
Citation: Yao, W.-S.; Lin, C.-Y.

Dynamic Stiffness Enhancement of

the Quadcopter Control System.

Electronics 2022, 11, 2206. https://

doi.org/10.3390/electronics11142206

Academic Editor: Hamid Reza

Karimi

Received: 10 June 2022

Accepted: 11 July 2022

Published: 14 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Dynamic Stiffness Enhancement of the Quadcopter
Control System
Wu-Sung Yao * and Chun-Yi Lin

Department of Mechatronics Engineering, National Kaohsiung University of Science and Technology,
Kaohsiung City 824, Taiwan; i109109110@nkust.edu.tw
* Correspondence: wsyao@nkust.edu.tw; Tel.: +886-7-6011000 (ext. 37616)

Abstract: Vibrations often result in fatigue breakage in quadcopter flight operations. Reducing the
vibration effect is the main important issue for quadcopter flight. Enhanced dynamic stiffness is
required in the quadcopter control system for the vibration rejection ability. In this paper, the dynamic
stiffness of the quadcopter control system is constructed and is used as an index for the performance
of the quadcopter control system to resist an external oscillatory load. To rapidly reduce the vibration
effect, a repetitive controller is introduced in the quadcopter control system, where the direct dynamic
stiffness and the quadrature dynamic stiffness with variable frequencies are proposed. A theoretical
model of the dynamic stiffness of the quadcopter control system is established by analyzing the
definition of dynamic stiffness. Simulated and experimental results show that the magnitudes of
the direct dynamic stiffness with the proposed repetitive controller are larger than those without
the repetitive controller. The quadrature dynamic stiffness with the proposed repetitive controller is
relatively smooth compared to that without the proposed repetitive controller, which can be used to
verify the stability being improved by the designed repetitive controller. In addition, the magnitudes
of the loss factor of the quadcopter control system with the repetitive controller are lower than those
without the repetitive controller.

Keywords: vibration rejection; dynamic stiffness; quadcopter; repetitive controller; direct dynamic
stiffness; quadrature dynamic stiffness

1. Introduction

Quadcopters have become a research topic in recent years because of their special
functionality and industrial requirements. Quadcopters can not only increase the freedom
of movement but also can be remotely controlled, so industrial applications have increased,
such as for surveillance, search and rescue, building inspection, and some other applications.
The quadcopter system has 6 degrees of freedom of movement in space (translation and
rotation along three coordinate axes) but only 4 control degrees of freedom (the rotation
speed of the four motors), which is called an under-actuated control system. It is well
known that a complete actuated system is when the control degrees of freedom are equal
to the movement degrees of freedom. However, for the attitude control (rotational motion
along three axes), it is indeed fully driven. Compared with helicopters, quadcopters can
achieve fewer flight attitudes, but basic forward, backward, translation and other states can
be operated. However, the mechanical structure of the quadcopter is far simpler than that
of the helicopter, and the maintenance and substitution costs are also very small, which
gives the quadcopter a greater application advantage than the helicopter [1,2].

In order to achieve a stable flight operator, the quadcopter is supplied with three-
directional gyroscopes and three-axis acceleration sensors to form an inertial navigation
module, which can reckon the quadcopter’s attitude, acceleration, and angular velocity
relative to the ground. The flight controller can be used to obtain the rotational force and
lift required to maintain the motion state through an algorithm and uses the electronic
controller to ensure that the motor can output the appropriate force.
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With two pairs of motors in opposite directions, the counter-torque to the fuselage
can be balanced. For the output power of the four motors to be increased, the rotor speed
and the total pulling force can be increased. The total pulling force should be enough
to supply the whole quadcopter’s weight. The rotorcraft will rise vertically from the
ground; on the contrary, the output power of the four motors will be reduced. In addition,
the quadrotor will fall vertically until it lands in a balanced manner, realizing vertical
movement along the z-axis. Without the external disturbance, the lift generated by the rotor
is equal to the quadcopter’s weight, and the quadcopter will remain in a hovering state.
The key to vertical motion is to ensure that the rotation speed of the four rotors increases or
decreases synchronously.

At present, the most common algorithm in the application of quadcopters is to use
complementary filtering: that is, to calculate the angle change by combining the output of
the acceleration sensor and the gyroscope. In addition, the environment of the quadcopter
operation determines the MEMS sensor, which must be suitable for various harsh conditions
while obtaining high-precision output. For example, the ideal output of a gyroscope is to
only respond to changes in angular velocity, but in fact, due to the limitations of design
and craftsmanship, gyroscopes are also sensitive to acceleration, which is the deg/sec/g
indicator on gyroscope datasheets. For the application of a multi-rotor aircraft, this indicator
is particularly important, because the motor in the aircraft generally brings relatively strong
vibration. The change in the output of the gyroscope will cause the change in the angle, and
the motor will malfunction. With the presence of external factors, vibration can be found in
a quadcopters’ flight to cause a non-uniform flow field. In practice, the actual quadcopter
lift force is made up of harmonics related to the angular velocity of the quadcopter propeller.

Many related works in the literature can be found to handle the problems of the
disturbance, uncertainties, and motor faults for the quadcopter control system. In [3], the
issue of the quadcopter with vibration mitigation is proposed. In [4], an adaptive sliding
mode control is proposed to solve the problem of uncertainty and external disturbances for
quadcopter flight. In [5], the detection and diagnosis of motor and propeller degradation is
raised to reduce the vibration of the quadcopter operation. In [6], to solve the problem of
motor faults, the fault-tolerant control is addressed. In [7], a model predictive controller
and the disturbance observer are given to stable the quadcopter. In [8], a robust hybrid
nonlinear control is applied to the quadcopter with the cross-coupling disturbance. In [9], to
reduce the effect of load uncertainties, an observer-based attitude stabilization mechanism
is proposed. In [10], an aerodynamic model is proposed to simulate the model of the
external disturbance of the quadcopter. In [11], with parametric uncertainties and external
disturbances, an adaptive fast finite-time control is adapted for a tilting quadcopter. In [12],
a cooperative path following control is given to improve the stability of the quadcopter
with unknown external disturbances. In [13], a bidirectional fuzzy brain emotional learning
controller is proposed to solve the problem of the payload uncertainties and disturbances.
In [14], a robust control with a disturbance observer is considered to improve the stability
of the quadcopter. In [15], a finite-time control method for a multirotor UAV is proposed
with parameter uncertainties and external disturbances. In [16], a fault-tolerant control
is given to the damaged propellers. In [17], with the vibration of the multi-rotor arms, a
fault detection using artificial intelligence is proposed. In [18], wind measurement and
simulation methods for multi-rotor UAVs are proposed to achieve a stable operation. In [19],
with motor fault and external disturbance, an adaptive attitude control for multi-rotor
UAVs is given. In [20], a disturbance observer-based controller is proposed with parametric
uncertainties and wind disturbance. Therefore, according to related works in the literature,
how to reduce the vibration generated by external disturbance, wind disturbance, and
motor/propeller faults is the key point for the quadcopter operation.

In general, the ability of lower frequency disturbance rejection can be regarded as
static stiffness, which can be achieved by a high mathematical design [21]. Therefore, to
achieve better performance of the quadcopter control system, the dynamic stiffness [21–23]
should be enhanced. In this paper, a methodology to analyze the dynamic stiffness of the
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quadcopter control system is proposed. The dynamic stiffness is used to be an index for
the performance of the quadcopter control system to resist an external oscillatory load.
The proposed dynamic stiffness is varying under excitations at different frequencies. The
outline of this paper is developed as follows. Section 2 contains the mathematical modeling
of the quadcopter. In Section 3, the dynamic stiffness of the quadcopter control system with
a repetitive controller is proposed. Simulations and experimental results are performed in
Section 4. Finally, concluding remarks are stated in Section 5.

2. System Description and Modeling

The quadcopter’s modeling is shown in Figure 1, where the four motors are used
to force the machine. The inertial frame ξ = (x, y, z) with three axes of x, y, and z is
defined, while the angular position can be obtained as η = (φ, θ, ϕ). The three Euler
angles of φ (defined as roll angle), θ (defined as pitch angle), and ψ (defined as yaw
angle) are represented as the rotations around the x, y, and z-axis, respectively. A vector
q = (ξ,η) is obtained by the linear vector of ξ = (x, y, z) and the angular position vector
of η = (φ, θ, ϕ). In the frame, the linear velocities of V =

(
vx, vy, vz

)
and the angular

velocities of ν = (p, q, r) are defined. The rotation matrix of R from the body frame to the
inertial frame can be determined by

R =

cϕcθ cϕsθsφ − sϕcφ cϕsθcφ + sϕsφ

sϕcθ sϕsθsφ + cϕcφ sϕsθcφ − cϕsφ

−sθ cθsφ cθcφ

 (1)

where si = sin i and ci = cos i for i = φ, θ, ϕ are defined.
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Wη is defined as the transformation matrix for angular velocities from the inertial
frame to the body frame. Then, we have

Wη =

1 0 −sθ

0 cφ cθsφ

0 −sφ cθcφ

 (2)

and

ν =

p
q
r

 = Wη


dφ
dt
dθ
dt
dϕ
dt

 (3)

Assume that the four arms of the quadcopter are aligned to the x- and y-axes of the
device body. Thus, the inertia matrix of I = diag

(
Ixx, Iyy, Izz

)
is a diagonal matrix with

Ixx = Iyy. The angular velocity of the rotor axis is given as ωi, and fi is the generated force
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in the direction of the rotor axis. τMi is the torque of the rotor axis, where i = 1, 2, 3, 4
are for the four-rotor axis. Then, we have fi = kωi

2 and τMi = bωi
2 + IM

dωi
dt , where k is

the lift constant, b is the drag constant, and the rotor inertia moment is defined as IM. In
the z-axis of the body frame, the combined thrust of rotors is given as T. The torque of
τB =

(
τφ τθ τϕ

)
is defined in the direction of (φ, θ, ϕ). Therefore, we have

T =
4

∑
i=1

fi = k
4

∑
i=1

ω2
i (4)

and

τB =

τφ

τθ

τϕ

 =


lk
(
−ω2

2 + ω4
2)

lk
(
−ω1

2 + ω3
2)

4
∑

i=1
τMi

 (5)

where l is the distance between the mass center and the rotor.
Therefore, the dynamics characteristic is determined by Newton–Euler equations. In

the body frame, m dVB
dt is defined as the force for the mass acceleration, ν×mVB is defined

by the centrifugal force being equal to the gravity of RTG. Then, the whole thrust TB
generated by the rotors motor can be obtained by

m
dVB
dt

+ ν×mVB = RTG + TB (6)

Assume that the centrifugal force is neglected. Thus, (7) can be simplified as

m
d2ξ

dt2 = G + RTB (7)

In the body frame, the angular acceleration of the inertia can be obtained by I dν
dt , the

centripetal forces and the gyroscopic forces are determined by ν× (Iν) and Γ, respectively,
and τ is represented by the external torque. Therefore, we have

I
dν
dt

+ ν× (Iν) + Γ = τ (8)

The angular accelerations in the inertial frame can be given as

d2η

dt2 =
d
(
Wη
−1ν

)
dt

=
dWη

−1

dt
ν+ Wη

−1 dν
dt

(9)

The Lagrangian Λ can be given as

Λ
(

q,
dq
dt

)
=

m
2

(
dξ
dt

)T dξ
dt

+
νTIν

2
−mgz (10)

The external forces and torques of the device can be determined by Euler–Lagrange
equations, i.e., [

f
τ

]
=

d
dt

 ∂Λ

∂
(

dq
dt

)
− ∂Λ

∂q
(11)

The Jacobian matrix of J(η) from ν to dη
dt is

J(η) = Wη
TIWη=

 Ixx 0 −Ixxsθ

0 Iyyc2
ϕ + Izzs2

φ

(
Iyy − Izz

)
cφsφcθ

−Ixxsθ

(
Iyy − Izz

)
cφsφcθ Ixxs2

θ + Iyys2
φc2

θ + Izzc2
φc2

θ

 (12)
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Thus, in the inertial frame, the rotational energy Erot is obtained by

Erot =
1
2
νTIν =

1
2

(
d2η

dt2

)T

J
(

d2η

dt2

)
(13)

The external angular force is the torque outputs of the rotor motors, i.e.,

τ = τB = J
d2η

dt2 +
dJ
dt

dη
dt
− 1

2
∂

∂η

[(
dη
dt

)T
J
(

dη
dt

)]
= J

d2η

dt2 + C
(
η,

dη
dt

)
dη
dt

(14)

where the matrix C
(
η, dη

dt

)
being the Coriolis term contains the gyroscopic and centripetal

terms. Then, we have

C
(
η,

dη
dt

)
=



0

 (
Iyy − Izz

)( dθ
dt cφsφ + dϕ

dt s2
φcθ

)
+
(

Izz − Iyy
)( dϕ

dt c2
φcθ − dϕ

dt Ixxcθ

)  (
Izz − Iyy

) dϕ
dt cφsφc2

θ (
Izz − Iyy

)( dθ
dt cφsφ + dϕ

dt sφcθ

)
+
(

Iyy − Izz
)( dϕ

dt c2
φcθ +

dϕ
dt Ixxcθ

)  (
Izz − Iyy

) dφ
dt cφsφ

[
−Ixx

dϕ
dt sθcθ + Iyy

dϕ
dt s2

ϕsθcθ

+Izz
dϕ
dt c2

ϕsθcθ

]

(
Iyy − Izz

) dϕ
dt c2

θsφcϕ − Ixx
dθ
dt cθ


(

Izz − Iyy
)( dθ

dt cφsφsθ +
dφ
dt s2

φcθ

)
+
(

Iyy − Izz
)( dφ

dt c2
φcθ

)
+ Ixx

dϕ
dt sθcθ

−Iyy
dϕ
dt s2

φsθcθ − Izz
dϕ
dt c2

φsθcθ


[ (

Iyy − Izz
) dφ

dt cφsφc2
θ + Ixx

dθ
dt sθcθ

−Iyy
dθ
dt s2

φsθcθ − Izz
dθ
dt c2

φsθcθ

]


(15)

From (17), we have

d2η

dt2 = J−1
(
τB − C

(
η,

dη
dt

)
dη
dt

)
(16)

The simplified model of the quadcopter can be obtained as

m
d2X
dt2 + D

dX
dt

+ mG = T (17)

where X =
[
x y z

]T , D = diag
(

Dx, Dy, Dz
)
, G =

[
0 0 g

]T , and T =

[(
cϕsθcφ + sϕsφ

)
T(

sϕsθcφ − cϕsφ

)
T(

cθcφ

)
T

]
are given. Dx, Dy and Dz are the drag force coefficients for velocities in (x, y, z).

3. Dynamic Stiffness Analysis of the Quadcopter Control System

A closed loop control system is shown in Figure 2, where G(s) and K(s) are the
controlled plant and loop controller, respectively. In general, d is the system vibration
disturbance, y is the system output, u is the controller output, and e is the error. Note
that P(s) = K(s)G(s). Let the frequency responses of P(jω) = P1(ω) + jP2(ω) and
K(jω) = C1(ω) + jC2(ω) be given, where we have[

P1(ω) = G1C1(ω)− G2C2(ω)
P2(ω) = G1C2(ω) + G1C2(ω)

(18)
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Therefore, the dynamic stiffness of Figure 2 can be denoted by D(s) = 1 + P(s).
We have D(jω) = D1(ω) + jD2(ω), and [D(jω)]−1 is defined as the dynamic compli-
ance. Note that D1(ω) = 1 + P1(ω) and D2(ω) = P2(ω) are defined as direct dy-
namic stiffness and the quadrature dynamic stiffness, respectively. Note that D1(ω)
can be represented as the conservative properties of the system, and D2(ω) can be rep-
resented as the dissipative properties. Then, the magnitude of the dynamic stiffness

D(jω) can be given as |D(jω)| =
√
[1 + P1(ω)]2 + [P2(ω)]2, which can be rewritten as

D(jω) = D1(ω)[1 + jH(ω)], and H(ω) can be defined as the loss factor of the control
system, i.e.,

H(ω) =
D2(ω)

D1(ω)
=

P2(ω)

1 + P1(ω)
(19)

For the required performance, it can be expected that D1(ω) is increasing with ω
and H(ω) is decreasing with ω. From the above analysis, the dynamic stiffness of the
closed-loop control system in Figure 3 is indeed more than that without a loop controller.
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Figure 3. Repetitive control system.

For the vibration rejection, a repetitive control system is induced, as shown in Figure 3.
Assume that the vibration disturbance d is a single period of Td. The dynamic stiffness of
Figure 3 can be denoted by

Dr(s) = 1 + R(s)P(s) = 1 +
P(s)

1− e−sTd
. (20)

Then, the frequency response of Dr(jω) can be given as Dr(jω) = Dr1(ω) + jDr2(ω).

Note that Dr1(ω) = 1+ P1(ω)
n
∑

k=0
ck + P2(ω)

n
∑

k=0
sk and Dr2(ω) = P2(ω)

n
∑

k=0
ck− P1(ω)

n
∑

k=0
sk

are represented as the direct dynamic stiffness and the quadrature dynamic stiffness,
respectively, where ck = cos(kωTd) and sk = sin(kωTd) are defined.

The loss factor Hr(ω) of Figure 3 can be given as

Hr =
Dr2(ω)

Dr1(ω)
=

P2(ω)
n
∑

k=0
ck − P1(ω)

n
∑

k=0
sk

1 + P1(ω)
n
∑

k=0
ck + P2(ω)

n
∑

k=0
sk

(21)

As ω = 2kπ
Td

= kωd, k ∈ N, the loss factor Hr(kωd) can be given as

Hr(kωd) =
(1 + n)P2(kωd)

1 + (1 + n)P1(kωd)
(22)

Due to the poles of R(s) = 1
1−e−sTd

being located at an imaginary axis, to enhance the
stability of the repetitive control system in Figure 3, a low-pass filter Q(s) is induced as
shown in Figure 4, where ‖Q(jω)‖ ≈ 1 for ω ≤ ωq is given.
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Figure 4. Repetitive control system with Q(s).

The dynamic stiffness of Figure 4 can be denoted by

Dqr(s) = 1 + Rq(s)P(s) = 1 +
P(s)

1− e−sTd Q(s)
(23)

Its frequency response can be given as

Dqr(jω) = 1 + P(jω)
[
1 + qe−jωTd + qe−2jωTd + . . .

]
(24)

where qe−jnωTd = e−jnωTd [Q(jω)]n, n = 1, 2, 3, . . . is defined.
Note that Q(jω) = Q1(ω) + jQ2(ω) is given.
In addition, we have

Dqr(jω) = 1 + (P1(ω) + jP2(ω))

[
1 +

n
∑

k=1

[
e−jωTd Q(jω)

]k
]

= 1 + (P1(ω) + jP2(ω))

[
n
∑

k=0
[(cos(ωTd)− j sin(ωTd))(Q1(ω) + jQ2(ω))]k

]
= 1 +

n
∑

k=0
(P1(ω) + jP2(ω))(c̃− js̃)k

(25)

where c̃ = c1Q1(ω) + s1Q2(ω) and s̃ = s1Q1(ω)− c1Q2(ω) are given.

We also have |Q(jω)| =
√

c̃2 + s̃2. Note that Dqr1(ω) = 1 + P1(ω)
n
∑

k=0
c̃k + P2(ω)

n
∑

k=0
s̃k

and Dqr2(ω) = P2(ω)
n
∑

k=0
c̃k − P1(ω)

n
∑

k=0
s̃k are defined as the direct dynamic stiffness and

the quadrature dynamic stiffness, respectively.
The loss factor Hqr(ω) of Figure 4 can be given as

Hqr =
Dqr2(ω)

Dqr1(ω)
=

P2(ω)
n
∑

k=0
c̃k − P1(ω)

n
∑

k=0
s̃k

1 + P1(ω)
n
∑

k=0
c̃k + P2(ω)

n
∑

k=0
s̃k

(26)

As ω = 2kπ
Tr

= kωr, k ∈ N, the loss factor Hqr(kωr) can be given as

Hqr(kωr) =

P2(kωr)
n
∑

k=0
[Q1(kωr)]

k − P1(kωr)
n
∑

k=0
[−Q2(kωr)]

k

1 + P1(kωr)
n
∑

k=0
[Q1(kωr)]

k + P2(ω)
n
∑

k=0
[−Q2(kωr)]

k
(27)

A general multi-periodic disturbance of d(t) =
m
∑

i=1
di(t) is given, where di(t) is a

periodic signal with period Tdi, ∀i = 1, 2, . . . , m. Therefore, we have a repetitive control

system with d(t) =
m
∑

i=1
di(t), as shown in Figure 5.
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Figure 5. Repetitive control system with d(t) =
m
∑

i=1
di(t).

The repetitive controller is given as Rqm(s) =
m
∑

i=1

1
1−Qe−sTdi

, and its dynamic stiffness

can be given as D̂qr(s) = 1 + P(s)
m
∑

i=1

1
1−Q(s)e−sTdi

, which can be rewritten in the frequency

domain, i.e.,

D̂qr(jω) = 1 +
n

∑
k=0

(P1(ω) + jP2(ω))(ĉ− jŝ)k (28)

where ĉ = Q1(ω)
m
∑

i=1
cos(ωTdi) + Q2(ω)

m
∑

i=1
sin(ωTdi) and ŝ = Q1(ω)

m
∑

i=1
sin(ωTdi) − Q2(ω)

m
∑

i=1
cos(ωTdi)

are given.
Note that D̂qr1(ω) = 1 + P1(ω)

n
∑

k=0
ĉk + P2(ω)

n
∑

k=0
ŝk and D̂qr2(ω) = P2(ω)

m
∑

k=0
ĉk − P1(ω)

m
∑

k=0
ŝk are

defined as the direct dynamic stiffness and the quadrature dynamic stiffness, respectively.
The loss factor Ĥqr(ω) of Figure 5 can be given as

Ĥqr =
D̂qr2(ω)

D̂qr1(ω)
=

P2(ω)
n
∑

k=0
ĉk − P1(ω)

n
∑

k=0
ŝk

1 + P1(ω)
n
∑

k=0
ĉk + P2(ω)

n
∑

k=0
ŝk

(29)

4. Simulated Results Analysis

To analyze the dynamic stiffness of the quadcopter control system, an illustrated
example of a quadcopter is shown in Figure 6, where its specifications are listed in Table 1.
The controlled plant for the given quadcopter is measured by an analyzer, as shown in
Figure 7, where the control plant of G(s) = 3.329s2+340.19s+42051

s3+71.05s2+5248.8s+56.31 can be calculated by the
curve fitting. A gain of K = 0.95 is pre-determined for the closed loop of P(s)/(1 + P(s)),
which is stable, where P(s) = KG(s) is given. In the designed case, the low-pass filter
of Q(s) = 1

s2
ωq2 +

2ζqs
ωq +1

, ωq = 20 Hz, and ζq =
√

2/2 can be designed to achieve the

performance of the vibration rejection [24]. Under the proposed quadcopter flight operation,
the vibration is measured as shown in Figure 8, where the harmonics of the measured
results can be given as 3–11 Hz.

In this study, the flight controller mainly assists the controlled body, while the gimbal
image stabilization controller provides the source of vibration interference during flight.
The vibration of the gimbal provides a source of interference for the controlled object of the
drone to perform experiments. As shown in Figure 6, the red arrow is the gimbal image
stabilization controller, which simulates the environment when the system on the drone
is abnormal by actively creating vibration in the roll axis. Figure 8 shows the measured
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FFT signal (x–y–z) of the IMU angle (Figure 8a) and angular acceleration (Figure 8b) to
obtain the vibration signal of the proposed quadcopter flight operation. From the measured
vibration harmonics in Figure 8, the harmonic frequencies of the vibration are determined
as 1–20 Hz.
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Table 1. Specification of the quadcopter.

Model weight 4100 g

Number of rotors 4

Frame size 690 mm

Power 22.8~26.0 V

Average current 15 A

Propeller Diameter 14 inch 5.5 pitch

Max thrust 2100 g

Average thrust 1030 g

Hover thrust 1025 g

Idle thrust 50 g
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Figure 7. Measured frequency response of the controlled plant of the illustrated example.
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Figure 8. Measured vibration signal of the proposed quadcopter flight operation. (a) The measured
FFT signal of the IMU angle and (b) the measured FFT signal of the IMU angular acceleration.

From the above analysis results, a disturbance with a period Td = 2 s is given, and
the dynamic stiffness of the proposed quadcopter control system is shown in Figure 8.
From Figure 9a, it can be found that the magnitudes of the direct dynamic stiffness with
the repetitive controller are larger than those without the repetitive controller, and the
maximum of the direct dynamic stiffness can be found at harmonics of the periodic signal,
i.e., k

Td
= k

2 = 0.5k, k = 1, 2, 3, · · · . From Figure 9b, the quadrature dynamic stiffness with
Q(s) is relatively smooth compared to that without Q(s), which can be used to verify the
stability being improved with Q(s). Figure 10 shows the comparisons of loss factor, where
the magnitudes of loss factor of the quadcopter control system with the repetitive controller
are lower than those without the repetitive controller.
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Figure 9. Magnitudes of dynamic stiffness for Td = 2 s (red dotted line for Figure 2, blue dashed
line for Figure 3, and black solid line for Figure 4): (a) magnitude plot of the direct dynamic stiffness,
(b) magnitude plot of the quadrature dynamic stiffness, and (c) magnitude plot of the dynamic stiffness.
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Figure 10. Magnitudes of loss factor for Td = 2 s (red dotted line for Figure 2, blue dashed line for
Figure 3, and black solid line for Figure 4).

Figures 11 and 12 shows the comparisons of the dynamic stiffness and loss factor with
a periodic disturbance of a period Td = 0.5 s. Similar to the results of Figures 9 and 10, it
can be found that the dynamic stiffness with the repetitive controller is larger than that
without the repetitive controller. The maximum of the direct dynamic stiffness can be found
at harmonics of the periodic signal, i.e., k

Td
= k

0.5 = 2k, k = 1, 2, 3, . . .. In Figure 12, the loss
factor of the quadcopter control system with the repetitive controller is lower than that
without the repetitive controller.
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Based on Figure 4 with the given parameters, a periodic disturbance is given as[
d(t) = sin(2πt) + sin(4πt)[u(t)− u(t− 5)]+

sin(8πt)[u(t− 3)− u(t− 6)] + sin(10πt)[u(t− 6)− u(t− 20)]
(30)

Based on the disturbance input in (30), as shown Figure 13a, the error responses of the
control systems in Figures 2 and 4 can be obtained in Figure 13b. It can be found that the
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error of Figure 4 is smaller than that of Figure 2, and a repetitive error marked blue dashed
line can be found in the control system of Figure 2. The rapid decay rate of Figure 4 can be
found, where the larger error can be found at the commands’ switched time point, i.e., 0 s,
3 s, 5 s, and 6 s.
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For the dynamic stiffness with the general periodic disturbance, considering the
measured vibration harmonics in Figure 8, the harmonic frequencies are determined as
1–20 Hz, i.e., Td = 0.05 s ∼ 1 s. From Figure 14a, it can be found that the magnitudes of
the direct dynamic stiffness with the repetitive controller are larger than those without
the repetitive controller. From Figure 14b, the quadrature dynamic stiffness with Q(s) is
relatively smooth to compare that without Q(s), which can be used to verify the stability
being improved with Q(s). Figure 15 shows the comparisons of loss factor, where the
magnitudes of the loss factor of the quadcopter control system with the repetitive controller
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are lower than those without the repetitive controller. Based on Figure 5 with the given
parameters, a multi-periodic disturbance is given in Figure 16a, i.e.,

d(t) = sin(4πt) + 2 sin(10πt) + 0.5 sin(14πt) (31)
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Figure 14. Magnitudes of dynamic stiffness for Td = 0.05 s ∼ 1 s (red dotted line for Figure 2, blue
dashed line for Figure 5 without Q(s), and black solid line for Figure 5): (a) Magnitude plot of the
direct dynamic stiffness, (b) magnitude plot of the quadrature dynamic stiffness, and (c) magnitude
plot of the dynamic stiffness.
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Figure 16. (a) Magnitude plot of the given disturbance of (31) and (b) the error responses of Figure 2
(blue dashed line) and Figure 5 (red solid line).

Based on the disturbance input in (31), the error responses of the control systems in
Figures 2 and 5 can be obtained in Figure 16b. It can be found that the error of Figure 5 is
smaller than that of Figure 2, and a repetitive error marked by the blue dashed line can be
found in the control system of Figure 2. The rapid decay rate of Figure 5 can be found in
Figure 16b.

5. Experimental Results Analysis

Figure 17 is the experimental setup of the study with the illustrated example of Figure 6.
To provide a vibration situation under the quadcopter flight operation, a camera stabilizer
constructed in the quadcopter is used to provide the vibration source. The control algorithm
is implemented by the 32-bit ARM with 168 MHz installed on the quadcopter, and the
inertial measurement unit is used to feedback the angular velocity and acceleration of
X–Y–Z. Three kinds of circumstances are given to verify the proposed method. Note that
the experiment environment wind speed is 0 to 1 knot in calm weather.
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For the first case, the quadcopter control system only with feedforward + PID controller
is given. The camera stabilizer is still, and any vibration is not provided by the stabilizer.
Figures 18–21 show the experimental results under the stabilizer still. It can be found that
the acceleration oscillations of the x-axis and y-axis are smaller than ±1 m/s2. The angle of
oscillation is less than ±4 degrees. A larger acceleration can be found at the time of taking
off or landing of the quadcopter.
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Figure 19. Acceleration response of y axis under the stabilizer still.

For the second case, the vibration is produced by the stabilizer, and the repetitive
controller is given in the quadcopter control system. Figures 22–25 show the experimental
results. The acceleration oscillations of the x-axis and y-axis are smaller than ±1 m/s2. The
angle of oscillation is less than ±5 degrees.

For the third case, only with feedforward control + PID controller, the vibration is
provided. Figures 26–29 show the experimental results. The acceleration oscillations of
the x-axis and y-axis are larger than ±3 m/s2 and the angle of oscillation is less than
±10 degrees. At 14:51:00:000, however, the quadcopter system almost becomes out of con-
trol, even though the controller seems to stabilize the quadcopter system. At 14:55:00:000,
the accelerations are larger than ±40 m/s2 and the angles are larger than ±80 degrees. This
eventually leads to the crash of the experimental machine.
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6. Conclusions

This paper proposed the dynamic stiffness analysis method of the quadcopter control
system with the repetitive controller. A theoretical model of the dynamic stiffness of the
quadcopter control system is established through analyzing the definition of the dynamic
stiffness. The direct dynamic stiffness and the quadrature dynamic stiffness with variable
frequencies are used to verify the effect of the quadcopter control system. Simulated and
experimental results show that the magnitudes of the direct dynamic stiffness with the
proposed repetitive controller are larger than those without the repetitive controller. The
quadrature dynamic stiffness with the proposed repetitive controller is relatively smooth
compared to that without the proposed repetitive controller, which can be used to verify the
stability being improved by the designed repetitive controller. In addition, the magnitudes
of the loss factor of the quadcopter control system with the repetitive controller are lower
than those without the repetitive controller.
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