E;Ig electronics

Article

Dynamic Positioning and Energy-Efficient Path Planning for
Disaster Scenarios in 5G-Assisted Multi-UAV Environments

Adil Khan *0, Jinling Zhang 1, Shabeer Ahmad !, Saifullah Memon 2, Haroon Akhtar Qureshi 3

and Muhammad Ishfaq !

check for
updates

Citation: Khan, A.; Zhang, J.; Ahmad,
S.; Memon, S.; Qureshi, H.A_; Ishfaq,
M. Dynamic Positioning and Energy-
Efficient Path Planning for Disaster
Scenarios in 5G-Assisted Multi-UAV
Environments. Electronics 2022, 11,
2197. https://doi.org/10.3390/
electronics11142197

Academic Editor: Arturo de la

Escalera Hueso

Received: 8 June 2022
Accepted: 11 July 2022
Published: 13 July 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

School of Electronic Engineering, Beijing University of Posts & Telecommunication, Beijing 100876, China;
zhangjl@bupt.edu.cn (J.Z.); shabeer@bupt.edu.cn (S.A.); m.ishfag@bupt.edu.cn (ML)

State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and
Telecommunications, Beijing 100876, China; memonsaifullah@bupt.edu.cn

Engineering Department, University of Naples, “Parthenope”, 80143 Naples, Italy;
haroonakhtar.qureshi001@studenti.uniparthenope.it

*  Correspondence: adil@bupt.edu.cn

Abstract: The integration of fifth-generation (5G) and unmanned aerial vehicle (UAV) technologies
has become a promising solution for providing seamless communication in applications, such as
disaster management, because of its bandwidth availability, cost-efficacy, and mobile nature. The
state-of-the-art research in UAV communication concentrates on effective positioning and path
planning. Despite this, these systems performed poorly due to a lack of dynamic control and
external factors, such as weather. The solution presented in this paper addresses the problems listed
above by using dynamic positioning and energy-efficient path planning for disaster scenarios in the
5G-assisted multi-UAV environments (Dynamic-UAV) to maximize the performance metrics. The
lightweight gated recurrent unit (LGRU) is used for weather and event prediction to determine the
disaster and non-disaster area and the context of the disaster. The density-based optics clustering
(DBOC) algorithm is used to achieve reliability during communication with cluster IoT devices
in disaster and non-disaster regions. The satellite determines the number of UAVs required and
positions the UAVs using the dynamic positioning-based soft actor—critic (DPSAC) algorithm to
achieve maximum throughput. Moreover, the UAVs’ path planning is performed using the shuffled
shepherd optimization with dynamic-window method (SSO-DWM) to reduce energy consumption.
The proposed approach is simulated using the NS 3.26 simulator and validated by comparing the
results with existing techniques regarding the quality of service (QoS), reliability, and energy efficiency.
Experimental results indicate that the proposed method achieved maximum throughput (1.59 bit/s),
packet delivery ratio (0.88), coverage probability (0.82), number of collected packets (7109-5875),
energy efficiency (1.544), minimum delay (16.4 ms-18.5 ms), and energy consumption (7.48 KJ).

Keywords: UAV; IoT; 5G; positioning; clustering; path planning; QoS; reliability; energy efficiency

1. Introduction

Unmanned aerial vehicles (UAVs) are highly demanding for various applications,
such as rescue operations, surveillance, and disaster monitoring. Besides this, UAVs are
also used to recover network facilities in the regions of natural disasters, such as forest
fires, floods, cyclones, landslides, and manmade disasters, namely power plant explosions
and terrorism, which can control emergencies when action is required [1]. In any area of
interest, one or more UAVs are used for monitoring and collecting data from the ground
devices equipped in that area. Each UAV has onboard sensors and cameras to collect
data from the monitoring area. A UAV’s mission is to collect data from IoT devices in the
absence of base stations or when a disaster damages the base stations. Therefore, UAV-
based data collection and processing is a worldwide topic among researchers. The UAV
collects data in air-to-air (A2A) and air-to-ground (A2G) communications. The base stations
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are prone to environmental conditions which affect the reliability of A2A and A2G UAV
communication [2]. By utilizing flying base stations, the impact of weather and altitude on
A2A and A2G communication is amplified, maximizing their energy consumption [3,4].
Less efficient path planning for UAVs leads to serious Quality of Service (QoS) issues, such
as packet loss rate and network latency [5]. There is a lack of consideration for both static
and moving obstacles and no differentiation between various emergency events, which
reduces the performance and effectiveness of UAV communication [6].

The 5G-enabled UAV communication reduces the communication latency and band-
width issues; however, the conventional problems, such as increased energy consumption,
are not yet addressed [7]. Clustering is a promising solution for energy consumption
since it increases network scalability, reduces overhead, extends battery life, and boosts
the throughput [8]. The optimal cluster head (CH) is selected for managing different user
groups; bypassing the information through CH reduces the network delay [9]. However,
current clustering schemes are required to construct frequently. This is due to the poor
grouping of nodes based on limited parameters. In addition, UAVs are clustered without
focusing on the vulnerability of the devices and base stations [10,11]. Data collection from
disaster environments is challenging; using multiple UAVs requires proper positioning
and efficient path planning [12,13]. However, deploying many UAVs without prior knowl-
edge of traffic demand and event occurrence increases deployment costs. To reduce such
drawbacks, relay-based methods and deployment algorithms are used [14,15]. Multiple
constraints must be evaluated, including weather impact, traffic demand, coverage ratio,
and emergency event counts. Based on these factors, the number of UAVs is considered,
and is also helpful in planning an optimum path and effective deployment [16,17].

In a multi-UAV environment, meteorological conditions must be monitored [18,19];
UAV speed, direction, altitude, position, and distance must be adjusted accordingly. On
the other hand, dynamic path planning is critical in multi-UAV-served disaster situations
to avoid collisions and minimize energy consumption due to random trajectories. The path
planning problem is considered an optimization problem [20], and several optimization
algorithms are used to determine the optimal path, such as particle swarm optimization
(PSO), genetic algorithm (GA), etc. However, there is still a research gap in UAV positioning
and path planning.

1.1. Motivation & Objectives

There is a need for an operational communication network whenever a disaster occurs,
and a portion of the existing communication network is destroyed. Therefore, network
operators must deploy an emergency communication network to provide connectivity to
the ground devices. In this regard, using a mobile network through the deployment of
UAVs can be viewed as a potential alternative for emergencies. Due to its dynamic nature
and three-dimensional (3D) properties, UAV communication faces multiple challenges.
Existing research in the multi-UAV environment has not adequately addressed various
positioning and path planning problems. While deploying UAVs, limited parameters are
considered in the literature, which is insufficient to perform optimal positioning, path
planning, and reliable and energy-efficient communication. Different solutions have been
used for the positioning and path planning of UAVs. However, a proper joint technique
is still needed for positioning, clustering, and path planning, while considering multiple
parameters to ensure optimal QoS, reliability, and energy efficiency in disaster and non-
disaster scenarios. The challenges listed below inspired us to conduct this work and fill in
the gaps in existing studies.

e  Lack of Weather Conditions—Wind factors, such as direction, speed, velocity, and
turbulent flow significantly impact UAV communication. When determining optimal
location and path planning, failing to do so will result in poor QoS performance.

e Higher UAV Energy Consumption—The UAV is comprised of multiple resource-
constrained sensors. UAVs consume energy in data gathering, movements, processing,
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and transmission. As a result, the issue of energy consumption requires careful
consideration to reduce the need for frequent replacement and charging.

Obstacles in Path Planning—One of the challenges is path replanning is due to sta-
tionary and mobile obstacles in the network. Without prior knowledge of obstacles,
path planning increases the likelihood of a collision between UAVs. Consideration of
obstacles also minimizes packet loss and latency during data transfer.

Delay in Disaster Situations—To maximize performance, the latency in data transfer
from the source to the UAV must be minimized in disaster scenarios, when data
collecting is more susceptible to delay.

This research is motivated by the problems mentioned above encountered by state-

of-the-art work. The primary goal of this study is to examine the performance of various
UAV communications (A2A and A2G) under weather-suffered disaster scenarios. Path
planning and positioning are required for a higher QoS, improved network coverage, and
connectivity. These are met by the sub-objectives listed below.

Predicting the absolute weather impacts the selected area of interest based on past
weather data, often known as historical weather information.

To maximize the scalability of the UAVs for a large-scale environment in which de-
ployment of multiple UAVs positioning must be optimum.

To maximize the energy efficiency of UAVs and minimize the time of data collection
without any packet loss.

To reduce the communication overhead in a multi-UAV environment by optimal
path planning and positioning. The diagrammatical representation of motivation and
objectives is presented in Figure 1 for a better understanding.

Motivation Ob j ectives
Poor QoS due to lack of Weather and event prediction to
weather condition improve QoS
High energy consumption Reduce energy consumption by

‘ positioning and path planning

Lack of static and moving
obstacles LoS communication
Delay in data Collection Reliable communication

Figure 1. Motivation and objectives.

1.2. Paper Contributions

We propose a dynamic positioning and path planning approach for disaster scenarios

in a 5G-assisted muti-UAV environment (Dynamic-UAV), depending on the environmental
context. The following are the significant step-by-step contributions of this paper:

Analyzing the context of the environment, the lightweight gated recurrent unit (LGRU) is
applied to predict weather conditions (sunny, rain, lightning, cloudy, windy) and events
(disaster/non-disaster). Consideration is given to historical weather information and
environmental photographs while deploying UAVs for efficient communication.

Once the event and weather conditions are predicted, the density-based optics cluster-
ing (DBOC) method is used to cluster IoT devices in both disaster and non-disaster
zones to increase the communication reliability between the UAV and devices.

A satellite that uses dynamic positioning-based soft actor-critic (DPSAC) algorithm
is considered to estimate the required number of UAVs and dynamically position
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the UAVs, thereby reducing communication delay and maximizing the throughput
and coverage.

e  The shuffled shepherd optimization with dynamic-window method (SSO-DWM) is
used to design UAV paths, which takes into account both static and dynamic objects in
the environment to avoid collisions and improve energy efficiency. The performance
of the proposed method has been validated and determined to be superior compared
to other existing approaches.

1.3. Paper Organization

The remainder of this paper is organized as follows: Section 2 outlines the fundamen-
tals and different types of UAV communication. This section also provides a synopsis of
the literature and relevant work. Section 3 addresses the problem statement and proposes
dynamic UAV positioning and energy-efficient path planning for disaster scenarios in a
5G-assisted multi-UAVs environment. Section 4 includes the simulation setup and a com-
parative study of numerous metrics with existing works. Section 5 explains the application
of the proposed approach, Section 6 provides the summary, and Section 7 provides the
conclusion and future direction of the proposed work.

2. Preliminaries and Related Work

The preliminary knowledge of this work is explained in this section to understand
our concept better. This section covers the basics of UAV communication, types of UAV
communication, and the integration of 5G and UAV. In addition, to analyze the research
gap, different state-of-the-art path planning and positioning approaches for the assistance
of UAVs is examined in this part.

2.1. UAV Communication

UAV communication refers to the communication initiated by the UAVs to relay or
process the data from the ground environment. UAV communication is utilized as an
alternate solution for the Ground Base Station (GBS) damaged during a disaster or as an
additional technology to improve network performance in a large-scale environment. The
UAVs perform spectrum sharing, information sharing, etc., to achieve reliable communica-
tion and complete the given task. There are three types of UAV communication present in
this work: A2G communication, A2A communication, and satellite to UAV communication
(52A) [2,3]. In A2G communication, the ground IoT devices, such as sensors, actuators,
mobiles, etc., communicate with UAVs directly to perform a task. The A2G communication
is applied in various applications, such as surveillance, agricultural monitoring, photog-
raphy, traffic control, package delivery, telecommunications, and search and rescue. In
A2A communication, the UAVs communicate with each other regarding spectrum sharing,
information about users, etc. A2A communications are used when any UAV is vulnerable
to environmental conditions. The information in the vulnerable UAVs is shared among
the different UAVs. This helps to achieve reliable communication. In S2A communication,
the UAVs act as a relay node controlled by the satellite with global coverage. This type
of communication is more suitable for network management during natural disasters. At
that time, the satellite communicates with UAVs to monitor the disaster and take corrective
actions by the authorities.

2.2. 5G-Assisted UAV Communication

The conventional UAV communication techniques encounter several network chal-
lenges, such as increased latency and less availability of bandwidth, which further affects
its performance, especially during disaster situations. The emergence of 5G technology
provides many opportunities to overcome the existing network challenges and achieve
better QoS. The 5G communication is categorized into three types: namely, massive ma-
chine type communication (mMTC), extreme mobile broadband (eMBB), and ultra-reliable
low-latency communication (URLLC) [7]. The 5G-UAV communication falls under URLLC,
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which provides services with low latency. Figure 2 depicts the various applications of 5G-
UAYV communications, in which the data from a heterogeneous environment are collected
and processed.

Defense
monitoring

Disaster
monitoring

Agriculture
monitoring

Survellilance

«ﬁ)) Base - UNY ication

station

Figure 2. Applications of 5G-UAV communication.

The 5G-assisted UAV communication is hindered by several factors, such as increased
interference, inefficient path planning, positioning, and the distance between the UAV and
devices. As a result, the placement and path planning of the UAVs in our approach focus on
attaining superior performance by considering multiple parameters. We examine the perfor-
mance of A2A and A2G UAV communications in weather-suffered disaster scenarios where
UAUVs go to the desired location while considering the weather characteristics, obstacles,
user density, coverage area, elevation angle, path loss, LoS, and NLoS components. The
number of UAVs is determined by the satellite using S2A communication. Clustering, path
planning, and positioning are conducted to enhance QoS, reliability, and energy efficiency.

2.3. UAV Positioning Approaches

Bhandari, S. et al. proposed a stable clustering approach based on mobility and
location in UAV networks [21]. UAV is deployed with optimal CH to maximize coverage
with minimum transmit power. Distance-based k means a clustering algorithm is proposed
for updating the relative location by considering UAV speed and transmission range. The
cluster includes several UAVs, and data collected from the CH are forwarded to the sink.
The simulation results show that the proposed method achieves better performance in
terms of PDR and end-to-end delay compared to the conventional Ad hoc On-Demand
Distance Vector (AODYV), ant colony pptimization (ACO), and grey wolf optimizer (GWO)
schemes. The k-means clustering algorithm performs clustering, but the number of clusters
is required prior to this. In a real-time scenario, we cannot predict the number of clusters
previously, thus reducing the efficiency of the process.

Positioning UAVs for a highly-functional differentiated metropolitan scenario in an
edge-assisted smart IoT environment is proposed by Tan, Z. et al. [22]. The proposed
system used a scheduling strategy by deploying UAVs to fill the space between service
cycles. The energy efficiency and data collecting method is executed during information
updating, which minimizes the transmission delay. First, UAVs collect sensor data from
IoT devices during uplink transmission. Then UAVs perform the computing-intensive
task of processing sensor data and creating augmented information. First, the augmented
information is pressed into mobile devices, and then the augmented reality extracts the
visual objects by a camera and a geo-location sensor.

The deployment of a UAV base station for satisfactory communication services is
presented by Zhong, X. et al. [23]. All the user equipment (UE) is initially clustered to
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be served using multiple UAV-based stations. The aim is to detect optimal locations for
placing UAV base stations, which maximize the coverage of the ground users. The optimal
UAV placement is conducted by using the genetic algorithm that provides wireless services
to the UEs group. The results show that the proposed system performs better in coverage
ratio and has a good tolerance for UEs localization error. However, a genetic algorithm is
proposed for placing UAVs in the optimal position, which generally takes many iterations
to complete the task; hence the proposed system has high latency, thus reducing the overall
network performance.

The forest-fire-fighting method using hundreds of UAVs to create a non-stop flow of
liquid on the forest fire is proposed by Ausonio et al. [24]. The UAV’s battery and liquids are
refilled to continue the action. The UAVs takes action for several hours without downtime.
The proposed system maintains a support unit that manages the drone swarm to move and
position it close to the fire. The forest fire is estimated based on moisture content, wind
speed, direction, flame length, and intensity. The simulation results show that water flow is
essential to fight low intensity and support current forest-fire-fighting methodologies.

2.4. UAV Path Planning Approaches

Cheng, L. et al. proposed a staged adaptive firefly (SAFA) algorithm for charge
planning of UAVs in wireless sensor networks [25]. The proposed SAFA algorithm has a
high convergence speed and better quality. Distance and brightness are taken to promote
the convergence and diversity of the algorithm. The algorithm performs both global and
local optimization, thus increasing the convergence speed. The proposed system was
compared and tested with six functions, and the result shows that the proposed scheme
achieves high convergence and accuracy.

The path planning-based minimization of completion time for fixed-wing UAV com-
munication is proposed by Wang, H. et al. [26]. The non-convex optimization is converted
into an equal form using a S-procedure. The path-planning method is improved by ap-
plying the exact penalty method, and a heuristic path-planning algorithm is proposed to
reduce the mission accomplishment time. The proposed system divides the flight method
into three phases. In the first phase, both the UAVs attempt to reach each other from their
starting locations; in the second phase, they move while keeping a certain distance; and
in the third phase, both return to their end locations. The simulation result verifies that
the proposed system achieves better throughput while keeping the interference lower.
Only two UAVs are used for processing; however, they will be suitable only for a small
environment as it covers a limited area, thus reducing the system’s efficiency.

Li, K. et al. proposed the path planning for multiple UAVs by online changing tasks
using a fly optimization algorithm based on the optimal reference point (ORPFOA) to solve
the task assignment problem [27]. Initially, the tasks are assigned to UAVs based on their
priority, and then an optimal path is generated for changing the tasks. In this work, all
the tasks are divided into several task points. An optimal path is developed to ensure that
every UAV can fly over all the task points within the required flight time. The result shows
that the proposed system achieves higher efficiency than other systems. Here, the ORPFOA
algorithm is used for path planning, which provides an optimal path, but this algorithm
takes too much running time, thus increasing the process’s complexity.

A comprehensive risk assessment method for UAV path planning in the urban environ-
ment is proposed by Hu, X. et al. [28]. The proposed system considers three significant risks:
people on the ground, human-crewed aircraft, and vehicles. The total cost is evaluated
based on the above three risks. This work aims to create a risk cost map for providing
cost-effective path planning. A modified A* algorithm is used for detecting optimal paths
with low-risk costs. Additionally, a modified ant colony algorithm is used for searching the
shortest path.

Tang, J. et al. proposed a joint multi-UAV 3D trajectory planning and resource al-
location using a deep reinforcement learning algorithm for minimum throughput maxi-
mization [29]. The author considers a wireless-powered communication network in which
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multiple UAVs provide services to the ground devices. UAV’s path design and time re-
source assignment are optimized to maximize the throughput. Planning and resource
allocation considers UAV flight speed and IoT uplink transmit power, for which they
proposed a multi-agent deep Q learning method. Simulated results show that the proposed
system achieves high performance in terms of throughput.

The path planning of UAVs using a meta-heuristic algorithm, named the grey wolf
optimizer algorithm (GWO), is proposed by Qu, C. et al. [30]. This algorithm is further inte-
grated with the reinforcement learning algorithm to control switch operations dynamically
to obtain a feasible route. UAV’s path planning is implemented by four operations: explo-
ration, exploitation, geometric adjustment, and optimal adjustment. For smoothening the
UAV’s path, a cubic B-spline curve is applied. He proposed a reinforcement learning-based
GWO algorithm that obtained the effective route in a complex 3D environment.

The path planning of UAVs in three-dimensional space using improved particle swarm
optimization (PSO) is proposed by Shao, S. et al. [31]. A chaos-based logistic map theory is
applied to improve the distribution of particles. In PSO, velocity and acceleration coeffi-
cients are adjusted to obtain better optimization solutions. The proposed path planning
algorithm can be implemented and adopted for various path planning constraints, such as
terrain, threat, and collision avoidance. Both convergence speed and optimum solution
features are adopted in this paper for feasible UAV path generation. However, the lack of
consideration of moving obstacles in threat areas causes path loss issues.

Shi, L. et al. addressed the coverage issue of UAVs during path planning in 5G
mmWave communications [32]. QoS requirements of the ground users are satisfied for the
online sensor data transmission from the UAV to the receiver. The blockage and movement
of UAVs under various channel conditions of 5G are focused on path planning. To consider
QoS requirements, a speed control algorithm is proposed to adaptively handle the UAV’s
movement in a disaster area. This paper has obtained a minimum data loss due to UAV’s
speed control and coverage considerations.

The path planning of UAVs for satisfying QoS constraints in D2D-assisted 5G networks
is executed by Shu, L. et al. [33]. For the path planning task, the PSO algorithm was
proposed. For local information collection and optimum path planning, PSO is integrated
with two other techniques: path encoding and local search. Flight deployment costs are
reduced by planning the path for covering the considerable monitoring area. With the
modified PSO, the performance of path planning time is reduced since PSO finds the
heuristic approach. This approach does not provide a valid path since the velocity and
acceleration coefficient parameters are not optimized for different time intervals. The path
planning of UAVs in a large-scale environment was proposed by Wu, X. et al. [34]. When
the distance is far from the UAV to the obstacle, it is safe; otherwise, UAV is announced to
be in an obstruction area, and data collection is not practical. To improve the scalability
problem, optimality, and efficiency maximization, this paper proposes a bi-directional
adaptive A* algorithm. This algorithm works by multi-directional search theory in which
the path is smoothened and guaranteed. The multiple constraints analyzed in this paper
are UAV angle, position, and environment modeling.

Path planning based on multiple UAV constraints, such as height, angle, and limited
UAV slope is focused on by Yu, X. et al. [35]. When considering path planning in the
optimization problem, UAV risk and traveling distance were computed in fitness functions.
During the path planning, maximum turning angle and safe distance metrics are considered
and applied to the B-spline model. These constraints are applied in the dynamic differential
evolution algorithm. Based on the fitness functions, the performance of the UAV path is
optimized in disaster cases. Table 1 summarizes the findings of the literature review in a
concise manner.
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Table 1. Summary of literature survey.

Algorithm/Model Used

Limitations

Approaches

Authors Objective

Initial clusters are unpredictable.

UAV Positioning Approaches

Bhandari, S. et al. [21] Cluster-based positioning of UAVs

K—means clustering algorithm

Inefficient during a varying number of UAVs in each cluster.

Data collection by UAVs for augmented

Tan, Z.etal. [22] reality applications

Multi-UAV mechanism

Undetermined distance between UAVs caused overlap.

3D deployment of UAVs to achieve

Zhong, X. etal. [23] maximized coverage

Genetic algorithm

Iterations increase latency.

Positioning of UAV to achieve water flow on

Ausonio. EL et al. [24] forest fire

Cellular automata model

Not considering UAV altitude.

gets trapped in local optima, which reduces planning

UAV Path Planning Approaches

Charging planning of UAVs based on speed

Cheng, L. et al. [25] and distance

Staged adaptive firefly algorithm

performance.

Fixed time slot leads to wastage of time resources under certain

Minimization of completion time through

Wang, H. et al. [26] path planning

Heuristic optimization algorithm

situations.

Li, K. et al. [27] Assignment of tasksp e;r’:}cllsopnmal planning of

ORPFOA algorithm-based path planning

Increased time complexity affects the performance of this
approach.

Increases latency when the number of iterations is increased.

Hu, X. et al. [28] Risk-aware, cost-effective path planning

Modified A* algorithm

Optimization of trajectory and resource

Tang, J. etal. [29] allocation

A reinforcement-based deep Q learning
algorithm

Relatively long training time increases latency during motion.

Lack of consideration of obstacles increases collisions.

Qu, C. etal. [30] Adaptive path planning of UAVs

Reinforcement-based grey wolf optimizer

Lack of consideration of moving obstacles leads to replanning.

Shao, S. et al. [31] Collision-aware path planning of UAVs

Improved PSO algorithm

Lack of consideration of weather conditions

Shi, L. et al. [32] Minimize data loss by controlling UAVs

The adaptive speed control algorithm

Adaptive planning and communication

Shi, L. et al. [33] during flight

Particle swarm optimization

Reduction of convergence rate when iteration increases.

Minimization of path cost during flight time

Bi-directional adaptive A*

Lack of consideration of weather conditions.

Wu, X. et al. [34]
Risk-aware path planning of UAVs in a

Yu, X. etal. [35] disaster scenario

Dynamic differential evolution algorithm

Frequent replanning due to lack of consideration of obstacles.

Contributions

Proposed dynamic UAV positioning and
path planning

Objectives

Events/Weather prediction
Events-aware clustering
Multi-UAV positioning
Energy-efficient path planning

LGRU
DBOC
DPSAC
SSO-DWM

Improves QoS
Improves scalability
Improved Energy efficiency
Reduce communication overhead
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3. Problem Statement and Proposed Work

The summary presented in Table 1 shows that most existing approaches performed
UAV positioning or path planning. However, the lack of consideration of obstacles makes
it hard to achieve their objective. Moreover, the weather conditions in which UAVs travel
greatly influence their performance. Our approach addresses these factors to achieve
maximum throughput and minimum energy consumption in UAV communication. In our
system, the environment is classified into disaster and non-disaster regions after predicting
it through the LGRU algorithm. The IoT devices in both areas are clustered based on
several factors given in Section 3.2. The UAVs are responsible for providing services to IoT
devices. Let the number of devices present in the environment are N = {1,2,...,N} and
the number of devices in a single kth cluster be denoted as Ny, ke K=1{1,2,...,M}. The
clusters of devices formed do not overlap with other clusters, which can be formulated as,

NiN Ny =2, k #K, 1)

Let’s write the number of UAVs as B = {1,2,...,B}. The flight period of the UAVs
can be expressed as f; € [0, T] which depends on the mission and battery of the UAV. The
location of both devices and UAVs can be formulated as,

wWN = (xN/yN/O) (2)

wp = (xp(t),yp(t), hp(t)) ®)

where (x,y) denotes the latitude and longitude of the devices and UAVs. hp(t) denotes the
height of the UAV B at time t. The term hp(t) influences the coverage of the UAV [36]; as
the height of UAVs increase, the coverage also increases until the UAV reach its optimal
location. k() can be determined as:

hp(t) = Crp tan(Omax) 4)

In Equation (4) Crg denote the coverage radius of the UAV B. The existence of objects
in the surroundings affects the channel between the ground devices and UAVs. The
probability of Line of Sight (LoS) between UAVs and devices is modeled as a function of

(PN,B as [37]:
180 "2
Pros(¢n,B) =11 (nﬁbN,B - 77) ®)
In Equation (5), v; and v, denote the constant values influencing the environment,
1 represents the constant representing the relation between environment and antenna.

The LoS probability depends on the elevation angle. ¢y p denotes the angle of elevation
between the IoT device and the UAV B, which can be formulated as:

o hp(t)
¢n,B = sin ! (Dt(NB)(t)> (6)

where, Dty p)(t) denotes the distance between the IoT device and the UAV. The probability
of non-line of sight (NLoS) can be computed as [38]:

PNLos =1 = Pros @)
The path loss that occurrs in the channel between the device and the UAV can be

formulated as [39]:
)
B M (M) , LoS

PL(N,B) — ¢

5 8)
Ay (%) , NLoS

c
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In Equation (8), A1, A, denote the coefficient of attenuations of the LoS and NLoS

channel link. % is the path loss in free space. fr., c and é denote the carrier frequency,

light speed, and path loss exponent, respectively. The throughput of the IoT devices can be
formulated as [37]:

1 1
Try = f Z CN,BGN 10g2 <1 + (9)
i=1

1

PYPGy
Ify +p?

where, Cy p denotes the connectivity between the device N and UAV B. The value of Cy 5
equals 1 if the device is under the coverage of UAV; otherwise the Cy p will be equal to 0.
The last term in Equation (9) is the signal-to-noise and information ratio where PIE]I denotes
the uplink power of the device, PGy denotes the power gain of the device, Iy denotes the
interference between the UAV and neighbor cluster, and 2 is a function of power spectral
density. The UAV’s energy consumption is divided into three categories, including energy
consumption during motion and data collection. The entire energy consumption can be
expressed in the following way:

Ep =tmPm +tc-Pc (10)

In Equation (10), tps and f¢ denote the time involved in motion and data collection,
and Py and Pc denote the power utilized during motion and data collection, respectively.
From the above equations, we can formulate the primary problem as follows:

Maximize <+ Try (11)

Minimize < Eg (12)

The positioning of the UAVs in the environment is conducted to enhance the coverage
of UAVs to maximize the throughput. The multi-objective utility-based maximization of
the total sensing information in wireless sensor networks is proposed [40]. The optimal
position is derived by using PSO based on sensing utility, communication path quality
utility, and network connectivity utility functions. The positioning of low-altitude UAVs
for effective data collection is proposed in [37]. The observed time difference of arrival time
(OTDOA) positioning method was used for device location, with the UAV being positioned
in a 2D plan. The following are the primary issues that various techniques face:

e  The UAV positioning considers only limited parameters, such as location and link qual-
ity, which is not enough for optimal positioning. Weather conditions are the essential
factors in UAV positioning, which were not considered, thus reducing coverage.

o The UAV was assumed to be at a constant height, which is not the case in reality; the
channel has several variations, resulting in a coverage reduction.

e  The number of UAVs needed for adequate data gathering was not calculated, affecting
the average data collecting throughput.

The optimal path planning of UAVs is performed by grouping the user equipment
into clusters [36]. The individual communication between UAVs and UEs was termi-
nated, and a CH-based communication was performed. This way of planning the path
of UAVs considerably reduced the energy consumption of the UAVs. Time-sensitive data
collection by planning UAV trajectory and resource allocation is executed to maximize
the number of served IoT devices [41]. The game theory-based selection of UAVs and the
reinforcement-based path planning optimization achieve minimum path loss [42]. The
significant problems involved in these approaches are:

o  The UAV trajectory is affected by many weather conditions, but they only focus on
wind speed, leading to poor trajectory planning, thus increasing path loss [36].

e  The planning only considers wind characteristics and the length of the path. However,
the performance of this method is affected by the fact that obstacles in the environment.
Furthermore, the UAV’s energy consumption was not taken into account [42].
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The trajectory planning was conducted only on the basis of distance, which is insuf-
ficient for picking an ideal path; the weather is one of the most important aspects
impacting UAV trajectory, and it was overlooked, resulting in poor trajectory planning
and higher energy consumption [41].

The proposed approach overcomes all the problems mentioned above by performing
the following processes; initially, the prediction of weather conditions and recognition of
disaster regions are achieved by using the LGRU model. Significant features, such as wind
characteristics and temperature parameters, are utilized. The clustering of IoT devices is
performed in which the devices in disaster and non-disaster regions are grouped based
on density. This eventually optimizes the communication between the devices and UAVs.
The satellite is in charge of locating UAVs in 3D space, determining the number of UAVs
to be deployed, and positioning them using the DPSAC algorithm. Further, the energy
consumption of the UAVs is minimized by planning their path. Considering obstacles in
the environment makes it more realistic that our approach would be be adopted. The path
loss is also reduced by utilizing the dynamic window model.

The proposed work mainly focuses on performing the dynamic positioning and path
planning in a 5G-assisted multi-UAV environment. The proposed Dynamic-UAV approach
comprises entities, such as IoT devices, UAVs, 5G GBS, and a satellite. Figure 3 depicts
the overall architecture of the proposed approach. The processes involved in the proposed
Dynamic-UAV approach are given below.

Satellite

1. Weather /Event prediction
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Figure 3. The overall architecture of the dynamic UAV approach.

3.1. Events/Weather Prediction

The weather influences the position and communication channel of UAVs. Mainly the
wind characteristics, such as wind direction (wd), speed (s), velocity (ve), and turbulent
flow (tf) mostly affect the UAV communication. Lightning and heavy rain are also the
factors that limit UAV communication. Hence, we need to predict weather conditions for

UAV communication. Let 4={wd, s, ve, tf} where 9 represents the wind characteristics.
For instance, if there are extreme weather conditions, such as lightning, cyclones, etc., UAV
communication may be impossible, or it may cause physical damage to the UAVs, so it
must be predicted to achieve better communication and avoid those damages. The events
are predicted using historical information, which helps improve UAVs’ communication
efficiency. Based on the historical data, we predict the disaster regions from the UAV image
by using a satellite. For example, if the image consists of collapsed buildings, then the event
is known as an earthquake, and if the image has active flames or smoke, it is known as a
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fire accident. Prior knowledge of these weather conditions is very important for efficient
communication. This historical information is used for predicting the disaster region, thus
helping to give priority compared to the other areas. For this reason, we proposed the
LGRU algorithm that contains an update gate and a reset gate. The update gate (g,) controls
the iteration range of previous information state to current information state. The reset
gate (ge) controls the overload of information state from the g,. For weather prediction, the

wind characteristics 4 are used respectively, which are updated periodically to the UAV.

Quo = X(WMy, {Ph e d}) (13)
Seo = X(WM, [Ph e d]) (14)
W= b(WMh [guo(DPhd,CIdD (15)
h* = (1 - geo) ®© Phd +h° ® Geo (16)

The above equations represent the weather prediction formulas using LGRU. Equa-
tion (13) represents the gate update output (g.0) which acquires the current input (CI) as
wd, s, ve, tf and previously hidden state information (Ph) as wd, s, ve, tf that forms a
weighted matrix function of the gate update (WM, ) using activation function (*). Equa-
tion (14) shows the gate reset output (g.,) which controls the state information from g, and
forms a weighted matrix of gate reset (WM, ) using *. Equation (15) shows the contestant
hidden state, which combines the previous information with current information (4°) that

forms a weighted matrix function of the hidden state (WM},) using activation function (b),
and finally, all the state information is combined to give a predicted result. Equation (16)
shows the hidden state (h°) which combines the processed results and gives predicted
results which can be formulated as:

Pre(wea) = {h°, sunny, rainy, cloudy, windy} (17)

Let the past images (Im = ¢, f, t,b) and (wea) denotes the weather. For event predic-
tions, the past images are required for predicting the accurate event in the present, which
can be formulated as:

8uo = *(WMg, [Phim, Clim]) (18)
Seo = *(WMy, [Phyy, Cliy)) (19)
1 = P(WM},[guo ® Phym, Clipn]) (20)
B = (1= geo) ® Phim + 1 © geo (1)

The above equations represent the event prediction using past images (Im) of an
earthquake (e), fire (f), tsunami (¢), and battle region (b). With these past images, LGRU
predicts the accurate event in the present (Pge) which can be formulated as:

Pre(event) = {h°, earthquake, fire, battle, tsunami} (22)

Algorithm 1 and Figure 4 represent the working of LGRU in weather and event
predictions, respectively. In Algorithm 1 we used the cost function (Fc), which holds
the set of all parameters. Fc is updated for every prediction based on the environmental
condition. The performance is evaluated using this function. Cost function required
constant minimization. The model’s performance improves with minimization in the cost
function. In the case of accurate prediction, its value becomes zero. By using LGRU, we
perform event prediction using images from past events and weather prediction with
weather characteristic parameters, such as temperature (Temp), wind speed and direction
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(wswd), humidity (H), dew point (DP), pressure (p), time (T), and precipitation time (P;).
The above measurements are considered for effective positioning, optimal path planning,
and ensuring the safety of the UAVs. Table 2 represents the weather reports predicted by
the proposed LGRU algorithm for 24 h.

LGRU

Weather
prediction
/ YGuo
/ r %% fo
f: Sunny  Windy
Cl z !
z Iy, -
Past / ’ ‘J’dd
information Ruiny' Glondy
and current
fnput Ph Jeo Event
Weather / Furo prediction

past report

Events
past report

o

-

Ph
YGeo
Convolutional Output
onvolutiona Hidden laver utpu
layer 5 layer
Figure 4. LGRU weather and event prediction.
Table 2. Weather report for 24 h.
Weather P; T Temp p DP wswd H
Windy 0.9 mm 22.00 29°C 1001 hpa 26 °C 10 km/s, NE 85%
Cloudy 0.2 mm 19.00 28 °C 1001 hpa 26 °C 10 km/s, NE 75%
Rainy 1.7 mm 5.00 31°C 1100 hpa 23 °C 10 km/s, NE 67%
Sunny 2.7 mm 2.50 36 °C 1232 hpa 27 °C 2km/s, NE 75%
Cloudy 0.6 mm 13.00 29°C 1028 hpa 21°C 3km/s, NE 75%
Sunny 0.5 mm 15.00 21°C 1001 hpa 26 °C 10 km/s, NE 88%
Windy 0.3 mm 09.00 23°C 1100 hpa 23°C 2km/s, NE 61%
Cloudy 0.1 mm 07.30 26 °C 1006 hpa 22°C 6 km/s, NE 93%
Rainy 3 mm 23.26 30°C 1001 hpa 26 °C 7km/s, NE 88%
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Algorithm 1 LGRU-based weather and event prediction.

1. Input CI, Clyy,

2. Output Pr.(wea), Pre(event)

3. Begin

4. While (Fc) # 0, do

5 For each time slot, do

6. Update Ph, CI// to UAV

7. Compute g0/ / using (13)

8 Compute ge0// using (14)

9 Calculate h¢// bitwise multiplication using (15)

10. h*/ / bitwise multiplication using (16)

11. Pre(wea)// using (17)

12. End

13. For each time slot, do

14. Update Phjp,), Clim // to UAV

15. Compute g0/ / using (18)

16. Compute geo// using (19)

17. Calculate h¢// bitwise multiplication using (20)
18. Calculate #°// bitwise multiplication using (21)
19. Compute Pre(event)// using (22)

20. End

21. Stop

22. End

3.2. Event Aware Clustering

After predicting the weather conditions, a clustering of IoT devices is performed to
increase communication reliability. Based on the past event information, the environment
is clustered in two regions: disaster and non-disaster. The regions are clustered into the
disaster region and non-disaster region. Each area has multiple clusters. Each cluster
has various IoT devices that send the data to the UAV via the CH. For clustering, we
consider the parameters (W) of density (de), distance (di), and the number of users (u).
Let us consider, (M = de, di, u). The DBOC algorithm performs the clustering process. For
example, in case of any natural or manmade disasters, the base stations which sends the
information to the authorities are affected; at that time, the IoT devices, such as sensors,
actuators, etc., forms a cluster as a disaster and non-disaster region and sends data via the
CH. The cluster formation can be formulated as:

|UNgis, MP'(W) < MR|< MP
Demr, MP) = 4 |UNnon—diss MP' (M) < MR|< MP (23)
MPyis non—dis, Otherwise

Equation (23) represents the minimum points (MP) that are closely related to IoT
devices in disaster and non-disaster regions. The D g, mp) represents the MP and max-
imum radius (MR) for forming clusters between the IoT objects. The DBOC algorithm
first calculates the main distance (D) of the untreated IoT devices (UN) in the regions.
UNgyis, MP'(den, dis, users) represents the untreated IoT device in the disaster area, which
must be less than or equal to the MR, UN,,,n_gis, MP’(den, dis, users) represents the un-
treated IoT device in the non-disaster areas, and if all the IoT devices are treated, then the
MP are calculated in disaster and non-disaster regions. After calculating the D, of the IoT
devices, the distance reachability (D;) is calculated for the devices to form clusters which
can be formulated as:

|UNgis, MP'(W) < MR|< MP

MRgis, non—dis, Otherwise (24)

D,mr, mp) = {
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Equation (24) represents the distance reachability (D, g, mp)) for the untreated IoT
devices from disaster and non-disaster regions. Afterwards, all the IoT devices compute
D, and D, and a list of a clusters is formed as disaster and non-disaster regions. The final
clustered output is formulated as:

CU = {(diSMR,MP) P (1’101’1 — diSMR,MP)} (25)

Equation (25) represents clusters output (C,) at the disaster (dis) and non-disaster
(non—dis) region based on the maximum radius (MR) and minimum points (MP). The
clustering method reduces the complexity and energy of UAV communication. As CH
sends the data to UAV hence, we need to select optimal CH; for that, we consider energy
and centrality that can be formulated as:

CH = {Ky > energy, centrality} (26)

Equation (26) shows the optimal CH selection from clustered IoT devices (Ky) in C,
for sending data to UAV. Centrality is the frequency of cluster nodes located on the shortest
path between other cluster nodes. Energy is the capacity of cluster nodes to withstand
other cluster nodes in the surrounding environment. Algorithm 2 and Figure 5 represent
the working of DBOC in events-aware clustering.

-
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Figure 5. Density-based optics clustering.

Algorithm 2 Events-aware Clustering.

1. Input UNy,
2. Output C,
3. Begin to obtain information form Pr.(wea), Pge (event)
For (cluster formation), do
Compute D g, mp)/ / using (23)
Compute D, g, mp)// using (24)
Elect CH/ / using (25)
Compute C,// using (26)
End
10 End

© ® NS U
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3.3. Multi-UAV Dynamic Positioning

The effective positioning of UAVs is performed after the clusters of IoT devices are
generated by DBOC in a disaster region, which improves communication and provides
adequate coverage during an emergency. Many variables influence UAV placement, in-
cluding altitude, weather conditions, speed, and the existence of obstacles that obstruct
communication between IoT devices and UAVs. During an emergency, the satellite is
responsible for deploying the appropriate number of UAVs depending on traffic demand.
In our proposed work, the UAV acts as an edge server that collects the data from the IoT
devices and takes action based on that data. In the proposed Dynamic-UAV approach, the
DPSAC algorithm is utilized. The goal of the DPSAC algorithm is to identify the optimal
policy. The combination of policy and value-based approaches maximizes the long-term
reward. The UAV positioning is constructed as a Markov Decision Process (MDP) with
state attributes (g) which are predicted weather conditions, coverage area, user density,
delay sensitivity, elevation angle, path loss, and LoS/NLoS characteristics. The reason for
adopting MDP is to allow sequential decision-making, and it gives optimal results for par-
tially known environments. An MDP is comprised of state, action, transition probabilities,
and reward. The DPSAC algorithm aims to identify the optimal policy and maximize the
reward to determine the optimal position and number of UAVs. The combination of policy
and value-based approaches maximizes the long-term reward. The position of UAVs in the
proposed approach is constructed with state attributes (¢) that are predicted weather condi-
tions, coverage area, path loss, angle of elevation, and LoS/NLoS characteristics. The state
parameters for UAV number determination are delay sensitivity and density of users. The
action set consists of two major actions: UAV count determination and positioning. Latency
increases without determining the number of UAVs, which impacts the throughput. The
coverage enhances while increasing the height of the UAVs from the ground. On the other
side, path loss also occurs by increasing the height of UAVs, which creates interference,
eventually influencing the throughput. Optimal positioning also improves the QoS in UAV
communication. There is an impact on throughput by taking actions (position and number
of UAVs to be deployed) in the environment, so it must be optimized to maximize the re-

ward. The MDP tuple is given as [ Tu, ¢, A, Pro (.‘QT, ac),R (¢r,ac), ®]. The state, reward,

and transitions are based on real-time interactions with environmental attributes. From the
tuple, Tu denotes the epochs, which range from Tu = 1,..., N, ¢ denotes the state, and
A denotes the action set consisting of two major actions discussed above. The actions are
dynamically executed based on the current situation (disaster or non-disaster). The reward
(R) is generated based on the action value function to maximize the throughput. The
DPSAC algorithm increases the reward from the agent’s interaction with the environment.
DPSAC uses soft policy iteration to reach this goal. Soft policy iteration is evaluating the
policy and making it optimal to maximize the reward. The Pro denotes the transition

probability as Pro3 = [g741 = ¢ ‘gt = st, A = ac], and the discount factor is denoted by

O, and is set between 0 and 1. The discount factor determines the agent’s care about the
reward in the long term compared to those in the near future. When the discount factor is 0,
the agent only cares about the immediate reward. When the discount factor is 1, the agent
cares about the future reward, and the rewards can increase based on the interpretation
of the discounting factor. For every given state and action, the reward can be provided
based on adding immediate and future rewards. DPSAC consists of three networks. The
first network represents state value, the second network represents policy function, and the
third is the soft Q function derived in this section. The policy and Q-network are updated
by collecting data from the policy that is different from the current policy. The transition
of data is stored in a replay buffer for each roll-out of actor, which is denoted by (D) in
Equation (27). The state value function is denoted as Vi (¢T).
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The soft Q function is denoted as Qg (g T, AT) which is trained as formulated below:

Ho($) = Eg;p B (Vo (er) = Eaymry | Qo (s1/Ar) —log 7 (Arlcr) | )2} @7)

A separate approximation function E,.p is utilized to minimize the squared residual
error. The gradient function is estimated for the parameter updation, which is formu-
lated as:

VyHo(¥) = Vy Vy(c1) (VIP(QT) —Qp (gTr AT) + log (AT|€T)) (28)

The optimization of the soft Q function is carried out by using the stochastic gradient
function, which is computed as:

VeHq(0) = VeQo (AT;QT) (Qo (QT/ AT) - R(QT/AT) =6 Vy(ers1) (29)

The optimal policy of positioning the UAV is achieved by learning the parameter
policy, which is computed as:

Hr(¢) = Ecron,er~n[log o (folericr)s ) — Qolst, folericr))] (30)

By doing so, the positioning of the UAV is achieved optimally amidst several challeng-
ing factors. Figure 6 illustrates the positioning of UAVs. The pseudocode for DPSAC-based
optimal positioning of the UAV is given in Algorithm 3.

3 Environment
State attributes
Number
Action determination &
positioning
of UAV
Reward Maximization of|
throughput
7
~ PRGN el
4 o e ~ ~ <3
~ P = I
I g p A =
R A g 2|
g2 @ I
| v
Environment
Weather condition Delay sensitivity User density
i Coverage area | | Elevation angle Path loss LoS/NLoS

Figure 6. DPSAC-based multi-UAV positioning.
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Algorithm 3 DPSAC-based UAV positioning.

1. Input: State attributes (¢)
2. Output: Number determination and positioning of UAVs

3. Begin

4. Parameter initialization (6, ¢, ¢, l[))

5. For each episode, do

6 Set initial state gg = 0

7. For each time step, do

8 Perform action AT from the policy 77y <AT }gT)
9 Move to the next state g1

10. Generate reward R based on Ay

11. Store (g . ArR, €T+1) in the replay buffer
12. End for

13. For each gradient step, do

14. Y ¢ — aVypHo(y)

15. 0, + 6, — D(QVgn HQ (9;1)

16. ¢+ ¢ —axVeHr(e)

17. P TP+ (1-1)9

18. End for

19. End for

20. End

3.4. Energy-Efficient Path Planning

Path planning for UAVs is a crucial part of successful communication. After the UAVs
have been dynamically positioned, the optimal path is planned in order to reduce their
energy consumption. Many elements, such as wind conditions and limited availability of
energy, influence UAV path planning. We propose a hybrid algorithm named SSO-DWM for
path planning, which learns the obstacles” mobility and dynamically changes the path. This
process performs UAV path planning to maximize coverage capacity and reduce path loss.

For that, we consider the parameters of wind characteristics (4), LoS/NLoS, energy (E),
static and moving obstacles, distance (D), and optimality (OP). et, @ = (d, E, D, OP).
Initial evaluation of all alternative pathways and trajectories enables the UAV to determine
the best path, which can be expressed as:

PT, q, = ® x RM(OPT; — OPTg) + 4 x RM((OPT; — OPTj) (31)

(Q)
Equation (31) represents the evaluation of the UAV path by using path parameters
(PTB (’Q))' OPT; denotes the first selected path and OPT; denotes the second selected path

for the UAV to find an optimal path (OPTg). @, 4 are used for the iteration process, which
can be set to zero at the time of the searching process. RM denotes the random number
which states the UAV time interval [f; = 0, f; # 0] while f; € [0, T]. It depends on the
UAV battery and mission. The flight time is the time taken by a UAV during motion and
communication with IoT devices. The first path selected (OPT;) is the best path, and no
path is more optimal than itself, so PT, Q) is ‘0, and the second path selected (OPT)) is

the worse than any of the paths, so the second path PTp(y, g,p,op) is also ‘0. Therefore, an

increase in W and a decrease in 4 improves the manipulation of the algorithm and reduces
the investigation, which can be formulated as:

®
=0, % ijter (32)
iter max
q_...—4
g =Y, —maxd— 0 e (33)

iter max
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The above two equations represent the manipulation of the algorithm for finding
the optimal path using the SSO optimization algorithm with parameters wc, E, D, OP.
Another set of parameters is also considered, such as LoS NLoS and SMO, which are used
for detecting the static and moving obstacles which can be formulated as:

PTB (LOS NLoS, SMO) = IO(WgPTB(,Q)head(LoS NLOS, SMO)

+W Sep(LoS NLoS, SMO) + W, SV(LoS NLoS, SMO) 34
Equation (34) represents the evaluation of the UAV path by using parameters

(PTB(Los NLos, sM0))- The head (LoS NLoS, SMO) is used to calculate the angle between
the direction of the current position, speed, and simulated trajectory direction. The an-
gle of deviation must be more significant for a smaller value of head (LoS NLoS, SMO).
Sep (LoS NLoS, SMO) represents the distance between simulated vector velocity (SV
(LoS NLoS, SMO)) and trajectory. The overall value of PTp 1 s NLos, sMo) Must be smaller
to reduce the collision with obstacles. O, Wy, W, W, denotes the weighted value co-
efficient. Using DWM, obstacles in the path are detected, reducing the total energy con-
sumption. The overall optimal path is formulated as:

OPTPg, , =P TB(’Q) + PTg(1.05 NLoS, SMO) (35)

The energy consumption and path loss are reduced by using this approach. The
effective path planning approach is depicted in Figure 7, in which the UAV optimally selects
paths and detects obstacles using the proposed SSO-DWM. The proposed approach reduces
path cost (1-4) and energy consumption compared to traditional UAV path planning.
Traditional approaches detect the obstacles but have a high path cost, resulting in higher
energy consumption. Algorithm 4 depicts the steps of SSO-DWM for energy-efficient
path planning.
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UAYV path #7r K ToT devices
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Figure 7. Hybrid SSO-DWM approach for obstacle detection.
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Algorithm 4 Energy-efficient path planning.

1. Input PT, (Qy PTp (105 NLoS, SMO)
2. Output OPTPg,

3. Begin to Evaluate the path

4. while criteria for stopping not met (f; # 0), do
5. For each UAV

6 Evaluate path // using (31)

7. Manipulate path // using (32) & (33)
10. End

11. For each UAV
12. Evaluate obstacles // using (34)
13. End

14. Compute OPTPg,  // using (35)
15. End while
16. End

4. Simulation Setup, Comparative Analysis, and Experimental Results

The Dynamic-UAV technique is simulated using the NS 3.26 simulator [43]. Table 3
shows the hardware and software required to mimic our technique accurately. IoT devices,
ground base stations, UAVs, and a satellite are all part of the network model. The prediction
of weather conditions is performed first, followed by the prediction of the event. The
placement and route planning of the UAVs is then performed to enhance the throughput
and energy efficiency. The simulation parameters needed to execute the proposed technique
are shown in Table 4.

Table 3. Hardware and software requirements of system.

System Components Descrition
(O3] Ubuntu 14.04 LTS
Network Simulator NS3.26
RAM 8 GB
Hard Disk 60 GB
Processor Intel(R) Core (TM) i5-4590S CPU @ 3.00 GHz
3.00 GHz

The Dynamic-UAV technique is experimentally analyzed. QoS, reliability, and energy
efficiency are evaluated using the proposed method. This section comprises a simulation
setup, comparative analysis, and summary. The proposed Dynamic-UAV approach is
validated and compared to that of previously published studies, such as EIC-UAV [36],
PSO-UAV [40], and DC-UAV [41], in terms of QoS (throughput (bps/Hz)), PDR, delay
(ms)) reliability (coverage probability and the number of collected packets), and energy
efficiency (KJ).
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Table 4. Simulation Parameters.

Parameters Description
Simulation area 1000 m x1000 m x 900 m
Number of IoT devices 100
Number of UAVs 10
Number of GBS 1
Number of Satellite 1
Transmit power of UEs 13 mW
UAVs transmit power 455 W
Blade chord 0.2m
Number of blades 4
flying time 4 min
Packet size 105 Bytes
Network Parameters Wind speed 5m/s
Air density 1.156 kg/m3
Bandwidth 1 MHz
Noise power —160 dBm
Buffer distance 2m
Path loss constant 3
Path width 12m
Carrier frequency constant 12
Data bit rate 300 kbps
Wavelength 1.45m
Capacity 70.32 kbps
Cell coverage 0.93
Path gain —13.3dB
Response time constant 0.987
QoS 0.92
Algorithm Parameters
Total epochs 25
Total learning rate 0.01
LGRU Optimizer Adam
Hidden layers 2
Dropout rate 0.5
MR 25
bBOC MP 0.10
Learning rate 0.0001
Discount factor 0.8
Hidden layers 3
DPSAC Activation function ReLU
Replay buffer size 105
Updating interval 2
Iter max 100
5S0-DWM population 100
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4.1. QoS Analysis

QoS is the measurement of overall network performance. The analysis of QoS is
performed in terms of throughput, PDR, and delay.

4.1.1. Throughput Comparison

The amount of information transferred in a certain period is known as throughput.
High throughput is essential for an effective communication system. Figure 8 represents
the throughput achieved with an increasing number of UAVs, compared with existing
approaches. As the number of UAVs increases, so does throughput, proving that the
proposed Dynamic-UAV approach achieves a high throughput rate in comparison to
existing works. This is because of weather prediction, multi-UAV placement, and events-
aware clustering performed in the proposed Dynamic-UAV approach. The LGRU algorithm
separates disaster and non-disaster regions. Then, the DBOC algorithm clusters the IoT
devices to reduce complexity and energy consumption during the communication of UAVs
with ground devices. DPSAC is used to determine the optimal number of UAVs to be
deployed in disaster and non-disaster regions and then provides optimal positioning
based on those numbers to increase the reliability of communications. Compared to the
proposed Dynamic-UAV approach, the location of the UAV is fixed at a constant altitude in
the DC-UAV approach [41], which reduces the throughput and increases communication
complexity between UAVs and IoT devices. In PSO-UAV, the impact of weather conditions
on UAV positioning is not addressed, which reduces the throughput performance [40]. The
EIC-UAV approach only considers windspeed while other parameters considered in our
approach are not taken into account; thus, it also increases the data loss, resulting in low
throughput performance [36].
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Figure 8. Number of UAVs vs. Throughput.

With 10 UAVs, the proposed Dynamic-UAV approach achieves a throughput of 2 bit/s,
while the existing work EIC-UAV, PSO-UAYV, and DC-UAV achieve 1.6 bit/s, 1.16 bit/s,
and 0.8 bit/s, respectively. Compared to the existing approaches, the proposed work has a
throughput rate of 1.593 bit/s on average, where the average throughput rate is 1.233 bit/s
in EIC-UAY, 0.86 bit/s in PSO-UAYV, and 0.64 bit/s in DC-UAV.

4.1.2. PDR Comparison

PDR is the ratio of packets successfully delivered to the destination compared to the
total number of packets transmitted by the sender. Figure 9 compares PDR with the number
of UAVs to existing works. The PDR increases with the number of UAVs, as illustrated
in Figure 9. The proposed Dynamic-UAV method achieves a high PDR in comparison to
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the previous works. Event-aware clustering is utilized to boost the PDR in the proposed
Dynamic-UAV approach. In PSO-UAV, the information from all the devices is collected
randomly by UAVs, thus increasing communication complexity and decreasing the PDR.
The PDR is lower due to the unaddressed impact of weather conditions in the EIC-UAV
approach. The DC-UAV approach leads to a lower PDR due to the fixed altitude of the
UAV, channel fluctuations, and inability to adjust its position dynamically.
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Figure 9. Number of UAVs vs. PDR.

When the number of UAVs increases to 10, the proposed Dynamic-UAV approach
achieves a PDR of 0.95. In contrast, the state-of-the-art approaches DC-UAV, PSO-UAY,
and EIC-UAV earn PDRs of 0.79, 0.8, and 0.85, respectively. The average PDR of the
proposed work is 0.88. In terms of PDR, the numerical results depicted in Figure 9 reflect
the effectiveness of the proposed method.

4.1.3. Delay Comparison

Delay is the time taken by a packet from the source IoT device to its destination. It is
formulated as follows:
3=p_8 (36)

where 3 represents the delay,  denotes the packet transmission time, and 8 shows the
actual transmission time. Figure 10 depicts the delay as the number of IoT devices increases.
The proposed Dynamic-UAV transmits packets from source to destination with a shorter
delay than the existing approaches. It is due to proper clustering using the DBOC algorithm,
which clusters the IoT devices in disaster and non-disaster regions and selects the optimal
CH based on energy and centrality. The existing EIC-UAV approach used shift algorithm
for clustering ground devices in which a detailed explanation of centroid selection is not
present. In the PSO-UAV approach, the UAV tries to collect information from all the sensors,
which increases the delay when the number of sensors increases. Due to the fixed altitude,
the DC-UAV approach encounters path loss; hence, the delay increases when the number
of IoT devices increases.

When we increased the number of IoT devices to 100, Dynamic-UAV encountered a
35 ms delay in packet transmission. In contrast, the DC-UAV, PSO-UAYV, and EIC-UAV
approaches encounter delays of 150 ms, 120 ms, and 130 ms, respectively. The average
delay in the proposed work is 18.5 ms for the number of IoT devices, which is less than the
existing approaches.
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Figure 10. Delay vs. Number of IoT devices.

Figure 11 depicts the delay experienced during packet transmission as the number of
UAVs increases. The length of delay increases with the number of UAVs. The proposed
approach outperforms the existing schemes due to multi-UAV positioning in terms of delay.
UAVs are effectively positioned using the DPSAC algorithm, which optimally determines
the number of UAVs required for a specific area while minimizing communication delays
between UAVs and IoT devices. The EIC-UAV approach is inefficient when the number of
UAVs increases because of the absence of centroid during the clustering of ground devices.
In PSO-UAV, the algorithm falls into local minima for an increasing number of UAVs, due
to which the delay also increases, whereas the number of UAV increases the DC-UAV
encounters high delay because of its fixed altitude.
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Figure 11. Delay vs. Number of UAVs.

When the number of UAVs is increased to 10, the proposed Dynamic-UAV approach
has a delay of 33 ms. On the other hand, DC-UAV, PSO-UAYV, and EIC-UAV have delays
of 130, 104, and 81 milliseconds, respectively. Our system experiences an average delay
of 16.4 ms, validating its effectiveness. The average performance of each QoS metric is
displayed in Table 5.
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Table 5. QoS analysis.

Average
Approaches Thr((l))tilsgput Average PDR Average Delay (ms)
No. of UAVs No. of UAVs No. of Devices No. of UAVs
DC-UAV 0.64 0.74 83.8 75.1
PSO-UAV 0.86 0.76 67.1 55.5
EIC-UAV 1.23 0.80 57.5 40.8
Dynamic-UAV 1.59 0.88 18.5 16.4

4.2. Reliability Analysis

Reliability is the measure of the successful delivery of data packets without loss. The
proposed reliability analysis is compared in terms of coverage probability and a number of
collected data packets.

4.2.1. Coverage Probability Comparison

The coverage probability is defined as the distance that UAVs cover as their altitude
increases. Figure 12 depicts the coverage probability of the proposed Dynamic-UAV
technique relative to the UAV’s height, compared to the existing approaches.
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Figure 12. The altitude of UAVs vs. coverage probability.

In Figure 12, it is demonstrated that as the altitude of UAVs increases, so does the
likelihood of coverage. Since the DPSAC algorithm considers several different parame-
ters while positioning multi-UAVSs, the proposed Dynamic-UAV method achieves a high
probability of coverage in comparison to previous techniques as a result.

On the other hand, the most traditional systems use UAVs that are fixed in place, re-
sulting in a limited likelihood of coverage. Only wind speed is not sufficient for positioning
of UAV, and that is why coverage probability of the EIC-UAV approach is affected. The
coverage probability of PSO-UAV is also affected due to the lack of weather conditions and
other parameters. After reaching a maximum height of 100 m, the coverage probability of
the proposed approach increases to 1, while that of the existing DC-UAV, PSO-UAYV, and
EIC-UAV techniques is only 0.5, 0.6, and 0.8, respectively. The proposed Dynamic-UAV
approach has an average coverage probability of 0.82, significantly higher than the previous
DC-UAYV, PSO-UAV, and EIC-UAYV techniques.
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4.2.2. Number of Collected Packets Comparison

Compared to previous methodologies, Figure 13 shows the number of packets cap-
tured as a function of UAV speed. In proportion to the speed of UAVs, the pace of packet
collection slows down. The Dynamic-UAV technique has a greater packet-collecting rate
than previous approaches.
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Figure 13. Number of the collected packet compared to UAV speed.

Effective path planning is performed using the hybrid SSO-DWM, which finds an
optimal path, detects obstacles during flight, and increases the packet collection rate
despite increasing UAV speed. In contrast, the existing DC-UAV, PSO-UAYV, and EIC-UAV
approaches consider limited path planning parameters, decreasing the packet collection
rate. When the speed of the UAV is 25 m/s, the suggested Dynamic-UAV approach collects
6000 packets, while the existing DC-UAV, PSO-UAYV, and EIC-UAV systems gather 2000,
3000, and 4250 packets, respectively. The proposed work has an average packet collection
rate of 7109, outperforming the existing DC-UAV, PSO-UAV, and EIC-UAV techniques.

Figure 14 depicts the correlation between UAV altitude and the number of collected
packets. From Figure 14, it is clear that the packet collection rate grows linearly with the
increasing altitude of UAVs up to 80 m. The graph declines after 80 m (the saturation
threshold) since the UAV is designed to fly only up to 80 m. Due to event/weather
predictions and multi-UAV placement, the Dynamic-UAV technique achieves a large
number of collected packets even at that height.

=0=DC-UAV ==O==PSO-UAV
EIC-UAV === Dynamic-UAV

1500 L I it 1 )

20 40 60 80 100
UAYV altitude (m)

Figure 14. Number of collected packets to UAV altitude.
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The LGRU prediction algorithm is used to predict weather and events based on past
data, reducing the risk of UAVs suffering from physical damage. In contrast, the DPSAC
algorithm is used to optimize UAV placement to provide enough coverage to IoT devices,
even when UAVs fly at a high altitude. The average performance of each reliability matric
is presented in Table 6.

Table 6. Reliability analysis.

Average Coverage Average No. of Collected Packets

Approaches Probability
UAV Altitude (m) UAV Speed (ms) UAV Altitude (m)
DC-UAV 0.38 3197 3947
PSO-UAV 0.48 4243 4736
EIC-UAV 0.59 5124 5221
Dynamic-UAV 0.82 7109 5875

4.3. Energy Consumption and Efficiency Analysis
The amount of energy consumed when the number of IoT devices increases is known

as energy consumption (9). It is measured by taking the difference of total energy (M) to
the residual energy (1) of the IoT devices, which is formulated as follows.

o=mMm_0 (37)

We computed the total energy consumed by the IoT devices. Figure 15 represents the
comparison of energy consumption to the number of IoT devices. Figure 15 demonstrates
that, as the number of IoT devices increases, so does their energy consumption. However,
the Dynamic-UAV approach reduces energy consumption due to event/weather prediction,
event-based clustering, and multi-UAV positioning. Predicting weather/events using the
LGRU algorithm and event-aware clustering using the DB-OPTICS method minimizes
energy consumption under extreme weather conditions. DPSAC-based multi-UAV po-
sitioning finds the suitable altitude for UAVs, decreasing the energy consumption and
minimizing the delay significantly.
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Figure 15. Energy consumption to the Number of IoT devices.
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PSO-UAV solely considers wind speed; however, obstacles were not considered,
resulting in poor path planning, increased risk of damage, and high energy consumption.
The proposed approach consumes 8.5 kilojoules of energy for 100 IoT devices, compared
to 13, 11.2, and 10 kilojoules for DC-UAV, PSO-UAV, and EIC-UAV. The proposed work
consumes 7.68 kilojoules of energy on average, compared to DC-UAV, PSO-UAYV, and
EIC-UAV methods.

Energy efficiency is known as the minimum amount of energy consumed when the
number of UAV devices increases. A perfect system must have high energy efficiency. More
devices with low energy consumption lead to high energy efficiency. The energy efficiency
is calculated by:

_ Energy consumed

EE =
Initial Energy (8)

Figure 16 demonstrates that, as the number of UAVs increases, so does energy effi-
ciency. Our proposed Dynamic-UAV approach provides excellent energy efficiency due to
event/weather prediction and energy-efficient path planning. Efficient path planning uses
a hybrid approach of the SSO-DWM methods to find the optimal path and detect obstacles,
increasing energy efficiency. Collectively, these approaches are implemented to improve
the overall system performance in an orderly manner.
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Figure 16. Energy efficiency to Number of UAVs.

Using 100 UAVs, the proposed Dynamic-UAV technique has an energy efficiency of 2,
whereas the existing DC-UAV, PSO-UAV, and EIC-UAV are 0.75, 1.23, and 1.58, respectively.
The proposed work has an average energy efficiency of 1.41 compared to the existing ones.
A lack of weather conditions, lack of consideration of static and moving obstacles, and a
lack of dynamic positioning reduces the performance of EIC-UAV, PSO-UAYV, and DC-UAV,
which results in higher energy consumption and lower energy efficiency. The amount of
average energy consumption and average energy efficiency is presented in Table 7.
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Table 7. Average energy consumption and energy efficiency analysis.

Approaches C‘:K:ﬁi; t];:(r;ﬁr(glzj) Average Energy Efficiency
DC-UAV 9.86 0.594
PSO-UAV 9.05 0.656
EIC-UAV 8.46 1.026
Dynamic-UAV 7.68 1.544

5. Application of Dynamic-UAV Approach

It is essential to establish reliable communication during a disaster. The proposed
work can be applied to relay the information when the existing ground network is no
longer functional. The conventional communication network is not functional during
floods, fires, or earthquakes. In such a case, a UAV with a long endurance time can be used
to enable the network and restore the information exchange. The proposed work can be
applied in the real-time vehicular ad hoc network (VANET) environment. The UAV-based
monitoring system is widely adopted in-vehicle road safety. The VANET environment
is highly vulnerable to manmade disasters (i.e., accidents). Hence, a monitoring and
early detection system should be deployed to mitigate and rescue the losses caused by
these disasters.

6. Summary

This section summarizes the proposed Dynamic-UAV approach presented in this
paper. The numerical analysis of the performance of our approach, along with the existing
approaches presented in Tables 5-7 proves its efficacy in terms of QoS, reliability, and energy
efficiency. The proposed Dynamic-UAV approach achieves linear performance when the
number of UAVs and IoT devices increases because of the linear capacity constraints of
each UAV and IoT device, respectively. The proposed methods and algorithms support the
linearity of the proposed work. The analysis of the context of the environment periodically
helps the approach to differentiate disaster regions from non-disaster regions and maintain
the system’s performance in any situation. The communication reliability between the
devices and UAVs is enhanced by clustering the devices at the ground level. Further, the
proposed approach takes advantage of 5G communication to eradicate bandwidth and
latency issues. The dynamic determination of the required number of UAVs and the ideal
location of the UAVs helps to improve the coverage and total throughput. Considering
both static and dynamic obstacles in the environment eliminates the chances of collisions
and improves the coordination between UAVs. This helps to obtain the optimal path and
improves the system’s energy efficiency. The highlights mentioned above of the Dynamic-
UAV approach confirm its optimal performance. The individual LGRU, DBOC, DPSAC,
and SSO-DWM techniques jointly improve the overall system performance. Table 8 shows
the temporal complexity involved in executing the proposed method.
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Table 8. Time complexity analysis.

Schemes Complexity Symbols Description
ft is the flight time, #°

Weather or event prediction O(fth*? + fih*CI) represents hidden state, and
Cl is the current input

Events-aware clustering O(n logn) n is the iterations number
Multi-UAV positioning O <K A ) K is the number of iterations

References

Iter max is maximum
iteration, V is maximum
Energy-efficient path planning O(Iter max X V x W x X) search iterations, W is the size
of the population, and X is
fitness time.

7. Conclusions

This study addresses the major obstacles in 5G-assisted UAV communications, such
as high dynamicity and weather-related disturbances. Based on historical weather condi-
tions and visuals of the environment, a dynamic-UAV method is proposed that performs
weather prediction and event monitoring utilizing the LGRU algorithm to understand the
environmental context. The DBOC algorithm is used to cluster IoT devices in disaster and
non-disaster areas to improve communication reliability between the devices and UAVs.
The DPSAC method is used to determine the required number of UAVs. The DPSAC
algorithm also performed dynamic positioning of UAVs by considering predicted weather
conditions and other important elements to enhance coverage probability and throughput.
Obstacle-aware path planning is achieved using the SSO-DWM algorithm, which considers
static and dynamic obstacles to identify the ideal path, conserve energy, and improve
LoS communication. The proposed approach is evaluated by comparing it to existing
techniques in terms of throughput, PDR, delay, coverage probability, number of collected
packets, energy consumption, and energy efficiency. The effectiveness of our approach
is assessed using numerical analysis, which demonstrates that our method surpasses all
existing methods across all metrics. The future development of the proposed work will
focus on enhancing the security of UAVs to ensure uninterrupted services.
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