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Abstract: Due to the poor adaptability of traditional methods in the cigarette detection task on the
automatic cigarette production line, it is difficult to accurately identify whether a cigarette has defects
and the types of defects; thus, a cigarette appearance defect detection method based on C-CenterNet
is proposed. This detector uses keypoint estimation to locate center points and regresses all other
defect properties. Firstly, Resnet50 is used as the backbone feature extraction network, and the
convolutional block attention mechanism (CBAM) is introduced to enhance the network’s ability to
extract effective features and reduce the interference of non-target information. At the same time, the
feature pyramid network is used to enhance the feature extraction of each layer. Then, deformable
convolution is used to replace part of the common convolution to enhance the learning ability of
different shape defects. Finally, the activation function ACON (ActivateOrNot) is used instead of
the ReLU activation function, and the activation operation of some neurons is adaptively selected to
improve the detection accuracy of the network. The experimental results are mainly acquired via
the mean Average Precision (mAP). The experimental results show that the mAP of the C-CenterNet
model applied in the cigarette appearance defect detection task is 95.01%. Compared with the original
CenterNet model, the model’s success rate is increased by 6.14%, so it can meet the requirements of
precision and adaptability in cigarette detection tasks on the automatic cigarette production line.

Keywords: cigarette; appearance defect detection; CenterNet; attention mechanism; feature pyramid
network; ACON activation function

1. Introduction

Cigarettes are the main product in the tobacco industry. The appearance quality of
cigarettes directly reflects the production level of cigarette factories. However, in the final
step of making cigarettes from tobacco, during the packaging process of cigarettes, due
to the limitations of the production process, various defects will inevitably appear on the
surfaces of cigarettes, and these defects affect the appearance and brand image of cigarette
products. The industry places a strong emphasis on quality, strictly controls the quality of
cigarettes, and does not allow cigarettes with defects in appearance to enter the market.
The traditional method of identifying appearance defects in cigarettes generally relies on
manual labor, which is unstable and increases the costs of actual production. Therefore, the
purpose of this paper is mainly to improve the detection accuracy of cigarette appearance
defects, to achieve high-quality automatic detection of cigarette appearance defects, and to
improve the quality of cigarette products.

Currently, most studies on the appearance of cigarettes use traditional digital image
processing methods, which usually include feature extraction and image segmentation.
Qu et al. performed image smoothing, edge detection, binarization and feature extraction
on the cross-sectional image of the filter rod, analyzed the region of interest, and finally
obtained the number of filter rods [1]. Li et al. proposed the minimum outer rectangle to be
applied to cigarette label defect shape analysis, and realized the defect detection of printed
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images [2]. Feng et al. introduced image segmentation and morphological operations
to distinguish cigarette regions from the background, and then used a trilinear model to
locate each cigarette and determine whether the cigarette has defects by calculating the
number of pixels in each obtained region [3]. Li et al. designed a self-learning control
system based on a data acquisition card, and used a database, a data acquisition card and
an industrial computer to detect the surface defects of cigarettes [4]. Xiao extracted the
cigarettes using canny operator and then determined the defects by analyzing the area
ratio of the incomplete part of the grayscale image [5]. Li et al. used the maximum contour
area determination method to detect cigarettes with significant cosmetic defects, and then
used the template matching method to detect them with slight defects [6]. However,
these traditional methods are less adaptable to complex situations and often require a
combination with manual labor. It may lead to poor generalization of defect detection
methods. In addition, the detection accuracy of this method is low, and there are many
erroneous detection results. It is only effective for defects with distinct edges, simple
backgrounds and relatively flat surfaces.

In recent years, deep learning technology has been widely used to solve some tra-
ditional industrial problems due to its advantages of strong learning ability and good
portability. Defect detection is an aspect of target detection. Currently, deep learning-based
defect detection methods commonly used include R-CNN [7], Faster R-CNN [8,9], SSD [10],
YOLO [11–14] series, CenterNet [15], etc. In some defect detection studies similar to studies
of cigarette appearance defects, a vast number of research results have been obtained. For
example, Xu et al., based on the original framework of Faster R-CNN, performed clustering
optimization on anchor points, replaced the ROI pool with ROI Align, and applied it to
sand inclusion defect detection [16]. Huang et al. proposed a Faster R-CNN-based part
surface defect detection algorithm based on the cluster generation anchor scheme, and
introduced a multi-level ROI pooling layer structure to achieve the efficient and accurate
detection of part surface defects [17]. Xu et al. proposed a Path-Enhanced Feature Pyramid
Network (PEFPN) and an edge detection branch integrated into the Mask R-CNN, and
this was applied in tunnel defect detection and segmentation [18]. Zhang et al. combined
Multi-Scale Overlapping Sliding Pooling (SOSP) and proposed an SSD-based jelly impurity
detection method [19]. Chen et al. replaced the Darknet-53 backbone network with the
densely connected convolutional network DenseNet and proposed an LED chip defect
detection method based on the YOLOv3 network [20]. Song et al. adopted the YOLOv3
algorithm framework and introduced dimensional clustering, which was applied to the
detection of rail surface defects [21].

However, the research on the detection and classification of cigarette appearance
defects by deep learning methods started relatively late, and only a few studies have tried
deep learning methods. Although neural networks have been proven to be effective in
many detection tasks, there are still many challenges related to the detection of cigarette
appearance defects: the data set of cigarette appearance defects is insufficient, the defect
scale changes greatly, and the cigarette image is narrow and long. Qu et al. improved
the SSD network with methods such as pyramid convolution to realize the detection of
cigarette appearance defects with complex features and imbalanced datasets [22]. Li et al.
used MobileNet to replace Vgg16 of traditional Faster R-CNN to effectively detect cigarette
capsule defects [23]. Their method demonstrates the effectiveness of CNN for cigarette
appearance defect detection. However, the detection recall rate and precision of the above-
mentioned deep learning detection algorithms cannot meet the current actual production
needs and cannot be applied to actual production.

Based on the above discussion, on the basis of previous research, this paper conducts
research on related deep learning algorithms for cigarette appearance defect detection,
and proposes a CenterNet-based cigarette appearance defect detection method, which is
robust to cigarette appearance defect detection and has higher detection precision and
recall rate. Due to the good detection performance of CenterNet in many defect detection
tasks [24], CenterNet is adopted as the structure of our neural network. In addition, in
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order to better adapt to the characteristics of cigarette images and improve the recognition
effect of cigarette defects of different scales, we have made the following improvements to
the network structure: (1) for the original cigarette data set, appropriate data enhancement
and balancing of the data set are carried out, mainly using methods such as flipping,
cropping, brightness adjustment, adding noise, synthesizing new samples, and generating
adversarial networks, to enrich the data and enhance the generalization of the network;
(2) we add the Convolution Block Attention Mechanism (CBAM) to the backbone feature
extraction network, which improves the sensitivity to the detection target; (3) we introduce
the Feature Pyramid Network (FPN) to integrate a multi-scale feature map; (4) we replace
the last standard convolution block of the backbone detection network with deformable
convolution, which improves the recognition effect of irregular cigarette defect targets;
(5) we optimize the activation function, replace ReLU with the ACON activation function,
and adjust the activation operation of neurons adaptively, which is beneficial to improving
the adaptive ability of the network and improving the detection accuracy of the network.
The experimental results show that the improved model has improved precision, recall and
average detection accuracy on five common cigarette appearance types data sets, and at the
same time, the average detection speed can also meet most of the detection requirements.

2. Materials and Methods
2.1. CenterNet

C-CenterNet takes CenterNet as the baseline. CenterNet is a one-stage detection
method, and its main feature is that it does not detect objects based on an a priori box.
This method models an object as a single point, i.e., the center point of its bounding box,
through a heat map, obtaining the center and then returning other information about
the object, such as width, height, position, etc. The overall idea is relatively simple. The
network eliminates the need for complex a priori frame design, reduces the parameter
selection, and eliminates the non-maximum suppression post-processing process. This
makes the network less computationally intensive. In addition, CenterNet only uses 4x
down-sampled high-resolution feature maps, which is a higher resolution than the 16x
image-scale scaling performed in most object detection algorithms, making it suitable for
small objects.

The CenterNet model uses three networks—Hourglass [25], DLA [26], and Resnet [27]—
as the backbone network, and the three networks are complete encoding–decoding net-
works. The CenterNet detection algorithm framework based on Resnet50 is shown in
Figure 1 below. For the input image, first, the down-sampling feature map is output after
encoding by the CenterNet backbone network; then, the resolution of the output feature
map is improved by up-sampling by the decoder, and it is finally detected by the detection
layer. The output feature map of the detection layer to the backbone network undergoes a
series of convolution operations, including a regression heat map, center point bias map,
and target box size prediction map, and outputs the final prediction result.

Figure 1. Overall structure of CenterNet based on Resnet50.
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2.2. Loss Function

The loss function of CenterNet includes the heat map loss Lcls, center point bias loss
Loff, and regression width and height loss Lreg [15]. The calculation of the heat map loss
adopts focal loss:

Lcls = −
1
N

{(
1− Ŷxyc

)
log
(
Ŷxyc

)
Yxyc = 1(

1−Yxyc
)β(Ŷxyc

)a log
(
1− Ŷxyc

)
Yxyc 6= 1

(1)

Specifically, N is the number of targets, Yxyc is the actual pixels, Ŷxyc is the predicted
pixels, and the hyperparameters α = 2, β = 4.

Since the heat map is obtained by down-sampling, the center point has a certain
deviation from the original feature map, so it is necessary to calculate the center point offset
loss, using L1 Loss, as follows:

Loff =
1
N ∑

p

∣∣∣Ôp −
( p

R
− p

)∣∣∣ (2)

Among the terms, Ôp is the prediction center point bias, R is the down-sampling mul-
tiple, p

R is the center point subsampling coordinates, and p is the center point coordinates
obtained after taking the whole down p

R .
Similarly, the regression width and height loss also use L1 Loss, which is calculated as

follows:

Lreg =
1
N

N

∑
k=1

∣∣SFi − Sk
∣∣ (3)

where SFi is the network-predicted width and height loss, and Sk is the regression of the
width and height.

The linear combination of the three is the total loss function:

Ldot = Lcls + λregLreg + λoffLoff (4)

Among the terms, the coefficient λreg = 0.1, λoff = 1.

2.3. C-CenterNet for the Detection of Cigarette Appearance Defects
2.3.1. C-CenterNet

The model mainly consists of two parts. The first part is the backbone network, and
the main task of this part is to extract image features and generate feature maps. CenterNet
provides three backbone network schemes, but due to the small data sets in this paper, if the
DLA or Hourglass methods are used, the data sets are not sufficient and may easily lead to
overfitting, and the two methods have many parameters, complex implementations, and are
inconvenient for practical applications. Therefore, the backbone network used in this paper
is Resnet50. According to the characteristics of the cigarette appearance image dataset,
in the Resnet50 network part, we introduced FPN for feature enhancement and fusion to
improve the feature extraction effect for small targets in the cigarette data set. Moreover, the
basic residual structure has also been improved: (1) an attention mechanism is introduced
to suppress the interference of irrelevant information, so that feature extraction is more
focused on the target itself; (2) we optimize the activation function, replace part of the ReLU
function with the ACON activation function, and adaptively choose whether to activate
and in what way to activate neurons; (3) we optimize the convolution structure and replace
the partial convolution structure at the back with a deformable convolution structure.
Compared with traditional convolution, this system can capture more irregular-shaped
feature information, making it suitable for the defect-type targets described in the paper
and able to better solve the problem of large differences in shape in a cigarette data set.

The second part is the prediction of the results. In this part, the network regards
the complex object detection problem as a simple center point detection problem. The
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input feature map obtains the heat map, in which the position of the central point can be
calculated from the heat map, and then the center point position is adjusted according
to the offset to predict the box width and height to obtain the final detection result. The
proposed structure of the cigarette appearance defect detection network for C-CenterNet is
shown in Figure 2.

Figure 2. Overall structure of C-CenterNet.

2.3.2. Backbone Feature Extraction Network

The backbone feature extraction network is mainly based on the Resnet50 framework.
In the backbone feature extraction network, we first perform one-layer convolution, BN
batch normalization, the ReLU activation function, and maximum pooling; then, we
complete the feature information extraction through four residual structure blocks. Each
residual structure block is composed of a Conv Block and Identity Block, and the number
of Identify Block stacks of the four residual blocks is different: 2, 3, 5, and 2, respectively.
Subsequently, the FPN method integrates the extracted feature layers and feature fusion to
obtain a high-resolution feature map.

To improve the adaptability of the backbone network on the data set, the hopping
structure of the residual block of the backbone feature extraction network was improved,
as shown in Figure 3. First, the attention mechanism was added after the convolution to
improve the detection accuracy of the network on the cigarette appearance data set. In
addition, the ReLU activation function after the second convolution of the residual module
was replaced by the ACON activation function, which adaptively selects the accuracy of
the cigarette appearance defect detection while introducing as few parameters as possible.

Figure 3. The first three layers of the residual module diagram.

In particular, this paper also replaces the 3 × 3 convolution in the residual block of
the last layer with a deformable convolution, enhancing the detection accuracy of irregular
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defect targets with sufficient feature learning. The schematic diagram of the structure of
the last layer of the residual block is shown in Figure 4.

Figure 4. The last-layer residual module diagram.

2.3.3. Strengthening of the Feature Extraction Module

In the process of cigarette appearance defect detection, there are few defect information
elements for small targets in the image, such as only simple down-sampling and up-
sampling combination, and low-level information elements can easily cause loss. Therefore,
in this paper, we adopt the Feature Pyramid Network (FPN) [28] to enhance the feature
extraction ability, strengthen the fusion of feature information at different scales and
different layers, and reduce the computational cost.

As shown in Figure 5, the FPN method first extracts features from the original image,
gradually reduces the feature map resolution through convolution and pooling, and inte-
grates features on feature maps C2, C3, C4, and C5. First, it uses P5 by convoluting C5 and
transforms C4 into the same number of channels as P5; P5 samples the same feature map
size as C4 by bilinear interpolation, and adds the two feature maps with pixels to obtain P4,
as shown in the dashed box of Figure 5. By analogy, according to this method, a top-down
path is formed, obtaining the final feature map for the prediction.

Figure 5. Feature pyramid structure.

In this paper, the output feature maps of the second to fifth layers of the backbone
feature extraction network Resnet50, i.e., C2, C3, C4, and C5, are taken as input to the FPN.
Here, we perform 1 × 1 convolution of C5, C4, and C3 to C2 and bilinear interpolation
fusion, namely layer-by-layer with the bilinear interpolation method, with the size of the
previous layer and convolved feature map, which are to form a top-down path; however,
we only use the feature diagram generated in the last step to generate the detection box.
The introduction of FPN can effectively integrate the semantic and feature information
of high and low layers and improve the accuracy of the detection of cigarette appearance
defects, especially some small-sized defects.

2.3.4. Convolutional Block Attention Mechanism

Due to the large number of network structure layers, it is easy to introduce some
invalid feature information during the repeated sampling and fusion, which reduces
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the attention power of the model to the target features. Therefore, this paper combines
the attention mechanism module of space and channel (Convolutional Block Attention
Module, CBAM) [29] in the backbone feature extraction network. The addition of channel
attention enables the network to pay better attention to the feature information in each
channel, and to automatically obtain the importance of the existence of each piece of feature
channel information through learning. Adding spatial attention enables the network to
pay better attention to the information about the location. By establishing the internal
relationship among regions with useful information, we can analyze and compare which
regions contain useful information and which regions contain less important information.
Given the characteristics of the defect target size of the image and most of the defect targets,
introducing an attention mechanism can help to learn the target features in the cigarette
appearance image, reduce the interference of background features, and emphasize the
target information, so as to improve the detection accuracy.

In this paper, the CBAM module is added to the residual structure of Resnet50, which
uses few parameters and does not affect the real-time performance of the model. The model
with the added CBAM module has better performance and better interpretability than
the benchmark model and focuses more on the target object itself. As shown in Figure 6,
the Sigmoid activation function of CBAM was also replaced with the h-Sigmoid [30]
activation function, avoiding the complexity of the exponential computation and reducing
the computation time, and the experiments show that this substitution achieves less loss
and better accuracy.

Figure 6. The CBAM module structure presented in this paper.

2.3.5. ACON Activation Function

The activation function of the model is mainly ReLU, but many studies show that
not all cases require the activation of neurons; the Swish activation function [31] has been
used in some cases, which can achieve better results than ReLU. The ACON (Activate or
Not) activation function [32] was proposed by Ma et al., and it is mainly characterized
by the ability to adaptively learn to activate or not activate neurons. The paper treats the
Swish activation function as an approximation of ReLU smoothing, making Swish a special
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case of ACON. The ACON-C activation function is used, and the calculation formula is
as follows:

fACON−C(x) = Sβ(p1x, p2x) = (p1 − p2)x× σ[β(p1 − p2)x] + p2x (5)

Among the terms, parameter β controls the smoothness Sβ, and parameter p1, p2(p1 6= p2)
can be learned to control the upper and lower bounds of the function. Through different
values of β, p1, and p2, the function can be adaptively transformed into expressions of
activation functions such as ReLU, Swish, and Maxout [33].

The ACON activation function unifies activation functions such as ReLU and Swish
into one expression, adaptively adopting activation functions more suitable for neurons. In
this paper, the advantages of the ACON activation function are used to replace the ReLU
activation function after the second convolution of Bottleneck in the backbone feature
extraction network with the ACON activation function. The later experimental results
show that the accuracy of cigarette appearance defect detection is improved by the use of
this activation function.

2.3.6. Deformable Convolution

The characteristics of cigarette defects, such as malposed and folded types, are long,
narrow, rich, and diverse. Ordinary convolution in Resnet50 performs better for neat and
regular shapes, and poorly for targets with non-fixed shapes. Deforming convolution [34]
is an improvement of the ordinary convolution, where the offset of the sampling point
is introduced to obtain a flexible receptive field and realize the adaptive deformation
convolution. The calculation of ordinary convolution operations is shown in (6), while the
calculation formula of deformable convolution is shown in (7):

y(P0) = ∑
Pn∈R

w(Pn)x(P0 + Pn) (6)

Among the terms, P0 is the position of a point on the feature map, y(P0) is the output
feature value corresponding to P0, and R is the range of the receptive field area, while Pn
enumerates all grid points in the R area, w(Pn) represents the convolution kernel weight
of Pn, and x(.) represents the sampling value at the corresponding position on the feature
map x:

y(P0) = ∑
Pn∈R

w(Pn)x(P0 + Pn + ∆Pn), (7)

Among these terms, ∆Pn represents the offset to the sampling point.
As can be seen from Equations (6) and (7), the improvement of deformable convolution

compared to ordinary convolution mainly lies in introducing the offset of sampling points,
which realizes a convolution that can adapt to different geometries. Considering the balance
of model speed and accuracy, as well as the effectiveness of the offset, only the last block in
the backbone feature extraction network structure is replaced with deformable convolution,
further improving the adaptability to irregular cigarette appearance defect detection when
a large number of features have been learned.

3. Experiment and Result Analysis
3.1. Data Introduction

The cigarette is mainly divided into two parts: the long white part on the left is called
the cigarette stick, which is used to hold the cut tobacco; the darker and shorter part on the
right is called the filter tip, which is used to hold the filter cotton, as shown in Figure 7.
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Figure 7. Normal cigarette image.

In the production process of cigarettes, according to the causes of appearance defects
in the production line, tobacco companies divide the appearance defects of cigarettes into
the following four categories: dotted, folded, malposed, and unfiltered cigarettes.

Dotted cigarettes present black spots, stains, etc., of different sizes on the surfaces of
the cigarettes, which are mainly formed by the unqualified printing of the cigarette stick
paper or the dyeing in the later stage. Folded cigarettes mainly present some wrinkle-like
shapes on the surface, which are mainly caused by the production machine. It is caused by
improper operation when rolling the filter tip with the filter paper or rolling the shredded
tobacco with the cigarette stick paper. Malposed cigarettes are not aligned in the process of
rolling the shredded tobacco, which is mainly caused by the loosening of the packaging
machine. Unfiltered cigarettes are mainly caused by the production machine. The problem
is caused by an inability to wrap the filter paper. Images of the specific cigarette appearance
defects are shown in Figure 8.

Figure 8. Defective cigarette types: (a) dotted cigarettes; (b) folded cigarettes; (c) malposed cigarettes;
(d) unfiltered cigarettes.
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In the data set considered in this paper, the detection targets are divided into normal,
dotted, folded, malposed, and unfiltered cigarette types. Due to the uneven quality of the
pictures taken by industrial high-speed cameras, the obtained data set was screened, and
only 2000 valid pictures were obtained. Due to the limited cigarette appearance defect data
set, to enable the network to learn better and achieve better generalization and adaptability,
we adopted flip transformation, random tailoring, brightness transformation, the synthesis
of new samples, and the generation of an adversarial network for data enhancement. The
enhanced data set distribution is shown in Figure 9.

Figure 9. Distribution diagram of cigarette appearance data set.

In order to improve the generalization ability of the model and avoid over-fitting, data
enhancement is performed on the pictures, and the number of pictures is expanded to
10,000. Among them, 233 images belong to multiple defect categories. In order to avoid the
large difference between the number of sample categories, which causes the model to focus
on categories with a large number of samples, and “disregard” categories with a small
number of samples, our data enhancement makes the distribution of different defects close.
For all images, they were divided at a ratio of 6:2:2. In other words, 6000 images were used
as the training set, 2000 images were used as the validation set, and the remaining 2000
annotated images were used as the test set. The division of the data set is shown in Table 1.

Table 1. The division of the data set of cigarette appearance pictures.

Type * Training Set Validation Set Test Set

Normal 1200 400 400

Dotted 1246 415 415

Folded 1227 409 409

Malposed 1248 416 416

Unfiltered 1213 404 404
* The single number of each type is 1200 for training set, 400 for validation set, and 400 for test set, and the ratio is
6:2:2. The rest are both this and other types.

In the process of training and testing, CenterNet needs to use the coordinate position
of the target. Therefore, we used the tool LabelImg to mark the data after enhancement
and formed an annotation box XML file, as shown in Figure 10.



Electronics 2022, 11, 2182 11 of 19

Figure 10. Example of cigarette labeling: (a) normal cigarette label; (b) dotted cigarette label;
(c) folded cigarette label; (d) malposed cigarette label; (e) unfiltered cigarette label.

This paper presents statistics on the defect aspect ratio and defect area of the enhanced
and labeled cigarette appearance defect images. As shown in Figure 11 below, they were
all unbalanced. The defect aspect ratio of cigarette appearance was mostly in the (1.5,7.5)
interval, while the defect area ratio of cigarette appearance was mostly in the (0.05,0.075)
and (0.2,0.225) intervals. Therefore, it can be seen that the paper had a large shape difference,
with a small and narrow defect target.
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Figure 11. Details of cigarette appearance defect data.

3.2. Experimental Parameter Setting

The experimental environment was Windows, Pytorch version 1.4.0, Cuda version
10.1, GPU was NVIDIA GTX2080Ti, and video memory was 11 GB.

We completed the construction of the network model according to the improved
part, and trained the model for a total of 300 epochs. Among them, in order to avoid the
model falling into the local optimum, the learning rate adjustment method is set to cosine
annealing decay. In order to speed up the training speed and prevent the weights from
being destroyed in the early stage of training, the frozen training method is adopted. The
first 50 epochs are frozen for training, and each 32 images are used as a Bach Size. After
50 epochs of training, it is thawed. Each 16 images are used as a Bach Size. After each
epoch is completed, the weights are updated and saved. The weight decay rate is set to
0.5. The initial learning rate is set to 0.001 when freezing, and 0.000125 after thawing. At
300 iterations, the network achieved the lowest loss value, saving the final model and input
pictures for prediction.

3.3. Training Process Analysis

Figure 12 shows the change plot of the total loss values based on the C-CenterNet
method and CenterNet on the cigarette appearance data set. In the first 50 epochs, the loss
value of the model dropped sharply and fluctuated somewhat, showing a slow decline
between 50 and 250 epochs, and the loss value gradually stabilized at 250–300 epochs and
tended to converge, so 300 epochs was taken as the number of training iterations of the
model. In addition, the dashed line represents the CenterNet loss function curve, and the
solid line represents the C-CenterNet loss function curve; it can also be seen from the figure
that, under the same conditions in which the loss function declined faster, with faster trend
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convergence, the final convergence value was lower than the original loss function, so,
during the training process, the performance of the model was better.

Figure 12. The training process loss performance.

3.4. Algorithm Evaluation Index

The experiment used precision, recall, mAP, and mSpeed to evaluate the performance
of the algorithm. mSpeed refers to the time it takes to complete a cigarette test.

The calculation formulas of precision (P) and recall (R) are as follows:

P =
TP

TP + FP
(8)

R =
TP

TP + FN
(9)

Among the terms, TP refers to the number that is predicted to be a certain category
and actually belongs to this category, and FN refers to the number that is not predicted to
be a certain category and actually belongs to this category. FP refers to the number that is
predicted to be in a category but does not actually belong in this category.

After obtaining the P and R of each category, a precision–recall (P–R) curve can be
obtained, and the area enclosed by the curve and the coordinate axis is the value of AP, so
the calculation formula of AP is:

AP =

1∫
0

PRdR (10)

mAP seeks to calculate the average of the AP values of all categories, and the calcula-
tion formula is:

mAP =
1
n

n

∑
i=1

APi (11)

where n is the number of classes divided and APi is the AP value for the i-th class.

3.5. Contrast Algorithm

In order to verify how well the algorithm compared with other algorithms, we trained
YOLOv5 and other mainstream object detection models, such as Faster R-CNN, and SSD,
etc., on the dataset to compare the performance of the method proposed in this paper and
other methods on the above indexes. Results of comparison experiments for the detection
of the various models are shown in Table 2, where the mAP in the table refers to the mean
of all AP when the IoU is set to 0.5.
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Table 2. Comparison of the results of various algorithms.

Algorithm P
/%

R
/%

mAP
/%

mSpeed
/(ms/branch)

Fast R-CNN 80.12 70.02 71.82 32.3

Faster R-CNN 79.71 73.44 79.99 30.9

SSD 81.29 69.33 84.90 14.9

YOLOv4 88.01 83.12 88.41 6.1

YOLOv5 89.89 82.98 90.73 4.8

CenterNet 92.65 78.30 88.87 7.7

C-CenterNet 99.89 85.96 95.01 8.9

It can be concluded from the analysis of the results in Table 2 that, although the method
proposed in this paper is not optimal in terms of average detection speed and is slower
than YOLOv5, the accuracy rate, recall rate, and mAP are the highest in the table, indicating
that the method yields fewer misses and is more accurate. Although the detection speed is
not as good as that of YOLOv5, the detection speed achieved by the method in this paper
can meet the detection needs of most current situations [35], and is much faster than the
detection speed of existing research [22,23]. In addition, compared with CenterNet, the
method demonstrates 7.24% higher accuracy, 7.66% higher recall, and 6.14% higher mAP,
and the average detection time was increased by only 1.2 ms/branch. The experimental
results show that the present model is a good cigarette appearance detection method to
meet the demands of cigarette target detection on the production line.

Table 3 shows the comparison of the accuracy of the data sets of the above algorithms.
Due to the complex and diverse defects of the malposed type, the detection performance of
Fast R-CNN, Faster R-CNN, SSD, YOLOv4, and YOLOv5 was poor. Due to its detection
characteristics based on the center point, the original model of malposed types achieved
better results than the other algorithms. The detection effect of C-CenterNet was better than
that of CenterNet. Since the normal type has no obvious characteristics, CenterNet and
Faster R-CNN performed poorly and could not distinguish their type correctly. After the
improvement of CenterNet, the detection accuracy was significantly improved on normal
types, exceeding the original YOLOv5 algorithm. For the detection of dotted, unfiltered,
and folded types, Faster R-CNN, SSD, etc. performed generally well, while YOLOv5
was slightly better than CenterNet, and the proposed method was better than YOLOv5.
Therefore, as shown in Table 3, the detection accuracy of the method on five defects and their
average detection accuracy was higher than the other comparison algorithms, indicating
that it has achieved an ideal detection effect on this data set.

Table 3. AP comparison of various algorithms on various types of datasets %.

Algorithm Normal Dotted Malposed Unfiltered Folded mAP

Fast R-CNN 70.22 76.98 60.71 81.20 69.99 71.82

Faster R-CNN 79.13 83.01 68.64 88.91 80.26 79.99

SSD 82.12 84.33 77.29 90.89 89.87 84.90

YOLOv4 84.83 90.78 80.12 93.21 93.11 88.41

YOLOv5 87.23 94.53 79.67 94.15 98.07 90.73

CenterNet 79.96 93.21 82.50 92.77 95.91 88.87

C-CenterNet 89.25 97.61 92.01 96.31 99.88 95.01

Figure 13 shows the visual detection and comparison results of some images. The
detection results of Figure 13 show that, when the images are clear and obvious, the five
comparison methods can detect defects, but the detection confidence is different. The
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Faster R-CNN and SSD methods detect with low confidence and are indistinguishable
for cases where one defect may represent two defect types. YOLOv5 has high overall
detection confidence, but there are missed defects and a low recall rate. CenterNet is able
to distinguish between cases where a defect may represent two defect types, but has low
detection confidence. The method C-CenterNet can distinguish between two defect types,
reduce the occurrence of missed detection, and achieve good confidence. Therefore, as can
be seen from Figure 13, the present method yields better results on the cigarette appearance
data set.

Figure 13. Comparison of the different network detection results: (a) Faster R-CNN; (b) SSD;
(c) YOLOv5; (d) CenterNet; (e) C-CenterNet.

3.6. Improvement before and after Comparison

In order to verify the effectiveness of this method in terms of the accuracy improve-
ment, the following experiments were conducted with the addition of a convolutional
block attention mechanism, feature pyramid network, deformable convolution, and ACON
activation function. The same parameter settings were utilized during the experiment to
train the network. Table 4 shows the comparison of the accuracy, recall, and mAP values
of the above modules. According to the table, the precision rate, recall rate, and mAP
all increased to different degrees after addition. Data enhancement makes model images
richer, model training is better, and the CBAM attention mechanism improves the precision;
FPN further strengthens the feature fusion ability and improves the precision and recall;
DCN reduces the occurrence of missed detection, and recall increases significantly; the
ACON activation function adaptively adjusts the activation function, which results in a
small increase in each index. Therefore, adding these modules has a positive effect on
improving the accuracy, recall rate, and average detection accuracy of the model. Although
the average detection time overall decreased by 1.2 ms/branch, this time was also within
the range of our expected time requirements.

Table 4. Comparison of the results of adding different modules.

Experiment Data
Augmentation CBAM FPN DCN ACON P

/%
R

/%
mAP
/%

mSpeed
/(ms/branch)

1 - - - - - 90.33 76.94 86.20 7.7

2
√

- - - - 92.65 78.30 88.87 7.7

3
√ √

- - - 96.91 80.02 91.52 8.3

4
√ √ √

- - 98.75 81.97 93.10 8.8

5
√ √ √ √

- 99.01 84.89 94.67 8.8

6
√ √ √ √ √

99.89 85.96 95.01 8.9
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Table 5 shows the comparison of AP changes for the five defect types in this paper.
CenterNet with Resnet50 as the main backbone feature extraction network on the original
cigarette appearance defect data set yielded 86.20% mAP. After a series of data enhance-
ments, the mAP increased to 88.87%. Then, the convolutional block attention mechanism
was introduced based on CenterNet, which led to a 2.45% rise in mAP. Due to the large
amount of Sigmoid calculation in the convolutional attention mechanism, the Sigmoid
activation function in the convolutional attention mechanism was then replaced with the
h-Sigmoid activation function, which accelerated the model convergence and the mAP
increased by 0.2%. In the process of cigarette appearance defect detection, there are a
few defect information elements of small and medium image targets, which are easy to
lose during down-sampling; we integrated the feature map FPN for reasonable feature
fusion, and this method helped the model to obtain a 1.58% mAP increase. Later, in order
to increase the identification effect of irregular features and improve the detection rate of
incorrect teeth and fold defects, a deformable convolutional network was introduced. mAP
increased by 1.57%, mainly reflected in the detection accuracy of malposed and folded
defects. Finally, we replaced the ReLU activation function with the adaptive activation
function ACON, and the model’s mAP further increased by 0.34%.

Table 5. AP comparison of adding different modules %.

Experiment Data
Augmentation CBAM FPN DCN ACON Normal Dotted Malposed Unfiltered Folded mAP

1 - - - - - 78.89 91.86 80.52 89.53 90.20 86.20

2
√

- - - - 79.96 93.21 82.50 92.77 95.91 88.87

3
√ √

- - - 82.29 95.27 85.98 95.20 98.88 91.52

4
√ √ √

- - 84.99 96.78 89.33 95.50 98.92 93.10

5
√ √ √ √

- 88.97 97.15 91.54 96.00 99.67 94.67

6
√ √ √ √ √

89.25 97.61 92.01 96.31 99.88 95.01

The above results show that the improved method achieves a strong accuracy improve-
ment. After C-CenterNet training was completed, we submitted an image for detection,
and part of the effect is shown below in Figure 14. In the case of good detection conditions,
blurred shooting, too strong light, and complex background, the algorithm can accurately
detect cigarette defects and achieve a high degree of confidence, and the prediction frame
is more suitable for the real position. This shows that the model is robust.

Figure 14. Example of experimental results.
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4. Conclusions

According to the characteristics of cigarette appearance defects, an improved Center-
Net method, C-CenterNet, was used to detect cigarette appearance defects, and it could
achieve good detection results in the case of an insufficient data set. The proposed method
directly uses keypoint estimation to determine the defect center, class, and size of the key-
point. We selected the relatively lightweight Resnet50 as the backbone feature extraction
network, and we added the convolutional attention mechanism, replacing part of the con-
volutional structure with deformable convolution. Then, we combined this system with the
FPN to further strengthen the feature fusion, and we used the ACON activation function
to adaptively select neuron activation or not. The experimental results demonstrate the
effectiveness of the algorithm in the task of cigarette appearance defect detection. This
method can achieve better detection precision and recall, and has certain robustness. The
model achieves a large increase in accuracy with small changes in detection speed.

However, there are still many unreasonable places in the current C-CenterNet model.
For example, in terms of detection speed, the performance of C-CenterNet needs to
be further improved, and the current detection speed is slower than YOLOv5. The in-
compatibility of speed and precision is still an unsolved problem. Although the improve-
ment adopted in this paper significantly improves the detection accuracy, it also greatly
increases parameters and computation time. In the future, we will focus on how to improve
the speed of network detection, such as simplifying the network structure and speeding up
the inference process. We hope that the next step can achieve better detection results in the
detection of cigarette appearance defects, and deploy it into the embedded equipment of
cigarette factories to complete the detection of cigarette appearance defects.
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