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Abstract: Convolution neural networks (CNN), support vector machine (SVM) and hybrid CNN-SVM
algorithms are widely applied in many fields, including image processing and fault diagnosis.
Although many dedicated FPGA accelerators have been proposed for specific networks, such as
CNN or SVM, few of them have focused on CNN-SVM. Furthermore, the existing accelerators
do not support CNN-SVM, which limits their application scenarios. In this work, we propose a
hybrid CNN-SVM accelerator on FPGA. This accelerator utilizes a novel hardware-reuse architecture
and unique computation mapping strategy to implement different calculation modes in CNN-
SVM so that it can realize resource-efficient acceleration of the hybrid algorithm. In addition, we
propose a universal deployment methodology to automatically select accelerator design parameters
according to the target platform and algorithm. The experimental results on ZYNQ-7020 show that
our implementation can efficiently map CNN-SVM onto FPGA, and the performance is competitive
with other state-of-the-art works.

Keywords: convolution neural network (CNN); support vector machine (SVM); field-programmable
gate array (FPGA); hybrid algorithm accelerator; computation mapping; design space exploration (DSE);
high-level synthesis (HLS)

1. Introduction

Machine learning algorithms, such as CNN and SVM, have achieved great success in
image classification, target detection and other fields. Hybrid CNN-SVM algorithms have
also been extensively adopted in medical image recognition [1] and fault diagnosis [2], etc.
With the recent development of edge computing and the Internet of Things (IoT), a growing
number of application scenarios in embedded systems require algorithms to be processed
in real time and with low power consumption. FPGAs have been widely used in these
scenarios to deploy algorithms due to the high energy efficiency and reconfigurability.

Recently, many dedicated FPGA-based accelerators have been proposed for CNN or
SVM algorithms [3–5]. They can achieve high performance in CNN or SVM acceleration.
However, they are not suitable for other CNN-based or SVM-based hybrid algorithms, such
as CNN-SVM or CNN-RNN. This severely limits the application scope of these accelerators.
Proposing a hybrid CNN-SVM accelerator is challenging and valuable because CNN and
SVM each has unique calculation modes and resource requirements.

Currently, the research of hybrid algorithm accelerators has also gradually gained
attention. The authors in [6] designed high-performance RTL IPs of CNNs and RNNs to
accelerate their hybrid algorithm; however, the incompatibility of IPs caused insufficient
utilization of hardware resources, and it is difficult for the RTL design to follow the rapid
development of algorithms. The work [7] transformed different calculation modes of CNN
into a uniformed matrix-multiplication before acceleration. However, the convolution
in CNN requires data reuse. Therefore, there will be a large amount of data duplication
leading to bandwidth waste because of the transformation. Work [8,9] used the same
hardware resource to implement different calculation modes in hybrid algorithms.
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As in [6,7], they all lack guidance for deploying algorithms on specific platforms
efficiently in practical applications. The work [3,10] made an in-depth and comprehensive
design of a CNN accelerator based on FPGA, which was not suitable for SVM. The authors
in [11,12] studied the SVM FPGA accelerator; however, they accelerated SVM computation
in simple hardware implementation.

Our work proposes a novel FPGA-based hybrid CNN-SVM accelerator and deploy-
ment method, which provides a reference for the design of other hybrid algorithm accelera-
tors. The underlying general operator and computation mapping strategy are applied in
the accelerator to be compatible with the different calculation modes in CNN and SVM on
the same hardware resource. Depending on such a hardware-reuse method, our accelerator
greatly improves resource utilization and reduces bandwidth requirements. In addition,
our work is flexible and scalable owing to using high-level-synthesis (HLS) technology.

The main contributions of this work are:

1. A novel computing architecture based on hardware reuse is designed for compatibility
with hybrid CNN-SVM. We apply a resource-efficient general operator to implement
typical calculation modes, such as convolution in CNN and decision functions in
SVM.

2. A computation mapping strategy is adapted for transforming SVM to spatial convolu-
tion. In this way, the accelerator can efficiently reuse the computing logic resource to
complete the inference calculations of CNN-SVM.

3. A universal deployment methodology is provided that combines the uniformed
representation of CNN and SVM with the computing architecture of our acceler-
ator. According to the target platform and algorithm, it supports searching the
optimal implementation parameters for CNN, SVM or CNN-SVM through design
space exploration.

4. A typical CNN-SVM hybrid network is implemented with the proposed computing
architecture and computation mapping strategy. It can achieve a high performance
with 13.33 GOPs and 0.066 NTP with very few resources, which outperforms other
state-of-the-art methods.

2. Architecture and Realization

In terms of the calculation principles of CNN and SVM, the convolution calculation
in CNN and the decision function calculation in SVM can be decomposed into matrix
multiplication or matrix–vector multiplication in the underlying implementation. The hy-
brid CNN-SVM accelerator proposed in this section reconstructs the calculation of SVM
and transforms it into the spatial convolution. Therefore, the accelerator can efficiently
implement different calculation modes of CNN and SVM.

2.1. Hybrid CNN-SVM Accelerator Architecture

The proposed CNN-SVM accelerator architecture is shown in Figure 1. In order to fully
exploit the hardware resources, we use the same computing logic resources to implement
the core computing parts of CNN and SVM (i.e., convolution in CNN and the decision
function in SVM), and the underlying calculation is supported by the resource-efficient
general operator.

Moreover, considering the scalability of the accelerator, other parts of CNN and
SVM (i.e., pooling, activation functions and voting), which are incompatible with the core
computing parts and require very few resources, are implemented separately.



Electronics 2022, 11, 2208 3 of 11

Figure 1. Overall architecture of the hybrid CNN-SVM accelerator.

2.2. Resource-Efficient General Operator

In order to be compatible with the computation-intensive convolution in CNN and the
communication-intensive decision function in SVM, our hybrid CNN-SVM accelerator use
the tiled-convolution method [4] to construct the basic processing element (PE) and adopts
a corresponding computation mapping strategy for transforming the decision function into
convolution. Consequently, it enables CNN and SVM to reuse the underlying PE to achieve
high performance and resource utilization.

The general operator is shown in Figure 2. It is optimized in two dimensions with the
parallelisms of input channel (Tn) and output channel (Tm). First, it takes Tn elements as
input from the convolution feature map or reconstructed SVM feature vector in each clock
cycle. Second, the input elements will multiply and accumulate with the corresponding
weight through a multiply-accumulate (MAC) tree of size Tn · Tm. Finally, different
calculations, such as bias accumulation, pooling, activation functions and SVM voting, is
performed with the constraint of the current layer type.

Figure 2. Resource-efficient general operator.



Electronics 2022, 11, 2208 4 of 11

2.3. General Implementation of CNN-SVM

Typical calculation modes of CNN include operations, such as convolution, activation
functions and pooling [9]. Convolution is the core block of CNN during feed-forward
computation. It receives several input feature maps and applies 2-D convolution with
kernel weights and bias to generate local output feature maps as in Equation (1):

OutputFMj =
N

∑
i=1

InputFMi ∗Weightij + biasj (1)

where InputFMi and Weightij represent the i-th input feature map and the convolu-
tion kernel weights applied on the i-th input map to generate the j-th output feature
map, respectively.

Then, a nonlinear activation function is applied on every pixel of output feature maps
to improve the expressive ability of CNN. The rectified linear unit (ReLU) as shown in
Equation (2) is the most frequently adopted function in CNN.

ReLU(x) = max(x, 0) (2)

Pooling is adopted in the middle of a continuous convolution layer for down-sampling
and to avoid over-fitting. It outputs the maximum (max pooling) or average (average
pooling) value of each subarea in the input feature map.

The implementation of CNN based on a general operator is shown in Figure 3. First,
the input feature map is divided into < Tr, Tc, Tn >, where Tr, Tc and Tn are the tiling
factors of the row (Ri), column (Ci) and input channel (N) in the feature map, respectively.
The partitioned CNN feature map is multiplied and accumulated with the corresponding
kernel weight < Kr, Kc, Tn >. Then, the activation function and pooling operation are
performed to obtain the sub-block < Tx, Ty, Tm > of the output feature map < Ro, Co, M >.
As CNN is generally stacked by CONV-ReLU-POOL, our implementation is aimed at this
structure. Depending on the target CNN network, ReLU and POOL can also be flexibly
replaced by sigmoid, tanh, global average pooling and so on.

In this working mechanism, PE is repeatedly reused until the specified layer is
completed, thereby, realizing the standard calculation mode of CNN. In addition, our
implementation has a certain versatility for large-scale CNN networks due to the tiled-
convolution processing.

The core part of SVM is the decision function (Figure 4. Equation (1)). Considering the
characteristics of parallel computing on FPGA, the kernel function K(xi, x) implemented
in this work is a linear kernel as shown in Figure 4. Equation (2). Figure 4 shows that
we can combine the weights (αi, γi) into a matrix (W) during inference calculation and
convert them into multiplication and accumulation operations of W matrix and I vector,
which can be regarded as the calculation mode of matrix–vector multiplication as shown
in Figure 4. (Nsvm and Msvm in Figure 4 represent the dimensions of the input and output
feature vectors of SVM.)
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Figure 3. Implementation diagram of CNN.

Figure 4. Convert decision function into matrix–vector multiplication.

As shown in Figure 5, when mapping the transformed decision function to spatial
convolution, two optimized computation mapping strategies are proposed: I-FM (input to
feature map) and K-FM (kernel to feature map). In order to maximize the utilization rate of
hardware resources, both strategies are intensive-mapping, which means that the mapped
SVM vectors or weights almost filling all the feature maps (Ri · Ci) and filters (Kr · Kc).
In addition, these two strategies incorporate batch processing to improve the data reuse
rate and reduce the dependence on bandwidth during SVM calculations.
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Figure 5. Computation mapping strategies of SVM.

I-FM strategy shown as Figure 5a maps the input vector (I) of SVM to the CNN input
feature map, and the kernel weight matrix (W) is mapped to the convolution kernel. Clearly,
the weight reuse rate of this strategy is batch; however, batch should not be overly large
because of the restriction of Tr and Tc.

The K-FM strategy shown as Figure 5b maps the kernel weight matrix (W) to the
CNN input feature map, and the input vector (I) of SVM is mapped to the convolution
kernel. The weight reuse rate of K-FM is also related to batch. However, since K-FM
performs multi-batch processing on the output channel, batch in this strategy is not limited.
To maximize the utilization of DSP, the recommended batch selection is equal to or close to
Tm, and thus the batch numbers of the outputs can be obtained in one period. Moreover,
this strategy can also reduce the number of reusing processing elements and data overload.
Therefore, if batch is greater than Tn, K-FM is more efficient than I-FM.

The implementation process of SVM is shown in Figure 6. First, the calculation of SVM
is converted into the matrix–vector multiplication in Figure 4, and then it is mapped to
spatial convolution through the computation mapping strategy (I-FM/K-FM). In addition,
if multi-classification issues are involved, voting is also required. By this means, the general
operator can be efficiently reused for implementing SVM.
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Figure 6. Implementation of SVM.

3. Universal Deployment Methodology

In order to efficiently map a hybrid CNN-SVM algorithm onto an FPGA-based ac-
celerator, we propose a universal deployment methodology. Given the target algorithm
structure and platform hardware resource constraints, it can search the optimal archi-
tecture design parameters (tiling factors and SVM-mapping parameters) through design
space exploration.

3.1. Uniformed Representation

For the sake of making this methodology not only suitable for CNN-SVM but also for
the individual design of CNN or SVM, we use a uniformed representation for CNN and
SVM in Table 1, which also facilitates the subsequent design space exploration. Benefiting
from this representation, our method can also be easily extended to other hybrid algorithms,
such as CNN-RNN. Furthermore, considering the difficulty of SVM-mapping strategies
selection under different batch size and hardware resource constraints, we will conduct a
quantitative experiment in Section 4 to compare I-FM and K-FM.

Table 1. Uniformed representation parameters for CNN and SVM.

Network
Parameters

Uniformed
Representation CNN

SVM

I-FM K-FM

Input FM Ri · Ci Rconv
i · Cconv

i Batch · Nsvm/Tn Msvm · Nsvm/Tn
Output FM Ro · Co Rconv

o · Cconv
o Batch Msvm

Input Channel N Nconv Tn Tn
Output Channel M Mconv Msvm(Tm) Batch(Tm)

Kernel Kr · Kc Kr · Kc Nsvm/Tn Nsvm/Tn
Stride Sr · Sc Sr · Sc Nsvm/Tn Nsvm/Tn

3.2. Resource Evaluation Model

To meet the resource constraints of target platform and performance requirements, we
combined the uniformed representation in Table 1 to construct a corresponding evaluation
model for the resource consumption of our hybrid CNN-SVM accelerator. This model can
be used to estimate the consumption of computing resources (DSPs) and memory resources
(BRAMs), which we most care about in the FPGA-based algorithm accelerator. In order
to facilitate the general deployment of CNN and SVM, this resource evaluation model is
similar to the evaluation model in most present studies of CNN accelerators.

The parallelism of operator in accelerator is Tm · Tn. Since DSP blocks in FPGA are
used to implement multiplication and addition operations with HLS, the DSP resource
consumption is:

DSP = Tm · Tn · (MULdsp + ADDdsp) (3)
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where MULdsp and ADDdsp are the number of DSPs required for multiplication and addi-
tion, which are different under various levels of data accuracy (such as FP32: MULdsp = 3,
ADDdsp = 2).

The on-chip Block RAMs (BRAMs) consumed by the accelerator are divided into three
parts: input buffer, weight buffer and output buffer. Input buffer stores the partitioned
CNN feature map or mapped SVM vector, and the block size is Tr · Tc · Tn. The weight
buffer stores the corresponding kernel weight (Kr · Kc · Tn · Tm). The output buffer is
divided into two parts to store the results of PEs (multiplication and accumulation) and
post-processing (activation function, pooling and SVM-bias accumulation), and the size is
(Tr · Tc · Tm+ Tr/2 · Tc/2 · Tm). Thus, the total BRAM resources used in the accelerator are:

BRAM =
CEILING(Tr · Tc, 2)

512
· (Tn + Tm)

+
CEILING(Kr · Kc, 2)

512
· (Tn · Tm)

+
CEILING(Tr/2 · Tc/2, 2)

512
· Tm

(4)

where CEILING(X, 2) means that X is a multiple of 2, and the minimum is 512, which
depends on the characteristic of HLS.

3.3. Design Space Exploration

The central issue of design space exploration is how to select the architecture design
parameters in Table 1 to maximize the accelerator performance under hardware resource
constraints. We turn this into a constrained optimization problem to solve. The objective of
the optimization problem is to minimize latency as Equation (5), which mainly focuses on
the computation-intensive multiply and accumulate operations:

R
Tr ·

C
Tc ·

M
Tm ·

N
Tn · (Tr · Tc · Kr · Kc + Const)

f requency
(5)

where R, C, M and N are the length and width of the feature map and the number of output
and input channels, respectively.

Subject to:
DSP = Tm · Tn · (MULdsp + ADDdsp) ≤ DSPtotal (6)

BRAM = InputBu f f er + WeightBu f f er + OutputBu f f er ≤ BRAMtotal (7)

0 ≤ Tr · Tc ≤ (Msvm · Nsvm/Tn) (8)

0 ≤ Tr ≤ max{Rconv
i , Rsvm

i } (9)

0 ≤ Tc ≤ max{Cconv
i , Csvm

i } (10)

0 ≤ Tm ≤ M (11)

0 ≤ Tn ≤ N (12)

where Equations (6) and (7) are the resource constraints of DSP and BRAM. Equations (8)–(12)
are the constraints on the tiling factors < Tr, Tc, Tm, Tn >, which relate to the network
structure, BRAM capacity and SVM-mapping strategy. Moreover, the purpose of con-
straints Equations (8)–(12) is to perform intensive SVM-mapping to make full use of BRAM
resources. In the process of design space exploration, we exhaust all the design parame-
ters (tiling factors: Tr, Tc, Tm and Tn) that may meet the constraints (Equations (6)–(12))
and then select the optimal optimization objective (i.e., the minimum latency as shown in
Equation (5)).
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4. Evaluation
4.1. Environment Setup

We evaluate the versatility of the proposed accelerator and deployment methodol-
ogy with a common combination structure of CNN-SVM algorithm. Table 2 describes
the structure of this algorithm. We implement the CNN-SVM algorithm with the pro-
posed hybrid CNN-SVM accelerator and compare our design with three state-of-the-art
FPGA-based accelerators [4,13,14]. In addition, considering the limited resources in most
embedded devices and to verify the effectiveness of our proposed deployment method-
ology, a Xilinx ZYNQ-7020 FPGA board was selected as our target platform due to its
limited numbers of DSP and BRAM (220 and 280). The CNN-SVM shown in Table 2 is
implemented on 200 MHz.

Table 2. Structure of the CNN-SVM algorithm.

Layer1 Layer2 Layer3 Layer4

Type CNN CNN CNN SVM
Ri/Ci 28/28 14/14 7/7 1/1

N 1 4 8 256
M 4 8 16 45

4.2. Design Space Exploration

Combining the resource constraints of ZYNQ-7020 and the CNN-SVM network
structure, as well as the proposed deployment methodology in Section 3, the optimal
tiling factors < Tr, Tc, Tm, Tn > can be obtained as < 36, 40, 16, 8 > through design
space exploration.

In addition, in order to select the SVM computation mapping strategy (I-FM/K-
FM), we conduct an experiment to compare I-FM with K-FM under different batch sizes.
The SVM-mapping parameters in Table 1 can be calculated with < Tr, Tc, Tm, Tn >.
Tables 3 and 4 show the actual resource utilization and performance evaluated in exe-
cution cycles of these two strategies. K-FM is more suitable for multi-batch processing, and
it can effectively utilize BRAMs.

Table 3. Resource utilization under different SVM mapping strategies.

Strategy
Resource

BRAM DSP FF LUT

I-FM 40 201 28,728 38,307
K-FM 64 203 28,396 38,071

Table 4. Clock cycles under different batches.

Strategy
Batch Size

1 8 16 32

I-FM 7703 8567 17,130 34,256
K-FM 7512 7953 8541 17,074

4.3. Results and Comparison

Table 5 compares our hybrid CNN-SVM accelerator with the CNN accelerator [4] and
the hybrid network accelerators [13,14]. In Table 5, the SVM is mapped in K-FM strategy.
From the comparison results, it can be seen that our accelerator has fully utilized the com-
puting resources (92%) of ZYNQ-7020 through design space exploration. However, due to
the limitation of DSPs, our throughput (GOPS) is relatively low. For a fair comparison, we
use the normalized throughput (NTP = GOPS/DSP) [15] to measure the performance of the
accelerator. Our NTP is higher than in other works. This is because our accelerator com-
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pletes the efficient mapping between different calculation modes in the hybrid algorithm,
which can effectively utilize on-chip resources to achieve high computation efficiency.

Therefore, under the same resource constraints, our accelerator can achieve a higher
throughout, which proves that our accelerator is competitive with the state-of-the-art works.
Compared to the dedicated accelerators, our design not only has more applicability but
also the calculation speed of single CNN or SVM is comparable. Moreover, it is worth
mentioning that our accelerator can deploy algorithms quickly and effectively in actual
embedded application scenarios due to the proposed universal deployment methodology.

Table 5. Performance evaluation and comparison with other works.

[4] [13] [14] Ours

Device VX485T VX690T VC709 ZYNQ7020
Frequency 100 MHz 250 MHz 100 MHz 200 MHz
Precision 32 bit 8 bit 12 bit 16 bit

Total DSP 2800 3600 3600 220
Used DSP 2240 3104 3130 203
Utilization 80% 86% 87% 92%

Power(W) 18.61 \ 23.6 2.03
GOPs 61.62 13.74 36.25 13.33
NTP 0.027 0.004 0.012 0.066

Normalize 1.0 0.15 0.44 2.44

5. Conclusions

In this work, we proposed a hybrid CNN-SVM FPGA-based accelerator. We adopted
a new hardware-reuse architecture and computation mapping strategy to be compatible
with CNN and SVM calculations. We demonstrated that the accelerator can effectively
map a CNN-SVM algorithm onto FPGA and that it will be easily applied through our
deployment methodology. We used very few on-chip resources (203 DSPs) to achieve the
throughput of 13.33 GOPs and higher NTP (0.066), which are much higher than those
of other studies. In addition, through our universal deployment strategy, we can map
different types of CNN, SVM and hybrid CNN-SVM algorithms onto different target FPGA
platforms. Therefore, our accelerator has the advantages of scalability and usability. In the
future, we will integrate network compression technologies, such as data quantification,
into our accelerator and consider more standard computing modes or algorithms, such as
depthwise separable convolution and recurrent neural networks.

Author Contributions: Conceptualization, B.L. and Y.Z.; Background, B.L., Y.Z. and P.F.; Method-
ology, Y.Z.; Validation, Y.Z. and H.F.; Investigation, B.L., Y.Z. and L.F.; Resources, B.L., P.F. and L.F.;
Writing—original draft preparation, B.L. and Y.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 62171156.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

CNN Convolution neural network
SVM Support vector machine
I − FM, K− FM Mapping strategies of SVM
Ri, Ci, N Row, column and input channel of input feature map
Ro, Co, M Row, column and channels of output feature map
Kr, Kc Size of convolution kernel
Sr, Sc Size of kernel moving stride in row and column
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Tr, Tc Tiling width and height of input feature map
Tm, Tn Parallelisms of input channel and output channel
Tx, Ty Size of sub-block in output feature map
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