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Abstract: Indoor object detection and tracking using millimeter-wave (mmWave) radar sensors have
received much attention recently due to the emergence of applications of energy assignment, privacy,
health, and safety. Increasing the valid field of view of the system and accuracy through multi-sensors
is critical to achieving an efficient tracking system. This paper uses two mmWave radar sensors for
accurate object detection and tracking: two noise reduction stages to reduce noise and distinguish
cluster groups. The presented data fusion method effectively estimates the transformation of the
data alignment and synchronizes the result that can allow us to visualize the objects” information
acquired by one radar on another one. An efficient density-based clustering algorithm to provide
high clustering accuracy is presented. The Unscented Kalman Filter tracking algorithm with data
association tracks multiple objects simultaneously in terms of accuracy and timing. Furthermore, an
indoor object tracking system is developed based on our proposed method. Finally, the proposed
method is validated by comparing it with our previous system and a commercial system. The
experimental results demonstrate that the proposed method’s advantage is of positive significance
for handling the effect of occlusions at higher numbers of weak data and for detecting and tracking
each object more accurately.

Keywords: millimeterwave; radar; detecting; object clustering; sensor fusion; tracking

1. Introduction

Precise multi-object detection and tracking are the predominant goals in any real-
time location-based services (LBS), particularly indoor people activity tracking [1]. Indoor
people activity tracking is a valuable solution to the problems that are associated with
increasing populations, such as space availability, increased energy demands and health
and safety issues, etc. [2]. Moreover, detection and tracking information can improve
health and safety by allowing automated emergency systems and services to make more
well-informed decisions. It can enhance the emergency services’ response by providing
them with real-time data on people’s locations, how they are moving, and the densities of
people at different places [3]. Thus, it will allow them to plan and execute rescue efforts
more effectively, increasing the chances of survival for those at risk.

Ongoing research in object detection and tracking employs various sensing approaches
and algorithms. Researchers typically use sensor technologies such as passive infrared
sensors (PIR), ultra-wideband radar [4,5], LIDAR [6] and digital cameras [7,8]. However,
all these technologies have challenges in terms of accuracy, privacy, and environmental ro-
bustness [9]. In this paper, we use a multi-sensors millimeter-wave (mmWave) radar sensor
as the sensing technology [10,11] to build upon our previous work [12], which improved
the tracking accuracy and the occluding problem (large group) for indoor people detection
and tracking. The calibration and fusion are essential since sensor-specific data have dif-
ferent coordinates. We also introduce noise reduction, clustering, and advanced tracking
algorithms between radar sensors and perform using data obtained from actual sensors.
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This paper includes two main contributions. Firstly, we present a systematic approach
for indoor object detection and tracking using multiple mmWave radar sensors. Two
noise reduction stages reduce noise and distinguish cluster groups through density-based
noise reduction and SNR data. The proposed data fusion method effectively estimates
the homography that describes the transformation between two radar planes. We can
visualize the objects’ information acquired by one radar on another radar sequence using the
data alignment and synchronized results. An efficient density-based clustering algorithm
provides high accuracy. The Unscented Kalman Filter (UKF) tracking algorithm performs
much better than the Extended Kalman Filter (EKF) in tracking accuracy and timing.
Furthermore, an indoor object tracking system was developed based on our proposed
method. By comparing the results to our previous work, the results show the method can
handle the effect of occlusions at higher numbers of weak data and be more accurate. The
paper is organized as follows. Section 2 details the research related to object detection
and tracking, including the various types of sensor technologies and algorithms used.
Section 3 presents the proposed architecture in detail, followed by the results evaluation
and discussion in Section 4. Finally, the study is summarized and the potential future work
is presented in Section 5.

2. Related Work

In recent years, practical implementations of machine learning and artificial intelli-
gence (Al) methods using different sensing technology for object detection and tracking
have begun to bear fruit outside of laboratory environments.

Passive Infrared Radiation sensors or PIR sensors use the change in the infrared heat
radiation of bodies to detect objects. Such sensors were used in research conducted by the
Auto-ID Laboratory in Japan, who reported an object measurement accuracy of 98.3% [13].
The disadvantages of such sensors are their narrow beam range and their limitation in
detecting objects that are relatively stationary [14]. They are also limited due to the fact
that PIR sensors require a wait time of at least 4 s before the state change is recognized; this
produces inconvenience as it requires people to wait [15].

Ultrasonic sensors measure objects by examining the returned echo signals. Recent
work in [4] proposed an object detector using multiple ultrasonic sensors. The system
used the signal-to noise ratio (SNR) of a returned ultrasonic pulse as an indication of an
object. A custom tracking algorithm was added onto the software pipeline to increase
accuracy. The experimental accuracy results were around 80%. However, ultrasonic-based
detection is plagued by significant safety concerns. Ultrasound waves affect people wearing
hearing-aids and can be heard by a variety of animals, rendering ultrasonic based object
detection unsuitable for indoor environments [2].

Due to the development of advanced embedded technology, onboard sensors like
LiDAR and cameras have gradually become a standard configuration for object tracking.
Researchers proposed many localization algorithms to obtain the accurate position of the
object by matching the data from onboard sensors and the digital map. In [6], a localization
method is proposed to estimate the pose of self-driving cars using a 3D-LiDAR sensor.
With a map-matching method proposed to match the features to the map, a robust iterative
closest point algorithm is utilized to deal with curb features, and a probability search
method deals with intensity features. However, LiDAR is too expensive for home use,
while throughout the development process, researchers have shown that haze can prove to
be a big issue for LIDAR sensors [16,17]. In [7,8], the researchers used image data and depth
learning methods to detect and track moving objects. These methods include decision trees,
hidden Markov models, and convolutional neural networks such as YOLO and PoolNet.
However, depth cameras only have a limited tracking range and accuracy while requiring
a clear view and the right lighting conditions. Moreover, another critical problem with
camera systems is their intrusive nature, leading to privacy concerns.

MmWave radar sensors are devices that use millimeter-wave signals, and it has been
an exciting approach for object detection-related tasks due to its robustness and stability.
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Its advantages include its protection of privacy, lack of dependence on light conditions,
high accuracy (i.e., low false alarm rate), long detection range, and wide detection an-
gle range [9]. INFINEON Technologies conducted a study using cardiopulmonary data
gathered from mmWave sensors to determine occupancy [18]. The Doppler information
extracted from the mmWave signals is then fed through band-pass filters to obtain the
required cardiopulmonary data. The system’s experimental accuracy was around 90% for
between one and three people.

Moreover, the most related work is Texas Instruments’ people counting and tracking
system (T1T) [19]. The system employs density-based clustering (DBSCAN) with an extended
Kalman Filter (EKF). However, its accuracy is questionable due to its use of DBSCAN on a
variable density point cloud. TI employed an EKF because their proposed system converted
the polar radar measurement to Cartesian. The conversion was performed for ease of
use but created an additional computational load that limited its embedded application.
Additionally, our previous work aimed to improve TI’s tracking system [12]. It improves
the accuracy from TI's 96% for one person to 45% for five people to 98% for one person to
65% for five people. However, our previous system has limited accuracy when dealing
with the occluding problem (a large group of people).

3. Materials and Methods
3.1. mmWave Radar Sensor Measurement System and Point-Cloud-Data Acquisition
3.1.1. mmWave Radar Sensor Measurement System

The mmWave radar sensor measurement system, including two millimeter-wave
radar sensors (IWR1642BOOST) and a laptop control terminal, was established to acquire
point-cloud data. The measurement system is shown in Figure 1. The main parameters are
shown in Table 1.

The radar used in this paper, IWR1642BOOST [20], is an evaluation board containing
a mmWave sensor with a Microcontroller Unit (MCU), which provides an end-to-end
solution for object detection. IWR1642 is a single chip frequency modulated continuous
wave (FMCW) radar from Texas Instruments (TI), which makes use of electromagnetic
wave signals to determine the range, velocity, and angular information of matters. The
fundamental concept of this type of radar is by first emitting a chirp signal (Tx) between 77
and 81 GHz, then capturing any signals reflected (Rx) by objects in its path, and mixing
the Tx and Rx signals to produce an intermediate frequency (IF), taking a snapshot of the
indoor location at a given point in time. The returned radar signal undergoes preliminary
processing on the sensor, the output of which is a point cloud to tell the existence of
an object.

The calculation process of the raw point-cloud data of the mmWave radar sensor
measurement system for multiple objects includes the following steps [7]. By performing
Fast Fourier Transform (FFT) to the signal IF, it can obtain the multiple peak frequency.
Each peak with a different phase denotes the presence of an object at a specific distance
(range) correspondingly. A second FFT performs the multiple steps to resolve things with
a different speed (doppler). The third FFT on the small change of phases corresponding
to the second FFT peaks to estimate the angle of arrival (AoA). By performing the above
steps, the output is a point cloud.
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Figure 1. Radar Measurement System. (a) mmWave IWR1642 BOOST Radar Sensor. (b) laptop
Control Terminal.

Table 1. Main Parameters of IWR1642BOOST Radar Sensor.

Performance Target Parameter Performance Target =~ Parameter
Number of RX 4 Range resolution 4.9 cm
Number of TX 2 Maximun velocity 18.64 Km/h

Field of view 120° horizontal, 30° vert ~ Velocity resolution ~ 0.297 Km/h
Frequency 77-81 GHz Periodicity 50 ms
Bandwidth 4 GHz Working voltage 5V

Range 14m Power consumption 2V

3.1.2. Point-Cloud Data Acquisition

The experiments were carried out at a research lab and a seminar room at the Uni-
versity of Auckland city campus. Experiments were conducted simulating various indoor
activities to evaluate the algorithms” performance. Data were recorded simultaneously
using two mmWave radar sensors mounted at a height of 1.8 to 2 m and a video camera to
gather ground truth data. Each of the sensors has a field of view covers ranging from 1 to
6 m and azimuth from —60° to 60°. The room was selected to maximize the full range of the
sensors. A 4.5 m by 6 m grid was drawn on the floor to contain the experiment within the
sensors’ range, which allowed us to control when occupants entered and left the site. The
selected activities tested the sensor’s capabilities and modeled real indoor scenarios. The
tested activities included walking, standing, and walking cross, with each activity repeated
multiple times, as shown in Figure 2.

The point cloud data were stored in a type of TLV (type-length-value) structure into
a data frame. Hence, it was essential to parse the data to ensure reliable and accurate
extraction in real-time. Each transmission’s parsing began by reading the frame header into
an array containing information such as the packet length, frame number, number of TLVs
(number of data points in the point cloud), the header checksum etc. Then the TLV data,
which contain the point cloud data, were read into another array. The TLV’s size depended
on the number of points detected in the field of view. The TLV header contained the TLV
length, which was used to read the values by indexing the correct positions of the data
frame. Figure 3 demonstrates a select frame of mmWave sensor raw point cloud data from
a 3D view.
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Figure 2. Point-cloud Data Collection. (a) Sensors Setup. (b) Research Lab: 2 People Walking Cross.
(c) Research Lab:Large Group Walking. (d) Seminar Room.
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Figure 3. Raw Point Cloud Data.

3.2. System Design

Our system is a detecting and tracking system that processes and analyzes the unique
properties of millimeter-wave radar. As Figure 4 shows, our research methodology includes
four significant modules, including noise reduction, data fusion, clustering, and tracking.
Firstly, the point cloud generated from the mmWave sensor is parsed and then processed for
noise. Analyzing the point cloud generated then infers people’s trajectories from a database.
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Figure 4. System Overview.

The operating pipeline is shown as follows:

1.  Point Cloud Generation and Parsing. The FMCW Radar transmits millimeter waves
to emit a radar signal and records the reflections in a scene at a given point in time.
The returned signal undergoes preliminary processing on the sensor, then computes
sparse points and removes those points corresponding to static objects, the output of
which is a point cloud. The point cloud data are packaged into a data frame, and each
frame has a header, followed by segments containing the point cloud information
encoded in type-length-value (TLV) format;

2. Noise Reduction. The noise reduction stage is further divided into static clutter
removal and signal-to-noise ratio (SNR) filtering;

3.  Data Fusion. In this section, a data fusion method aims to combine measurements
from multiple mmWave radar sensors that enable the tracker to efficiently utilize the
radial measurements of objects from the radar module;

4. Clustering. In this section, a density-based clustering algorithm is designed to figure
out how many objects are within the space at a given time;

5. Tracking. In this section, we associate the objects in consecutive frames and use
multiple object tracking algorithms to maintain trajectories of different people.

3.3. Point Cloud Generation and Parsing

The point cloud data were packaged into a data frame using the TLV format. Hence,
a parsing section must ensure reliable and accurate extraction before the data analysis
process. Each data parsing began by reading the frame header into an array, containing
information such as the packet length, frame number, number of TLVs (number of data
points in the point cloud), etc. Then the TLV data, which contain the point cloud data, were
read into another array. The TLV’s size depended on the number of points detected in the
field of view. The TLV header contained the TLV length, which was used to read the values
by indexing the correct positions of the data frame.

3.4. Noise Reduction
3.4.1. Static Clutter Removal

Static clutter removal was designed to eliminate as many of the static points as possible,
that is, non-range changing (static) objects from the scene. The steps of the static clutter
removal algorithm are listed as follows:

Step 1: Range processing performs Fast Fourier Transform (FFT) on Analog to Digital
Converter (ADC) samples per antenna per chirp. FFT output is a set of range bins;

Step 2: Perform static clutter removal by subtracting the estimated Direct Current (DC)
component from each range bin;

Step 3: Range processing results in local scratch buffers are Enhanced Direct Memory
Access (EDMA) to the radar data cube with transpose.

3.4.2. SNR Filtering

SNR filtering is the second stage of noise reduction. The higher the SNR of a point,
the higher the certainty that the point corresponds to a person. The SNR filtering model
aims to reduce the size of the remaining clusters to further improve performance and
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create additional distance between objects. The impact of SNR filtering is explained and
demonstrated further in Section 3.1.

In our SNR filtering method, the range of the sensor is divided into three regions.
Observations in each region are filtered using a different SNR threshold. We presented
a zone-based SNR filtering method to determine the optimal SNR ranges by using a
multiplicative linear model (Equation (1)), as shown in Figure 5.

10g(SNR;) = Bo + B1 x Range; + &, (1)

where B; is the regression slope. ¢ is the random unexplained error, and & ~ iidN(0, 02).

We then used the lower bounds of its confidence intervals for the thresholds of the
three different zones, including 1 m, 3 m, and 5 m. Table 2 contains the ranges and the
associated SNR thresholds.

log(SNR) vs Range

log(SNR)

18
W
&
W
=]

Range

Figure 5. SNR vs. Range-Multiplicative Linear Model.

Table 2. Range corresponding with SNR thresholds.

Range SNR Threshold
1-3m 338
3-5m 139
5-6 m 53

3.5. Data Fusion

The primary purpose of the data fusion technique is to combine measurements from
multiple sensors that monitor common objects considering the uncertainty of individual
sensors [21]. Ongoing research in data fusion technologies is mainly focused on vision-
based sensors and millimeter-wave radar. Marco et al. [22] present a multi-modal sensor
fusion scheme to estimate the three-dimensional vehicle velocity and attitude angles to
enhance the estimation accuracy. Long et al. [23] and Guo et al. [24] separately use
mmWave radar sensors and vision to detect surrounding obstacles and pedestrians. There
are currently only limited studies on multiple mmWave radar data fusion.

Therefore, we propose a data fusion method based on the information from the
mmWave sensors. We chose the information fusion method because it is simple in use and
optimality. In what follows, we first explain the proposed calibration method to acquire the
homography between the two radar sensors as described in Figure 6.
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Figure 6. Sensor geometry.

3.5.1. Calibration

Denote the radar sensor coordinates by R1(x,1, ¥;1, zr1) and R2(x,2, yr2, z,2), respec-
tively. If we fix the radar plane in z, = 0, and set one of the radar sensors as the reference
point (R1), then the relation between the two radar coordinates can be represented as:

X2 hir hi2 hi] [xn
Y2 | = |ho1 hxn ha| |yn (2)
1 h31 h3 hsz| |1,

where H = [hi,j]i,j:1,2/3 is the 3 x 3 homography which represents the coordinates relation
between the two radar planes. Next, to figure out the homography matrix H, we must
calculate the geometric transformations (translation and rotation) from Radar 2 to Radar 1.

(1) Translation. To translate the Radar 2 coordinate system to Radar 1 in the 2-D plane,
we firstly set Radar 1 as the reference as described in Figure 7.

Y F 3
R2(x2,y2)
k
R1(x1,y1) >
0 h X
x1=x2-h
yl=y2-k

Figure 7. Translation.
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The translation from R2 to R1 can be represented as:

X2 1 0 h|[xn
y2| =10 1 k| |yn 3)
1 0 0 1 1,

where x, y is the offset value in the X-Y plane between the two radar sensors.

(2) Rotation. Rotation is a relative quantity. The rotation of one point in the R1 plane
is meaningful only concerning another point in R2. As such, rotation sensing capability
requires two frames to make a measurement: measured and reference points. Again, we
choose R1 for reference and the rotation relation described in Figure 8.

Y2
Y1l
F 9

- X2

O - Rotation angle

Figure 8. Rotation.

The rotation from R2 to R1 can be represented as:

Xy cosf sinf O] [x
Yyro| = | —sin® cosf 0] |yn 4)
1 0 0 1] 11,

where 6 is the rotation angle in X-Y plane between the two radar sensors.
(3) Combined transformations. The combined geometric transformations from R2 to
R1 can be represented as:

X2 cosf sinf —hcosO —ksinf] [x,
Yro| = |—sin® cosf hsin® —ksind Y 5)
1 0 0 1 1,

where Equation (2) is represented as:

hi1 hip his cosf sinf —hcosf —ksinf
H= |hyy hyp hy| =|—sinf cosf® hsinf —ksinf (6)
h31 h3p  hs3 0 0 1.

3.5.2. Data Alignment and Synchronize

Data fusion’s primary purpose is to collect as much data as possible, giving more
reliable performance. However, just collecting data from different data acquisition systems
without efficient data alignment and a synchronised rule can seriously degrade the quality
of an estimate even with a large amount of data [21].

However, even for two sensors configured to have identical sampling rates, minor
differences from the actual sampling rate will occur on each sensor. They can result in
gradual misalignment between samples from these two sensors. Sensors may also have
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different internal timestamps at the start of recording due to clock drift, resulting in an
initial time offset between recordings. Thus, we want to perform some alignment and
synchronization on these recordings that account for both sampling rate drift and initial
clock offsets. The synchronization needs to be both accurate and have a reasonable runtime.
Let us consider the two data acquisition systems, R1 and R2. Each of these sources
provides a list of detection 1 = {ay,ay,...,a5} and 2 = {by, by, ..., b, }, respectively. To
combine the information from these sources, we need to find the correlation between the
detection in r1 and r2. All possible correlations can be expressed as a magnitude matrix
|r1 x r2|. In this paper, we use cross-correlation [25] to compare the two-time series and
objectively determine how well they match each other and, in particular, when the best
match occurs. The entire general pseudocode to the algorithm is shown in Algorithm 1.

Algorithm 1: Data Alignment and Synchronize with Perspective Transform.

Require:
6—Sensor position phase from sensor 2
x,1, yr1—Cartesian position dataset in sensor 2 perspective
X2, yrp—Cartesian position, horizontal and vertical dataset in sensor 1
perspective
h, k—Horizontal and vertical position differences between sensor 1 and sensor 2
S—Position magnitude of both sensors in sensor 1 perspective point of view
Ensure:
1: Convert both datasets into Cartesian representation from sensor raw data.
2: Project horizontal and vertical data set form Sensor 2 to Sensor 1 using
perspective transform defined in (4). x,2, y,» <— Perspective(x,1,Y,1, 0, h, k)
3: Evaluate objective position magnitudes from sensors 1 and 2 using the Pythagorean
Theorem.
S<— Pythagorean(x,y)
4: Estimate sampling delay between both sensors, cross-correlated the
prospectively projected sensor 2 data set with Sensor 1 data set.
5: Obtain cross-correlation between sensor 1 and sensor 2.
6: Get the time stamp of the maximum likelihood of the cross-correlated value.
SamplingDelay < Expected(S1, Sy)

3.6. Clustering

A clustering method is the most efficient way to identify targets based on spatial
information. Ti implemented DBSCAN at this stage and tried to identify the location
information of targets [26], but failed to achieve high accuracy due to the varying density
issue. During the literature review, a modified version of DBSCAN, VDBSCAN [27], was
first tried to address this problem, yet there was no significant observation in accuracy
improvement in this kind of system. Thus, we employed a density-based clustering
algorithm to address this problem.

The beginning section of the density-based clustering algorithm works like the noise
reduction module, as it treats each point as a node, and then calculates the distance matrix
between itself and all the other nodes. However, in the clustering algorithm, if a node
is within a distance threshold of 0.8 to the other nodes, then those nodes are extracted.
If the number of points that have been associated together is greater than ten, it is then
classified as a cluster. This process is iterated until all nodes are scanned and filtered. Ten
was chosen as the minimum number of points through parameter optimization analysis,
which is further discussed in Section 4.3.1.

The last stage of clustering was using k-means to convert the grouped clusters into
individual centroids representing the objects. The k-means method calculates the mean of
a given number of clusters, k. Through our previous stages, we know how many distinct
groups of clusters there are. Hence, it uses this information to create k random cluster
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points, which then it associates each centroid point with. The mean is then calculated, and
the cluster points are shifted to the new means’ positions. The process is repeated until no
new changes in the associations are detected. The final means of the clusters represent the
centroids of our objects.

The parameters associated with the clustering algorithm are:

*  Minimum cluster size (minClusterSize): smallest number of points required to classify
as a cluster;

¢  Minimum Maximum distance between points (maxDistance): largest distance possible
between neighboring points to be associated within the same cluster.

As mentioned above, DBSCAN is not ideal because of the nature of the radar data.
DBSCAN assumes a constant cluster density which is not the case with our data [28]. As
shown in Figure 9, a person closer to the sensor (located at origin) is represented by a
denser and more uniform cluster. In contrast, a further away person is represented by a
less dense and more variable cluster.

One Person Walking Around The Room

..ii-g:i' ‘;;;i.

Y Position (m)
w

%
2 o5 i,

Nee”

-6 -4 -2 0 2 4 6
X Position (m)

Figure 9. Comparison of density variations at different distance.

The density-based clustering algorithm we designed for this system can manage
variable cluster densities. However, the limitation of this algorithm is it cannot handle
noise as well as DBSCAN. Thus, creating the need for the prior noise reduction stage.

3.7. Tracking

The tracking stage is expected to input the point cloud data from the clustering layer,
perform target localization, and report the target list to the user for visualization. Therefore,
the tracker’s output is a set of trackable objects with specific properties (like target ID,
position, velocity, and other features) that the up layer can use.

3.7.1. Tracking Coordinate System

We transferred the radar data from the polar system to the Cartesian system for conve-
nience during the data fusion stage. In the tracking stage, we chose to track in Cartesian
coordinates to keep the same page with data fusion and for target motion extrapolation.
However, we still decided to keep measurement inputs in polar coordinates to avoid error
coupling. We used Unscented Kalman Filter (UKF) to linearize the dependencies between
tracking states and measurement vectors.

The tracking in Cartesian coordinates is illustrated in Figure 10 [19]. There is a single
reflection point at time n. Multiple reflection points represent real-life radar objects. Each
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point is represented by range r (R, < 7 < Ryax), angle 8 (=6, < 8 < 014x), and radial
velocity 7 (range rate).

The angular location coordinates are converted to Cartesian coordinates using equa-
tions as below:

x =rcos(rt/2 — (a+0)) =rsin(a + 6) (7)
y=rsin(rt/2 — (a+0)) = rcos(a + 0). 8)
T A

point,

¥
b

Radar
Figure 10. Tracking in Cartesian coordinates.

3.7.2. Unscented Kalman Filter + Constant Velocity Model

We opted for the UKEF, as it has not been researched in the domain of mmWave tracking,
and it can improve accuracy by avoiding the EKF’s process errors caused by linearization
by taking only one point, i.e., mean, and approximate transfer of the coordinates from Polar
to Cartesian. The UKEF is well-suited for tracking indoor people using a constant velocity
(CV) model, and we also considered an acceleration model by random noise. The UKF
process is as follows:

The state of the Kalman filter at time instant # is defined as:

X(n) =FX(n—1)+Q(n), 9)
where the state vector X(n) is defined in Cartesian coordinates,
X(n) = [x(n) y(n) 2(n) y(n)]". (10)
F is a transition matrix,

1 0 At O

01 0 At
F=loo 1 o0 (1)

0 0 0 1,

where At is the mmWave sensor sampling time interval and was set to 50 ms. Q is the
system process noise covariance matrix.
The input measurement vector z(n) includes range, angle and radial velocity,

z(n) = [r(n) 8(n) 6(m)]". (12)

The relationship between the state of the Kalman filter and the measurement vector is
expressed as:
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z(n) = H(X(n—1)) + R(n), (13)

where R(n) is the measurement noise covariance matrix. Since our indoor tracking system
only provides position not velocity, the measurement function is:

100 0
H= {0 10 0.] 14

Predict Step
(1) Calculate Sigma Points. The number of sigma points depends on the dimensional
of the system N. The general formula is 2N + 1, where N denotes the dimensions.

Xo =X
xi:x—l—(\/(N—i-/\)P)i for i=1,..,,N (15)
xi=x—(/(N+A)P). for i=N+1,.,2N,

1—n

where Calligraphic x denotes the Sigma point matrix, x is the mean of the Gaussian and A
is the spreading parameter that tells how far from the mean we should choose our sigma
points. Here, we define A = a?>(N + «) — N. P is a covariance matrix. The i subscript
chooses the i" column vector of the matrix. In other words, we scale the covariance matrix
by a constant, take its square root, and ensure symmetry by adding and subtracting it from
the mean. One of the sigma points is the mean, and the rest we calculate based on the
above equations.

(2) Computing Weights of Sigma Points. We use one set of weights for the means, and
another set for the covariance. The weights for the mean of ) is computed as:

A

m __
=N (16)
The weight for the covariance of xj is:
wC:Lle—zxz—l—ﬁ (17)
0T N+A '

The weights for the rest of the sigma points xy... xon are the same for the mean and
covariance. They are:

"= = ———— i=1,...,2N. 1
w w; AN for i ,...,2N (18)
(3) Choices for the Parameters. We set § = 2 for Gaussian problem choice, x =3 — N,
and 0 < &« < 11is an appropriate choice for «, where a larger value for a spreads the sigma
points further from mean.
(4) Unscented Transforming Sigma Points and Calculate new Mean and Covariance.

. 2N
X = Ew?zg(?(i)
i=0

IN (19)
P =Y wi(s(x) — ) (g0) — )T +Q,
i=0

where x' is predicted mean, P' is predicted covariance, w is weights of sigma points, g is
process model (non linear function), and Q is the system process noise matrices.

Update Step

In the update step, Kalman filters perform the update in measurement space. Then
we have a measurement coming from the sensor. To compute the difference between our
predicted values of mean and covariance and actual values of mean and covariance, we
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convert the sigma points of the prior into measurements using a measurement function
Z = h()x). The equations below show the calculated mean and covariance of these points
using the unscented transform.

2N
x; =Y w'Z

i=0

- (20)
P.=Y wi(Z—x:)(Zi —xz)T +R,

i=0

where Z has transformed sigma points in measurement space, & is a function that maps our
sigma points to measurement space, which can transform our state-space to measurement
space to equate them in the same units. x, is the mean in the measurement space, P, is
covariance in the measurement space, and R is the measurement noise matrix.

Next, we compute the residual and Kalman gain. The residual of the measurement
z is:

Y=2z— Xz (21)

To compute the Kalman gain, we first calculate the cross-covariance of the state and
the measurements, which is defined as:

2N
P = ) wi(xi = x)(Zi = x)". (22)
i=0
Then the Kalman gain K is defined as:

K = Py, P 1. (23)

Finally, the new state estimate using the residual and Kalman gain and the new
covariance are computed as:

x:x/+1<y

) (24)
P=P +KPK'.

3.7.3. Data Association

The Kalman filter can only track a single person at a time. Therefore, a data association
method to match people between discrete frames of information is required to enable
multiple target tracking, as shown in Figure 11. Data association involved calculating the
distance between each object’s previous frame location and all the new frames’ measured
locations. Hence, each object in the previous frame will be associated with all the new
objects’ data and their distances. After that, the global nearest neighbor is found, i.e., the
object with the smallest distance. The object is then associated with the new measured data
and deleted from the distance matrix. This process is iterated until all the previous frame’s
objects have been associated. All unassociated objects are classified as new entrants.

After data association is performed, the associated centroids can be passed through the
update step of the Unscented Kalman filter, producing location estimates of each person.
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Figure 11. Data Association Visualized.

4. Evaluation
4.1. SNR Range Optimization Analysis

As explained in Section 3.4.2, noise reduction is performed using SNR values. We per-
formed a statistical analysis to determine the optimal SNR ranges by fitting a multiplicative
linear model, using Equation (1). We then used the lower bounds of its confidence intervals
for the thresholds of the three different zones, including 1 m, 3 m, and 5 m. Hence, this
resulted in the SNR thresholds of 338, 139, and 53 for 1-3 m, 3-5 m, and 5-6 m, respectively.
Using different SNR thresholds is required as, on average, the SNR of observed people
increases with range. The demonstration of SNR filtering is shown in Figure 12. The two
targets were separated by the SNR filtering process when they were crossing each other.

After SNR Filtering

Pr

Y Poisition (m)
w

4 6 -6 -4 -2 0 2 4 6

X Poisition (m)
()

Figure 12. Demonstration of SNR Filtering. (a) Before and After SNR Filtering Process. (b) Experi-
ment Site.
4.2. Data Fusion Evaluation

A data fusion method was used to simultaneously process the data of the two radar
sensors used for indoor people detecting and tracking. The radar sensors” data obtained
from the actual experiment matched in the manner described in Section 3.1.

4.2.1. Calibration

Figure 13 shows the raw data from the two radar sensors for one person walking
around (“OnePersonWalking.mat”) obtained through the experiment (Section 3.1.2).
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Figure 13. Raw Data Plotting Before Calibration.

The point cloud data obtained through the experiment do not coincide with the
coordinates of each sensor. For the coordinate matching, the transformation matrix H (the
coordinates relation between the two radar planes) obtained using the experimental data is
as follows. Where h = —3 (m) is horizontal shift, k = 3 (m) is vertical shift but upside-down
angle, 8 = —90/180 x 7 is rotation angle offset.

cosf sinf® —hcosf —ksinf —3.6732 x 10~° -1 3
H=|—sinf® cosf hsinf —ksinf | = 1 —36732x107° 6 (25)
0 0 1 0 0 1.

In this experiment, we used 7104 frames data (3717 frames from Sensor 1, 3387 frames
from Sensor 2) to obtain the calibration result. As a result, we transformed the object
coordinate of Sensor 2 into Sensor 1 coordinates by using Equation (5). Figure 14 shows the
combined transformation of the two sensors.

Sensor 1 Path Sensor 2 Path

Y Position {m)
=)

Y Position {m)
o

X Posifion (m) X Position (m)

(a) (b)
Figure 14. Combined Transformation After Calibration. (a) Sensor 1 Trajectory. (b) Sensor 2 Trajectory.

4.2.2. Synchronize Result

As mentioned in Section 3.5.2, we proposed a data alignment and synchronized
algorithm to obtain cross-correlation and the delay frames between the two sources. The
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calculated delay frame number and the final data fusion result are shown in Figure 15. As

can be seen, the sensor 2 delayed frame number is 468 frames, and the sensor 2 delayed
timeis Ty = % = 23.4 s. Moreover, the transformed trajectory of the two sensors
is not the same, i.e., using two sensors for indoor people tracking can obtain much more

point cloud data than a single one.

¥ Positan )

o
X positon (m)

yyyyyyyyyyy

(a) (b)

Figure 15. Synchronize Result. (a) Correlation and Find the Delay Frames. (b) Transformed Trajectory

of the Sensors.

4.3. Clustering Evaluation
4.3.1. Clustering Parameter Optimization

The parameters minClusterSize and maxDistance were optimized by running various
combinations of the parameters through the dataset collected. Pairs of maxDistance and
minClusterSize versus accuracy are shown in Figure 16. The highlighted point in Figure
maximized accuracy with an accuracy value of 96.8% and minClusterSize of 10 points and
maxDistance of 0.8 m.

Accuracy % versus minClusterSize versus maxDistance
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Figure 16. View of 3D scatterplots Showing Parameters That Maximized Accuracy.

4.3.2. Clustering Accuracy

We compared our current system with our previous work [12] to evaluate the cluster-
ing accuracy. The accuracy was calculated by comparing the number of correctly classified
samples to the total number of samples collected. Figure 17 shows that with between
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one and five people, the dual sensors system’s accuracy ranges between 84% and 99%.
The previous system has an accuracy of between 65% and 98%. However, it also shows
that the performance of both systems degrades as the number of people increases. As
the number of people increases, more objects begin impeding one another, decreasing
accuracy. Moreover, we noticed that the amount of missing/corrupted data sent from the
millimeter-wave sensor increases with a higher number of people. Missing/corrupted
frames are a significant reason for the discrepancy in accuracy between both systems.

4.4. Tracking Evaluation
4.4.1. Tracking Algorithms

To evaluate the tracking algorithms based on the data association algorithm and Un-
scented Kalman Filter (UKF), we mainly focus on the tracking accuracy and timing against
Kalman Filter (KF) and Extended Kalman Filter (EKF) and and use a public dataset [29] with
ground truth. This is a famous public dataset for Kalman Filter fusing radar sensor mea-
surements. We ran through various options for the UKF, EKF, and KF weighting matrices
initialization and optimization and chose the best performing combinations for comparison.

By contrast, UKF, EKF, and KF are employed to track the same target. Figure 18 shows
the filter results between UKEF, EKEF, and KF using a public dataset, and Table 3 shows the
comparison of Root Mean Squared Error (RMSE) and timing between the UKF, EKF, and
KF with a public dataset.

As can be seen, both KF, EKF, and UKF can estimate unmeasurable system states and
smooth out the process/measurement noise very well. However, in terms of algorithmic
accuracy, UKF performs much better than the KF and EKF since UKF linearizes a nonlinear
function around multiple points.

Table 3. Comparison Between the UKF, EKF, and KF Using Public Datasets.

Algorithms Total Frames Object Number RMSE Timing (ms)

KF 1224 1 0.1025 171.9
EKF 1224 1 0.0822 265
UKF 1224 1 0.0365 359.4

[ Previous System

Accuracy (%)

1 2 3 4 5
Number of People

Figure 17. Accuracy vs Number of People.
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Figure 18. UKF vs. EKF vs. KFE. (a) KE (b) EKF. (c) UKF.

4.4.2. Tracking Accuracy

Two datasets were collected from a walking TurtleBot2 robot [30] (model of a lower
object) at the three position-known locations (sensor 1 coordinate system as a reference) to
evaluate the tracking accuracy. The moving speed of TurtleBot2 was configured as 0.35 m/h
for linear and 3.1 m/h for angular. The experiment site, sensors setup, and sensors tracking
shot after fusion are shown in Figure 19. A 4 m by 4 m grid was drawn on the floor to
contain the experiment within the sensors’ range, which allowed us to control when the
robot reached and moved at the three position-known locations.

Then, we ran those datasets through our current dual sensors system, the previous
work, and a commercial system from Texas Instruments (TI) and calculated the Root Mean
Square Error (RMSE) in X Y directions. The location coordinates from sensor 1 are shown in
Table 4. Table 5 shows that the average position errors of our current system were 0.2136 m
in the x-direction and 0.2290 in the y-direction. In comparison, the average position errors
of the previous system were 0.5401 m in the x-direction and 0.5601 m in the y-direction.
The average position errors of TI's system were 0.5481 m in the x-direction and 0.5903 m in
the y-direction.
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Figure 19. Tracking Accuracy Experiment. (a) Experiment Site. (b) Sensors Setup. (c) Tracking Shot.

During the experiment, occlusions and weak data occured when the robot entered a
range in which the sensor returned weak signals or was lost from the view of the sensor by
a height lower than a human being. This resulted in the robot not appearing in the point
cloud due to the lower amount of signal reflections. Although the use of millimeter waves
and advanced tracking algorithm theoretically increased the detectability of the smallest of
movements, it would still only appear with little to no presence in the point cloud as there
was still a smaller number of reflections in total. Data fusion from two millimeter-wave
sensors is a good solution that decreases the effect of occlusions at higher numbers of weak
data and increases the effective field of view. The dual sensors’ fusion system can improve
the tracking accuracy dramatically.

Table 4. Marked Ground Truth for Tracking Accuracy Comparison.

Location X (m) Y (m)
A -2 3
B 0 5

C

2

2.8
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Table 5. RMSE Comparison Between Two Systems.

DataSet Total Frames Systems RMSE X (m) RMSEY (m)
Location A 2826 TI System 0.6630 0.6983
Location A 2657 Previous System 0.6505 0.6818
Location A 5236 Current System 0.2530 0.2648
Location B 2863 TI System 0.4682 0.4830
Location B 2963 Previous System 0.4316 0.4641
Location B 5089 Current System 0.1553 0.1892
Location C 1626 TI System 0.5331 0.5895
Location C 1864 Previous System 0.5382 0.5343
Location C 3395 Current System 0.2326 0.2331

5. Conclusions

In this paper, a mmWave radar sensors fusion system for indoor object detecting and
tracking is designed based on the proposed data process algorithms. Our methodology is
processed in the order of point cloud generation and parsing, noise reduction, data fusion
to combine measurements from multiple sensors, clustering into clusters, and referencing
to identify the centroids, then tracking the centroids by using Unscented Kalman Filter
(UKF). The experiments were set up at different data collection sites modeling various
indoor scenarios. Compared to our previous system and a commercial system, this fusion
system can handle the effect of occlusions at higher numbers of weak data and detect and
track each object more accurately.

The real-time solution of our system is constrained by processing time, which will only
improve as processing power advances. The accuracy and strength of the data decreased
within a few meters of the range; with further advancements in mmWave technology, this
can be improved. The main challenge with clustering is recognizing noise from objects.
Hence, a deep learning approach could be an exciting avenue for future research to improve
accuracy and classify various species’ objects.
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