaled 1. The depth propagation step was performed iteratively. In their next
paper [11], Cheng et al. defined a CSPN++ block that improved upon CSPN by making the
number of propagation step iterations and size of the kernel used during the propagation
step dependent on the input (in a learnable way).

The work of Park et al. [8] used a very similar approach, but introduced pixelwise con-
fidence and relaxed constraints on affinity normalization. In the case of Park’s network, the
outpust of the encoder-decoder network were the initial depth prediction, affinities to other
pixels and, additionally, the pixelwise confidence. The iterative depth propagation layer
performed depth propagation by using affinities and pixelwise confidence. The affinities
between pixels multiplied by pixelwise confidenceweare used as convolutional weights
to propagate depth information. The sum of the absolute values of affinities used when
propagating depth information to a particular pixel was constrained to be no greater than
1. Unlike in the work of Eldesokey et al. [6], Park did not use confidence when calculating
loss function.

The method developed by Tang et al. [9] focused on effectively utilizing the RGB input
to propagate the sparse depth information. To that end, they used a vision encoder, which
output convolutional weights that were later used by the part of the network processing
sparse depth.

The work of Chen et al. [7] showed a different path to depth completion. Their network
utilized 2 processing streams—a 2D stream in which LIDAR and RGB data were processed
using conventional 2D convolution and a 3D processing stream in which they utilized 3D
continuous convolutions, developed by Wang et al. [16]. As Chen et al. [7] pointed out in
their work, the LIDAR points close together on the 2D projection can be far away in 3D
space, and therefore, utilizing both 2D and 3D processing allows for a much better feature
extraction process.

Qiu et al. [10] introduced a network that utilized a conventional processing stream
that directly output the dense depth information and an alternative stream which produced
surface normals as an intermediate step towards outputting depth prediction. The final
depth prediction was a learnable weighted average of the previous two outputs. The
interesting part of work performed by Qiu et al. [10] is that they used a synthetic dataset
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obtained using the Carla simulator [17] to pretrain the network on the task of surface
normal prediction.

The work of Ma et al. [12] used a conventional encoder-decoder hourglass-style
network (wherein the depth and image data are fused at the beginning of the encoder).
The most important contribution of this work was that it introduced a self-supervised
way to train a depth completion network. Ma et al. [12] introduced a training process
utilizing spatio-temporal properties of consecutive LIDAR and image frames to train
the network without semi-dense annotations. Specifically, they utilized a loss function
taking into account depth prediction consistency with depth measurement at a specific
pixel, photometric loss connected to image warping between consecutive frames and a
smoothness term that penalized second order derivatives in the depth prediction. Notably,
Ma et al. provided an ablation analysis of the performance of the network when it was fed
with data that were sparser than usual.

3. Our Method
3.1. WeaveBlock

The main idea behind sparsity invariant convolutions [1] was that the network can
produce a valid depth output for a particular picture only if at least one valid depth input
pixel was used in the calculations. It follows that in order to process very sparse depth input,
it is necessary to allow easy flow of information between pixels located far away from each
other. In our network, this is achieved by utilizing WeaveBlocks. The main inspirations for
the WeaveBlock design were sparsity invariant convolutions [1], and the general structure
was loosely inspired by the depthwise separable convolutions in MobileNet [18]. Each
WeaveBlock consists of the following elements:

1. A pointwise convolution with a small number of channels;
2. A sparsity invariant convolution with a long and narrow vertical kernel and a small

number of channels;
3. A pointwise convolution with a large number of channels;
4. A pointwise convolution with a small number of channels;
5. A sparsity invariant convolution with a long and narrow horizontal kernel and a

small number of channels;
6. A pointwise convolution with a large number of channels.

All mentioned convolutions use rectified linear unit (ReLU) [19] activation. In the case
of the network whose results are presented in this article, the small number of channels
was set to 12, the large number of channels was set to 128, and the long and narrow
convolutional kernels were in the shapes 31 × 1 and 1 × 31.

The design of the WeaveBlock achieves the goal of propagating the depth information
at a big distance (15 pixels in each direction). Additionally, it enables the network to
perform more complicated computations utilizing 128 channels of pointwise convolutions
while also being reasonably frugal with resources—please note that when computations are
performed in kernels bigger than 1 × 1, the number of channels and number of channels in
preceding layer is small.

3.2. Unguided WeaveNet Architecture

The unguided version of the WeaveNet architecture follows a simple, modular struc-
ture. Inside the network, WeaveBlocks are grouped in groups of 3, forming a single residual
block. A schematic representation of a residual block containing 3 WeaveBlocks is presented
in Figure 1. The residual blocks are wrapped in an averaging skip connection implemented
similarly as in Huang’s sparsity invariant averaging [5]. The network consists of 5 identical
residual blocks without any upsampling or downsampling—the network processing al-
ways happens at input and output resolution. The results obtained using the unguided
WeaveNet, together with the corresponding LIDAR input and camera image, are presented
in Figure 2. In the same figure, the edges in the output of the network are also shown to
demonstrate the capability of the network to accurately represent fine details.
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The unguided version of the network is the main part of this work. The guided version
of the network does not contain significant improvements of its own and was prepared
only to make the results obtained using WeaveNet comparable to other, guided solutions
used in the KITTI depth completion task.

Figure 1. Schematic representation of a residual block containing 3 WeaveBlocks.
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Figure 2. Output of the unguided WeaveNet together with the sparse LIDAR data and corresponding
camera image. The edges in the output of the network are shown to demonstrate the capability of
network to accurately represent fine details. The same frame is used as the basis of all future images
in this paper.

3.3. Guided WeaveNet Architecture

The RGB-guided version of the network utilizes the unguided architecture to prepro-
cess the LIDAR depth information. The RGB data are preprocessed using a MobileNet [18]-
inspired convolutional network, where a single functional convolution consists of:

1. A pointwise convolution with a small number of channels;
2. A 3 × 3 convolution with a small number of channels;
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3. A pointwise convolution with a large number of channels.

All mentioned convolutions use ReLU activation. The small number of channels for
this subnetwork was set to 16, and the large number of channels was set to 128. A set of 3
such convolutions makes one residual block. In the beginning of a residual block, there
is also an additional pointwise convolution with a small number of channels. There are
also 2 batch-normalizing layers (after the first pointwise convolution and at the end of the
residual block). The skip connection is implemented via concatenation of the outputs of the
batch normalization layers. Please note that the concatenation input consists of 16 channels
from the front of the block and 128 channels from the end of the block. We believe that
such a network structure forces the model to compress the already-learned features to a
small channel space while allowing for processing of the new features in a larger channel
space. The vision preprocessing network consists of 3 such residual blocks and ends with a
1 channel convolution.

The preprocessed data from LIDAR and camera are concatenated; for both subnet-
works, their ultimate and penultimate layer outputs are concatenated. Please note that
this concatenation uses many more channels from the camera preprocessing (129 channels)
than from LIDAR preprocessing (13 channels); we found it necessary for the network to
extract useful camera features.

The fused data is processed by an aggregator network that is nearly identical to the
vision preprocessing network; the only difference is that the aggregator network does not
include batch normalization layers.

3.4. Notes on the Input and Output Modality

An important feature of unguided depth completion is that the inputs and outputs
have the same modality—the distance to the nearest obstacle projected on the camera
plane. Therefore, it is possible that inside the network, the information is also processed
in the form of depth information rather than abstract channels. In such a case, it would
be possible that the network weights are just a learnable way to interpolate between valid
measurements. In fact, the good results in Eldesokey’s work on propagating confidence
information in convolutional neural networks [6] may suggest that. Their method of depth
completion achieved competitive results on the KITTI depth completion challenge while
effectively restricting the convolutional weights to be non-negative. During the work on
designing our depth completion network, we found several indications consistent with
the possibility that the channels in the middle of the network are not abstract, but rather
consistently represent depth.

1. We found that using batch normalization in the LIDAR processing stream leads to
greatly inferior results.

2. We performed experiments using the same network architecture and activation func-
tions other than ReLU. We found that using activation functions whose output may
be negative such as Swish [20] and exponential linear unit (ELU) [21] leads to worse
performance in the depth completion task than simple ReLU.

Such results are consistent with the possibility that at least some of the channels in
intermediate layers of the network are directly representing depth. In fact, when examining
the output of each residual block, we found that there are only 2 types of channels—
channels whose output represents depth (up to an affine transformation) and channels
whose output represents offsets at object edges. Example channels are shown in Figure 3.
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Figure 3. Example channels at the intermediate layers of WeaveNet; channels storing depth are on
the left and channels storing edges are on the right).

3.5. Training Process

In this paper, we present 3 distinct versions of WeaveNet. Architecturally, they are
equivalent, but they differ in terms of how they were trained:

• The first version was trained in a standard way (utilizing two training phases: pre-
training and standard input density training).

• The second version was trained using universal sparsity training, which consisted
of three training phases: pretraining, standard input density training and a variable
input sparsity training.

• The third version was trained in a four phase specific sparsity training (pretraining,
standard input density training, variable input sparsity training and a final phase of
retraining the network at a specific input sparsity).

The full training procedure for the specific sparsity unguided version of the network
was conducted in 4 distinct phases:

1. A pretraining phase, during which instead of using LIDAR pointcloud as the input
of the network, the network was fed with semi-dense depth labels. To be exact,
the network was fed with KITTI Depth Completion labels with 50% of pixels masked
with zeros. The pretraining phase was relatively short—only one epoch, utilizing
approximately 20% of training set frames. This phase was performed using 10−3

learning rate. We found that this short pretraining phase greatly increases the speed
of convergence in the future phases;

2. The main training phase, during which the network was fed standard sparse input.
This phase lasted 30 epochs. The optimizer learning rate was decreased from 10−3

to 10−4, then to 10−5, and finally to 10−6 during this phase. We found it beneficial to
apply additive, normally distributed noise to the network weights during this phase
of training (approach closer examined in [22]);

3. The variable sparsity training phase. During this phase, the network was fed with
input for which between 0% and 99.2% of the standard sparse input was masked with
zeros. For a particular frame, the input density (i.e., the number of pixels that were
not masked with zeros) was randomly sampled according to a formula:

D(Dmin, Dmax) = eU(ln(Dmin),ln(Dmax)) (3)
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where Dmin and Dmax are the lowest (0.008) and highest (1.0) possible density levels,
respectively, and U(ln(Dmin), ln(Dmax)) is a random variable sampled uniformly
between ln(Dmin) and ln(Dmax).
Such a sampling method achieves the goal that the probability of sampling a number
from the interval [a, b] and the probability of sampling a number from the interval
[c, d] is equal if and only if b/a = d/c. This phase lasted 10 epochs and was performed
with a 10−6 learning rate;

4. The fixed sparsity training phase. The goal of the last training phase was to train
the network at the target data sparsity (50% masked pixels, 75% masked pixels,
90% masked pixels, 95% masked pixels and 99% masked pixels). This phase lasted
2 epochs for each version of the network for a particular sparsity and was performed
with a 10−6 learning rate.

For the training of the RGB-guided network, the weights obtained from training the
unguided version for the first 2 phases were used as the starting weights of the LIDAR
encoder. Additionally, 2 extra phases were employed after phase 2 and before phases 3
and 4:

1. The RGB-encoder training phase. During this phase the weights of the LIDAR encoder
were frozen. This phase lasted 10 epochs. The optimizer learning rate was decreased
from 10−4 to 10−5 and finally to 10−6 during this phase;

2. The joint training phase. During this phase the whole network was trained (no
weights were frozen). This phase lasted 10 epochs and was performed with a 10−6

learning rate.

Huber loss was utilized during the entirety of training. The loss was quadratic for
errors smaller than 5 m and linear for errors greater than 5 m. The whole training was
performed using Adam [23] optimizer.

4. Experiments
4.1. Results on Standard Input Density

In this section, we present how WeaveNet compares to other guided and unguided so-
lutions available in the literature (on the basis of root-mean-square error (RMSE) and mean
absolute error (MAE)). All comparisons are based on the results on the KITTI validation set.

The RGB-guided version of WeaveNet is reasonably close to the state of the art in
terms of MAE in the task of guided depth completion (Table 1). The RGB-guided version of
WeaveNet is significantly worse than current state of the art RGB-guided depth completion
solutions in terms of RMSE (Table 1). It should be noted that as of today, the solutions
not relying on sparsity invariant convolutions seem to be significantly better at the task of
guided depth completion.

Unguided WeaveNet achieves state-of-the-art results on the task of LIDAR-only depth
completion. To the best of our knowledge, WeaveNet is currently the best LIDAR-only
depth completion solution in terms of MAE (Table 2). Unfortunately, WeaveNet is inferior
to other unguided solutions [5,12] in terms of RMSE.
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Table 1. Performance of the RGB-guided depth completion methods on the KITTI validation set.

Model RMSE [m] MAE [m]

Eldesokey et al. [6] 1.37 0.38
Tang et al. [9] 0.77778 0.22159
Park et al. [8] 0.88410 not provided

Cheng et al. [11] 0.72543 0.20788
Chen et al. [7] 0.75288 0.22119
Qiu et al. [10] 0.68700 0.21538
Yan et al. [13] 0.79280 0.22581
Ma et al. [12] 0.856754 not provided

Huang et al. [5] 0.88374 0.25711
Ours (standard training) 0.97175 0.22060
Ours (universal sparsity

training) 1.05978 0.26249

Ours (specific sparsity
training) 0.94849 0.22623

Table 2. Performance of the unguided depth completion methods on the KITTI validation set.

Model RMSE [m] MAE [m]

Uhrig et al. [1] 2.01 0.68
Ma et al. [12] 0.99135 not provided

Huang et al. [5] 0.99414 0.26241
Ours (standard training) 1.09596 0.24512
Ours universal sparsity

training) 1.17372 0.27323

Ours (specific sparsity
training) 1.08774 0.25310

4.2. Input Density Ablation Study

For the purpose of checking the performance of the network while using very sparse
input, we tested it on the validation set with randomly masked depth input pixels. We
performed the tests with 50% masked pixels (approximately 10,000 depth measurements
left in the FOV), 75% masked pixels (approximately 5000 depth measurements left in the
FOV), 90% masked pixels (approximately 2000 depth measurements left in the FOV), 95%
masked pixels (approximately 1000 depth measurements left in the FOV) and 99% masked
pixels (approximately 200 depth measurements left in the FOV). For each of the sparsity
levels, we present the results obtained by:

1. The network trained on the default KITTI data;
2. The network trained with variable input sparsity;
3. the network trained with the input at the specific sparsity level.

We present the quantitative results obtained using WeaveNet in Figures 4 and 5 for the
unguided version of the network and in Figures 6 and 7 for the guided version. As can be
seen in those plots, there is very little difference between the performance of the network
trained for the specific input sparsity and the network trained using variable input sparsity
(universal sparsity training). this points to the possibility of using the weights obtained
during the universal training in systems where the number of measurements can change
from one frame to another or in systems where the density of measurements may change
between different parts of the FOV (such as future imaging radars).
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Figure 4. MAE for the unguided WeaveNet for various input densities for different training modes
(different scales).

Figure 5. RMSE for the unguided WeaveNet for various input densities for different training modes
(different scales).

Figure 6. MAE for the guided WeaveNet for various input densities for different training modes
(different scales).

Figure 7. RMSE for the guided WeaveNet for various input densities for different training modes
(different scales).
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In Figures 8 and 9, we show the depth output of the WeaveNet (its unguided and
guided versions, respectively) for various input densities and for the three aforementioned
training methods. The depth is color-coded, with the scale shown to the right of each small
image. In all cases, we use the same frame as in Figure 2. Please note that there is little
qualitative difference between the output produced by the version of the network trained
at specific input density and the version of the network trained using variable input density
(universal sparsity training). For the unguided version of the network, the fine details, such
as the protection poles or street lamps, are reasonably distinguishable even at the relative
input density of 10%. In the guided version, the details are still distinguishable even at 1%
input density.

Figure 8. Output of the unguided WeaveNet for various densities for different training modes
(basic training on the left, training for specific density in the middle, training for variable density on
the right).
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Figure 9. Output of the guided WeaveNet for various densities for different training modes (basic
training on the left, training for specific density in the middle, training for variable density on
the right).

In Figure 10, we show the results of applying the unguided, universal sparsity Weav-
eNet to the data obtained from 40-channel Pandora LIDAR. Even though the network was
trained on the KITTI dataset (using 64-channel Velodyne LIDAR), the results obtained
on Pandora-sourced data look qualitatively good, which shows the robustness of the
WeaveNet architecture paired with the variable input sparsity training.
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Figure 10. Output of the universal sparsity, unguided WeaveNet operating on the data from Pandora
LIDAR (left) and corresponding camera images (right).

5. Conclusions

In the paper, we presented a novel WeaveNet architecture capable of performing the
depth completion task on very sparse input data. The results obtained by the version of
the network trained using variable input sparsity are particularly promising since they
point to the possibility of using depth completion methods on data from sensors producing
highly variable numbers of irregularly spaced measurements. An example of such a sensor
that might, in the future, benefit from depth completion is a high-resolution imaging radar.
In such a radar, the amplitude of a reflected wave is highly dependent on the material and
the angle of the reflection surface. Therefore, the density of reflections can vary widely
between different objects in the field of view.

WeaveNet and its universal sparsity training procedure can also be useful when
reusing the network weights trained on one dataset (using sensor A) to operate on the data
obtained from another, depth-measuring, sensor B (as is evidenced by the qualitatively good
results obtained when using the Velodyne-trained weights to perform depth completion on
the Pandora-sourced data). This property can be very beneficial in settings where different
sensors are tested, since it diminishes the need to create a big and expensive training set for
each sensor (the model can be pretrained on the data from sensor A and later fine-tuned on
a much smaller dataset using sensor B).

Another contribution of this work is the interpretation of the channels at the interme-
diate layers of the network. We have noted that the channels in the intermediate layers of
the network either represent the interpolated depth data or are estimating the positions of
object boundaries. This knowledge might help improve future depth completion networks
by incorporating auxiliary losses using the intermediate layer output.
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