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Abstract: Due to the nonlinear nature of photovoltaic (PV) cells and the dependence of the maximum
achievable power on environmental conditions, a robust nonlinear controller is essential to warrant
maximum power point tracking (MPPT) by managing the nonlinearities of the system and making
it robust against varying environmental conditions. Most methods used to obtain MPPT have
some disadvantages; one of them is the oscillation around the operating point. In this paper, to
minimize these problems, a robust nonlinear sliding mode controller based on the power curve of
a PV (SMC-PCPV) was proposed to determine the maximum power point (MPP) of a PV panel,
for a quasi Z-source inverter (qZSI) as a single-stage inverter. Single-stage inverters have lower
components and prices, smaller sizes, more simplicity, and higher efficiency than two-stage inverters.
One of the important features of this controller is its ease of implementation compared to other
methods presented in the articles. To show the effectiveness and robustness of the proposed scheme,
the SMC-PCPV was carried out on computer simulations and laboratory prototypes. The simulation
and experimental results showed that the proposed controller was properly resistant to changes in
input parameters, such as temperature and radiation, and controlled the converter at the best point
to obtain the most power from the PV panel, and it had good speed in response to the changing
environmental condition.

Keywords: maximum power point tracking (MPPT); sliding mode controller (SMC); quasi Z-source
inverter (qZSI); photovoltaics (PV)

1. Introduction

Currently, due to the fact of environmental issues and rising costs of fossil fuels,
replacing traditional energy with renewable energy is a comprehensible necessity for
everyone [1]. One renewable energy source that has been considered by researchers is solar
energy. Among the various types of solar energy, photovoltaics (PV) has been considered
because of its practical applications. However, the output power of solar cells is extremely
dependent on environmental conditions such as temperature and radiation intensity [2,3].

Converter and inverters are the major devices for a PV power system, where tradi-
tional converters are typically formed by two power stages connected through a dc-link
capacitor [4]. A dc/dc converter, as the first stage, is used to generate the dc bus voltage
required by the inverter. The main role in absorbing maximum power from the PV panel is
the responsibility of this dc/dc converter. To implement the dc/dc converter, various con-
verters are used, which can be referred to as a flyback, push–pull, and resonant converters
with two inductors and one capacitor (LLC). Moreover, the second stage is a dc/ac inverter
that injects an ac current proportional to the power produced by the PV module [4–6].
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Single-stage inverters have received more attention than two-stage inverters due to
the fact of their fewer components and lower price, smaller size, simplicity, and higher
efficiency [7–9]. The Z-source inverter (ZSI), as a single-stage power converter, has been
reported with a step-up/down function in PV systems [10,11]. The discontinuous input
current in ZSI in PV applications makes it impossible to meet the maximum energy harvest-
ing; nevertheless, the quasi-Z-Source inverter (qZSI) has the same properties as ZSI, except
that the input current is continuous [12,13]. In particular, the use of qZSI in PV system
applications improves their performance and efficiency.

Due to the nonlinear characteristics of the voltage and current of a PV module, direct
connection of the loads to PV module terminals probably leads to low PV power extraction
and a nonoptimal operating point. Therefore, a controller, named a maximum power
point tracker (MPPT), is needed to warrant that the maximum available power is obtained
from PV cells. There are many different approaches to the MPPT algorithm, ranging
from simple to advanced ones that have been reported in the literature in the ZSI inverter
family [14,15]. The MPPT methods can be divided into two classes: those based on
gradient classic methods and those based on intelligent methods. The most favorite classic
algorithms for MPPT in PV systems are perturbation and observation (P&O), incremental
conductance (IncCond), linearization around the MPP (LAMPP), and constant voltage
(CV) [7,15–20]. Easy implementation and good performance in uniform weather conditions
are the advantages of these methods. Among the MPPT approaches applied, P&O is
one of the most common techniques, with ease its implementation and relatively good
performance [17,18]. The defect of this method is that the operation point oscillates around
the maximum power point (MPP), at a steady-state, which is proportional to the size of
perturbation [19]. The IncCond method is one of the MPPT methods applying a step size
control signal to discover the MPP. The step size of the decrement or increment determines
the speed of reaching the MPP. By applying a larger step size, fast-tracking can be attained,
but this can lead to fluctuations around the MPP. Applying the IncCond method is a
trade-off between convergence speed and result accuracy [13,18]. In [7], to achieve the
maximum power used, the small-signal model of the PV was used, which was obtained
from the linearization of the ipv − vpv characteristics around the MPP; however, its accuracy
cannot be guaranteed if the linear model of the PV is operated at points other than the MPP.
However, the P&O, IncCond, and LAMPP methods did not have good operation during
the rapid changing of weather conditions [19].

Due to the problems mentioned above, researchers have worked on employing in-
telligence technologies [21]. In [8], the maximum power was achieved by an adaptive
neuro-fuzzy inference system (ANFIS) based on MPPT for qZSI in standalone operation.
In [22], the authors developed an enhancing ANFIS (EANFIS) algorithm composed of
particle swarm optimization (PSO) for MPPT control in a qZSI to feed a brushless motor
(BLCD). In [15], a BLDC motor was powered by PV through a ZSI. To achieve the MPPT
of the PV, a fuzzy logic-incremental conductance (FL-IC) MPPT scheme was proposed.
A model predictive control MPPT (MPC-MPPT) was developed in [23] for a qZSI-based
grid-connected PV power system. However, these methods need big data for training as
well as more memory space. Thus, the complexity of the implementation and the tendency
to move toward the local MPP in the case of partial shading are the disadvantages [24,25].

Both qZSI and PV cells have nonlinear dynamics in nature; as a result, nonlinear
control will perform better than a linear control against perturbations and changes in the
parameter. The SMC is a type of nonlinear controller which was introduced to control
systems having uncertainties. Its main superiority is guaranteed robustness and stability
against parameter, input, and load uncertainties [26]. In addition, the implementation of
the sliding mode (SM) controller is relatively easy compared to other kinds of nonlinear
controllers, for the reason that being a controller, it has a high degree of flexibility in its
design choices. The implementation of the SM controller to track the MPP has been reported
in many articles using DC-DC converters [19,24,27,28]. Furthermore, the SM controller is
widely applied to control grid-tie or off-grid qZSI [29–33]. In [29], an integral SM controller-
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based strategy was proposed to control the battery charging current for unbalanced power
compensation in qZSI with battery. A lack of mesh [32] was applied to the SM control to
regulate qZSI capacitor voltage. Researchers in [31] offered a multi-input multi-output
(MIMO) SM control for a qZSI.

The main aim of this paper was to absorb the maximum power of PV panels through
an SM controller based on the power curve of a PV (SMC-PCPV) with a qZSI. In this
article, effective integration of a PV panel into the qZSI is provided with the aid of the
proposed controller, resulting in a faster response in the variable atmospheric conditions
and minification of the oscillation around the operating point. The overall system included a
PV panel connected to a qZSI that injected power into a load. The SM controller was derived
based on the nonlinear mathematical model of a PV panel with a qZSI. The robustness
of the SMC-PCPV was investigated in the presence of environmental changes, whereas
the SMC-PCPV was implemented in MATLAB/Simulink and a laboratory prototype. A
laboratory prototype based on a TMS320F28379D digital signal processor was constructed.
The overall structure of the article is as follows: in Section 2, the PV characteristics are
described; Section 3 develops a comprehensive model for single-phase qZSI; the SMC-PCPV
is explained in Section 4; simulation and experimental results are presented in Section 5;
finally, Section 6 summarizes the conclusions and future work.

2. PV Characteristics

The solar cell is a fundamental component of a PV system. Solar cells render the non-
linear characteristics of P-V and I-V, which depend on the temperature of the cell and irradi-
ance level (G). G is usually referred to as the rated irradiation (i.e., G = 1 Sun = 1000 W/m2).
The electrical equivalent circuit of a PV with a single diode was adopted. As shown in
Figure 1, the equivalent circuit of a PV cell consists of a light-generated source, a diode con-
nected in parallel, series resistances, and parallel resistances. The mathematical expression
for the equivalent model that reflects the relationship between the current and voltage in
the PV module can be written as:

ipv = Iph − Id

[
exp
(

q
kbTA

Vpv

)
− 1
]

(1)

Iph = S[Iscr + ki(T − Tr)] (2)

Id = Irr

[
T
Tr

]3
exp
(

qEg

kQA

[
1
Tr
− 1

T

])
(3)

where ipv and vpv are the output current and voltage (A, V); T is the cell temperature (K);
S is the solar irradiance (W/m2); Iph is the light-generated current; Irr is the saturation
current at Tr; Eg is the band-gap energy of the material; Tr is the reference temperature; q is
the charge of an electron; Ki is the short circuit of the temperature coefficient; Id is the PV
saturation current; Iscr is the short circuit of the current at the reference condition; kb is the
Boltzmann’s constant; Q. is the total electron charge: A is the ideality factor.
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Figure 1. Equivalent circuit model of a PV.

Figure 2 shows the ipv − vpv and Ppv − vpv characteristics of the Trina Solar TPS105S-
85W-MONO, a typical 85 W PV panel under different irradiance levels and at a fixed
temperature (25 ◦C). Figure 3 shows the influence of temperature on the MPP of the Trina
Solar TPS105S-85W-MONO at G = 1 Sun.
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Figures 2 and 3 show that the obtained power of PV is a nonlinear function of temperature,
irradiance, and the current drawn from the panel. Thus, it is important to determine the point
where the maximum power is received from the PV according to the environmental conditions.

3. Mathematical Model of the qZSI

A single-phase qZSI, as shown in Figure 4, is made up of a quasi-Z-source impedance
network and a single-phase inverter, which operates as a single-stage converter [4]. The
qZSI also has two modes of operation (i.e., the shoot-through state (ST) and the non-shoot-
through state (NST)), which are demonstrated through two equivalent circuits in Figure 5.
During the NST state, as shown in Figure 5a, the inverter acts as a traditional voltage source
inverter [18].
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The input voltage and the inductors charge the capacitors and supply the load. During
the ST state, as shown Figure 5b, the DC link of the inverter (vdc) is short-circuited through
the lower and upper switches of the qZSI; therefore, no energy is exchanged from the DC
link to the load, and the capacitors charge the inductors.

For the system, the state vector X and input vector U are expressed as:

X =
[
iL1 iL2 vC1 vC2

]T
=
[
x1 x2 x3 x4

]T (4)

U =
[
vpv iDC

]T (5)

where iL1, iL2, vC1, and vC2 are the inductor’s currents and capacitor’s voltages in the
Z-source network; iDC is the DC-link current. Assume that C = C1 = C2 and L = L1 = L2.
Define the ST interval Tst, NST interval Tnst, and switching period Ts = Tst + Tnst; thus,
the ST–duty ratio is dst = Tst/Ts, dnst = 1− dst, and the switching frequency is fs = 1/Ts.
The state-space form,

.
X = AstX + BstU, of the differential equations in the ST mode is

written as:

d
dt


x1
x2
x3
x4

 =


0 0 0 1

L
0 0 1

L 0
0 − 1

C 0 0
− 1

C 0 0 0




iL1
iL2
vC1
vC2

+


1
L 0
0 0
0 0
0 0

[vpv
iDC

]
(6)

Similarly, the state space form,
.

X = AnstX + BnstU, of the differential equations are
written as:

d
dt


x1
x2
x3
x4

 =


0 0 0 − 1

L
0 0 − 1

L 0
0 1

C 0 0
1
C 0 0 0




iL1
iL2
vC1
vC2

+


1
L 0
0 0
0 −1

C
0 −1

C

[vpv
iDC

]
(7)

The average state-space dynamic model of the qZSI network was found as:

.
X = AX + Bu(t) (8)

A = Astdst + Anstdnst (9)

B = Bstdst + Bnstdnst (10)

A =


1
L1

(
vpv − vC1

)
−1
L2
(vC2)

1
C1
(iL1 − iDC)

1
C2
(iL2 − iDC)

 B =


1
L1
(vC2 + vC1)

1
L2
(vC2 + vC1)

1
C1
(iDC − iL1 − iL2)

1
C2
(iDC − iL1 − iL2)

 (11)

In Equation (8), the u(t) is the control input.
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4. Sliding Mode Controller for the MPPT Unit

An SMC is well known as a nonlinear control method that is robust against parameter
uncertainties and parameter variations in the system. In much of the literature, SMCs were
applied to power electronic converters and power systems such as AC inverters, buck, and
boost [27–30]. The SMC consists of two phases: in the first phase, an equilibrium surface is
defined, and in the second phase, a discontinuous control law is designed.

4.1. Sliding Surface

In this paper, the sliding surface was defined based on the power curve of the PV. The
MPP was obtained by solving Equation (12):

∂Ppv

∂ipv
=

∂
(

Rpvi2pv

)
∂ipv

= ipv

(
2Rpv + ipv

∂Rpv

∂ipv

)
(12)

where Rpv = vpv/ipv. To satisfy Equation (12) and force the PV module to work at the MPP,
the sliding surface was defined as in (13):

S = 2Rpv + ipv
∂Rpv

∂ipv
(13)

Since ipv is equal to iL1, it can be written according to Equation (14):

S = 2
vpv

x1
+ x1

∂
vpv
x1

∂x1
(14)

4.2. Equivalent Control

By defining the sliding surface, a control law should be obtained for the qZSI that
enforces the system to move on the sliding surface. The following structure for the control
input was used [33]:

u(t) = ueq(t) + un(t) (15)

where ueq(t) and un(t) are known as the equivalent control input and nonlinear switching
input, respectively. ueq(t) describes the behavior of the system on the sliding surface, and
un(t) moves the state of the system toward the sliding surface and keeps the state on the
sliding surface in the presence of uncertainty. According to [16], the equivalent control is
obtained as:

.
S =

[
∂S
∂X

]T .
X = 0 ↔ u(t) = ueq(t) (16)

where [
∂S
∂X

]T
=
[

∂S
∂x1

∂S
∂x2

∂S
∂x3

∂S
∂x4

]T
(17)

From Equations (14), (16) and (17), the following can be written:

∂S
∂x2

=
∂S
∂x3

=
∂S
∂x4

= 0 (18)

.
S =

[
∂S
∂X

]T .
X =

∂S
∂x1

.
x1 (19)

From Equations (8), (11) and (19), the equivalent control was calculated as:

.
S =

∂S
∂x1

(
1
L1

(
vpv − x3

)
+

1
L1

(x4 + x3)ueq

)
= 0 (20)
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The equivalent control was then derived by:

ueq =
x3 − vpv

x4 + x3
(21)

The value of ueq normally varies between 0 and 1, but in a qZSI converter, the shoot-
through duty ratio should be limited to 0 to 0.3. Then, un(t) is chosen so that the Lyapunov
stability criteria (lim

S→0
S

.
S < 0) are met. The chosen un(t) was as:

un(t) =
vpv −Mx3

x4 + x3
(22)

where M is the control signal, which is calculated through the Lyapunov stability criteria.
Therefore, Equations (21) and (22) give the control law defined in Equation (15) as:

u(t) =
1−M
x4 + x3

x3 (23)

4.3. Stability Analysis

The Lyapunov theory is known as the most effective approach for investigating the
stability of a control system. According to this opinion, after the reaching phase, the
following conditions must hold so that the state trajectories stay on the sliding manifold
and slide along this manifold into the origin. A Lyapunov function and its time derivative
are defined as [19]:

V =
1
2

S2, dV = S
.
S (24)

The following condition must be satisfied to warrant the existence of the SM operation:

dV = S
.
S < 0 (25)

The time derivative of the Lyapunov function can be obtained as:

dV =
∂S
∂x1

(
1
L1

(
vpv − x3

)
+

1
L1

(x4 + x3)u(t)
)

S (26)

By substituting Equation (23) into Equation (26), it can be calculated as:

dV =
1
L1

∂S
∂x1

(
vpv −Mx3

)
S (27)

From Equations (13) and (14), it can be rewritten as:

∂S
∂x1

= 3
∂Rpv

∂x1
+ x1

∂2Rpv

∂x1
2 (28)

To calculate the first derivative of the Rpv to x1, it can be written as:

∂Rpv

∂x1
=

∂
(

vpv
x1

)
∂x1

=
1
x1

vpv

∂x1
−

vpv

x2
1

(29)

To calculate the second derivative of the Rpv to x1 and from Equation (29), it can
be written:

∂2Rpv

∂x1
2 =

1
x1

∂2vpv

∂x1
2 +

2vpv

x3
1
− 2

x2
1

∂vpv

∂x1
(30)
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By placing Equations (29) and (30) in Equation (28) and rewriting it, the following
equation is obtained:

∂S
∂x1

=
1
x1

∂vpv

∂x1
+

∂2vpv

∂x1
2 −

vpv

x2
1

(31)

Using Equation (1) and considering that ipv = x1, the vpv and its first and second
derivatives can be obtained as:

vpv =
kbTA

q
ln
( Iph + Id − x1

Id

)
(32)

∂vpv

∂x1
= − kbTA

q
Id

Iph + Id − x1
,

∂2vpv

∂x1
2 =

kbTA
q

Id(
Iph + Id − x1

)2 (33)

From Equations (31)–(33), it can be found that Equation (31) always has a negative
sign, and for simplicity Equation (27) can be rewritten as:

dV = γ
(
vpv −Mx3

)
S < 0 (34)

where
γ =

1
L1

∂S
∂x1

< 0. (35)

By substituting Equation (29) into Equation (14), the sliding surface can be calculated as:

S =
vpv

x1
+

∂vpv

∂x1
(36)

Based on Equations (24)–(34), the control law M can be chosen as:

M = − x1

x3

∂vpv

∂x1
(37)

To check the stability of the control function and by considering Equation (25) and
Equations (34)–(37), the system mode can be divided into the following sections:

Case I: S > 0, γ< 0→ vpv −Mx3 >0

S > 0→
vpv

x1
+

∂vpv

∂x1
> 0→ vpv + x1

∂vpv

∂x1
> 0→ vpv −

(
− x1

x3

∂vpv

∂x1

)
x3 > 0→ vpv −Mx3 > 0 (38)

Case II: S < 0, γ < 0→ vpv −Mx3 < 0

S < 0→
vpv

x1
+

∂vpv

∂x1
< 0→ vpv + x1

∂vpv

∂x1
< 0→ vpv −

(
− x1

x3

∂vpv

∂x1

)
x3 < 0→ vpv −Mx3 < 0 (39)

Considering Equations (38) and (39), it can be assured that the system has been
stabilized according to Lyapunov’s criteria.

5. Simulation and Experimental Results

To verify the effectiveness of the proposed control method a simulation model and an
experimental prototype of a single-phase qZSI were constructed in MATLAB/ Simulink
and in the laboratory. The overall block diagram of the system is illustrated in Figure 6,
and the electrical components of the qZSI are given in Table 1. The parameters of the
PV array are listed in Table 2. A prototype of the qZSI was developed in the laboratory
using the Digital Signal Processor TMS320F28379D, as shown in Figure 7, and the system
specifications are listed in Tables 1 and 2. To validate the SMC-PCPV and observe their
different responses under different operational conditions, the SMC-PCPV was investigated
in different environmental conditions. Hence, this section is divided into four subsections.
The first subsection investigates the response of the SMC-PCPV in the simulation model
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under a stepping change temperature. The performance of the proposed SMC under
the stepping change of radiation in a simulation environment was studied in the second
subsection. In the third subsection, the experimental results of the laboratory prototype
in real conditions are presented. The dynamic response study of the SMC-PCPV and the
existing controllers are presented in the fourth subsection. In this study, the modulation
index was fixed at 0.7.
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Table 1. Parameters of the qZSI.

Parameter Value

qZSI inductors (L1, L2 ) 500 µH
qZSI capacitors (C1, C2 ) 3300 µF

Load resistance 2.5 Ω
Load inductance 200 µH

Modulation index 0.7
Switching frequency 10 kHz

Output frequency 50 H z
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Table 2. Parameters of the PV array at T = 25 ◦C and G = 1 Sun.

Parameter Value

The voltage at the maximum power point, VMPP 18.4 V
Current at the maximum power point, IMPP 4.62 A

Open-circuit voltage, Voc 21.9 V
Short-circuit current, Isc 4.97 A

Maximum power 85 W

5.1. Response of the SMC-PCPV under Varying Temperatures

In this subsection, the response of the SMC-PCPV was investigated by changing the
temperature. The temperature was first fixed at 25 ◦C and changed to 35 ◦C at 0.15 s. In
this case, the irradiance level was held constant at 1000 W/m2. The vpv, ipv, Ppv, vc1, vc2,
and iload under changing temperatures are shown in Figures 8 and 9. It can be seen that
in the case of exposure of the controller to a disturbance of temperature change type, the
SMC-PCPV had good stability and could obtain the maximum power from the PV cells
with high speed and accuracy. In this case, the rise time was 0.8 ms, and the settling time
was 3.54 ms.
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Figure 9. The simulation results of ipv and iload under changing temperatures.

The MPPs of the panel obtained from the simulation of the SMC-PCPV were 18.6 V,
4.5 A, and 83.7 W and 17.9 V, 4.5 A, and 80.55 W at T = 25 ◦C and T = 35 ◦C, respectively,
when G was fixed at 1 Sun. The MPPs of the panel based on the manufacturer’s information
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were 18.4 V, 4.62 A, and 85 W and 17.63 V, 4.63 A, and 81.6 W at T = 25 ◦C and T = 35 ◦C,
respectively, when G = 1 Sun. The SMC-PCPV could absorb the maximum achievable
power from the PV panel when the temperature changed.

5.2. Response of the SMC-PCPV under Changing Irradiance

In this subsection, the response of the SMC-PCPV was investigated by changing
the irradiance. The irradiance level was first fixed at 1000 W/m2, and it was changed
to 850 W/m2 at 0.2 s and then to 700 W/m2 at 0.25 s. The temperature was held at
25 ◦C throughout the simulation. The vpv, ipv, Ppv, vc1, vc2, and iload are shown in
Figures 10 and 11. It can be seen that by changing the radiation, the proposed controller
can track the maximum achievable power. In other words, the introduced controller has
the appropriate stability to deal with the perturbation of radiation change. The rise time of
the proposed SMC was 0.9 ms.
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The MPPs of the panel obtained from the simulation of the SMC-PCPV were 18.6 V,
4.5 A, and 83.7 W; 18.4 V, 3.85 A, and 70.8 W; 18.3 V, 3.15 A, and 57.62 W at 1000 W/m2,
850 W/m2, and 700 W/m2, respectively, when the temperature was fixed at 25 ◦C. The
MPPs of the panel based on the manufacturer’s information were 18.4 V, 4.62 A, and
85 W; 18.3 V, 3.93 A, and 72 W; 18.3 V, 3.24 A, and 59.2 W, respectively, at the mentioned
conditions. The simulation results of the introduced controller are shown in Table 3. The
maximum difference between the absorbed power (Pabsd) and the absorbable power (Pable)
under different simulated conditions was equal to 2.65%. The simulation results show
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that the controller introduced in this paper can track changes in irradiance intensity and
temperature.

Table 3. Simulation results of the SMC-PCPV.

Irradiance Level 1000 W/m2 850 W/m2 700 W/m2

Temperature 25 ◦C 35 ◦C 25 ◦C
VMPP 18.6 V 17.9 V 18.4 V 18.3 V
IMPP 4.5 A 4.5 A 3.85 A 3.15 A
Pabsd 83.7 W 80.55 W 70.84 W 57.62 W
Pable 85 W 81.6 W 72 W 59.2 W

(Pable−Pabsd)
Pable

× 100 1.52% 1.35% 1.6% 2.65%

5.3. Experimental Results of the SMC-PCPV

The prototype of the qZSI with an SMC was built based on the previous statements.
The parameters of the prototype were the same as the parameters applied in the simulations.
The control signals were generated from the digital signal processor (DSP) TMS320F28379D
from Texas Instruments. A digital oscilloscope was used to observe the experimental results,
and to better display the results, the obtained data were imported into MATLAB software
and then presented. To test the introduced controller, a TPS105S-85W solar panel was
tested in real conditions. The values of Voc and Isc of the panel were measured at different
radiations and are shown in Table 4. According to the characteristic curve of the panel and
the measured values of Voc and Isc, the Pable, VMPP, and IMPP were estimated [34] and are
presented in Table 4. The experimental results for each case are presented in Table 4. In the
second column of Table 4, it is specified that the mentioned quantity was obtained through
measurement (Me) or modeling and estimation (Es). In the case of A, the Voc and Isc were
equal to 21.6 V and 3.7 A, respectively. According to the modeling condcuted on the panel
and its characteristic curve, the Pable can be estimated at 62.5 W. The amount of Pabsd from
the prototype, in this case, was equal to 60 W. The difference between the Pable and the Pabsd,
in this case, was equal to 2.5 W, or in other words, the absorbed power had a deviation of
4% from the maximum absorbable power, where in the case of B, the deviation between
the Pable and the Pabsd reached 3%. The experimental results obtained from the prototype
showed that the introduced controller cold control the qZSI in such a way that it absorbed
the maximum power from the PV cell with an acceptable error. The waveforms of vdc, vpv,
ipv, vc1, vc2, and iload associated with case A that were obtained from the experimental test
are shown in Figure 12.

Table 4. Parameters of PV array at environmental conditions.

Voc Isc VMPP IMPP Pable VMPP IMPP Pabsd
(Pable−Pabsd)

Pable
× 100

Estimated/measured Me 1 Me Es 2 Es Es Me Me Me
Case A 21.6 V 3.7 A 18.3 V 3.42 A 62.5 W 18.2 V 3.2 A 60 W 4%
Case B 21.3 V 2.75 A 18.19 V 2.54 A 46.2 W 17.92 V 2.5 A 44.8 W 3%

1 Measured value. 2 Estimated value.

In this paper, the aim was to show the efficiency of the introduced controller in
absorbing the maximum absorbable power of the panel in different weather conditions,
where the absorbed power had a deviation of 4% and 1.5% from the maximum absorbable
power in the experimental and simulation results, respectively. The difference between
the maximum power absorbed in the simulated and experimental modes was related
to the losses of the 50 m interface cable between the solar panel and the converter in
the experimental mode. Most modern MPPTs are approximately 93–98% efficient in the
conversion [35,36].
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5.4. Comparison of the Dynamic Response

In this part, a comparison between the dynamic response of the SMC-PCPV and
the nonlinear MPPT controllers [1] is made. In [1], the dynamic characteristics of four
controllers are given, which were the fuzzy logic-based nonlinear controller (FLBC), PSO,
and integral back-stepping (IBS). The dynamic values of the nonlinear MPPT controllers [1]
and the proposed controller are given in Table 5, where the SMC-PCPV was evaluated under
the standard temperature of 25 ◦C and radiation of 1000 W/m2. The table was formulated
by comparing the analyzed techniques on the basis of rise time (RT), settlingtime (ST) (2%
and 5% criteria), and ripples in vpv. According to Table 5, it can be seen that the proposed
controller had the fastest RT among other nonlinear controllers. It also had an acceptable
ST and ripple.

Table 5. Comparison of the dynamic responses.

Method RT (ms) ST 5% Criteria (ms) ST 2% Criteria (ms) ∆vpv
Vpv
∗100

Backstepping [37] 2.42 3.1 3.8 0.25%
PSO [38] 2.22 19 NA 6.5%
IBS [1] 2.17 2.9 3.2 0.23%

FLBC [39] 2.17 3 8.4 1.2%
SMC-PCPV 0.9 3.1 3.84 1.07%

6. Conclusions

Obtaining the maximum power from a PV panel under changing environmental
conditions is an ongoing challenge. In this paper, an SMC based on the PV power curve
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(SMC-PCPV) was presented to receive the maximum power from the solar panel. The
stability of the system was ensured using the Lyapunov stability criterion. The SMC-PCPV
was implemented on a qZSI. The qZSI is a power conditioner that employs a Z-source
network for boosting the photovoltaic voltage and connecting to the inverter as a single
stage. By controlling the ST duty cycle, the objective of tracking MPP can be carried out.
To verify the proposed controller, the SMC-PCPV was carried out on computer simulation
and laboratory prototype. The SMC-PCPV was investigated at different environmental
conditions such as varying temperature and irradiance. The simulation and experimental
results showed that the SMC-PCPV had an acceptable overall performance. The most
prominent feature of this controller was its high speed in response to changes in input
parameters. Other features of this proposed controller include ease of implementation,
stability against disturbances and environmental changes, and high efficiency. Compared
to other nonlinear controllers presented in the articles, this controller had a rise time equal
to approximately half of the other controllers. The maximum error rate of the received
power with the maximum achievable power was less than 4%, which is an acceptable
value. It should be noted that the power obtained at the input of the converter was the
basis of the calculation, which eliminated the loss of 50 m of cable between the panel and
the converter, and the controller efficiency increased to 97.4%, which is one of the methods
with high efficiency. Due to the inductor current ripple of the qZSI not being optimal
in most applications and the fact that large inductor current ripples will result in higher
inductor band switching losses, which further leads to distortions in the output current,
the other prominent feature of this controller is the almost constant current that is drawn
from the PV panel. In the future, this work can be extended by double frequency voltage
ripple suppression.
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