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Abstract: DD (Double D) coils have been researched and utilized due to their excellent misalignment
tolerance. Here, a compound DD coupler sets for stationary wireless power chargers, which has sig-
nificantly better anti-misalignment performance than single DD coupler in all directions, is proposed.
The transmitting coils are composed of two parts of DD coils wound in opposite directions. Moreover,
to obtain the low-level variation of mutual inductance between compound transmitting coils and
receiving coils when offset occurs, a parameter optimization strategy of compensation coils is also
proposed. With the properly designed parameters, the mutual inductance between transmitting and
receiving coils could remain basically constant when misalignment occurs, which means that the
efficiency and power remain relatively constant when offset occurs. Finally, both single DD coils
and compound DD coils experimental prototypes are built to compare anti-misalignment ability
performance. The results show that the proposed system is basically more stable and has a higher
output power and more stable efficiency than that of unoptimized coupler during migration. In
particular, with the employment of the antiparallel winding, the efficiency fluctuates from 85.5% to
85% when the 0.1-m offset in the X-axis and Y-axis occurs simultaneously. Moreover, the higher and
basically more stable output power is also achieved.

Keywords: double D coupler; wireless power chargers; mutual inductance; misalignment tolerance

1. Introduction

Wireless power transfer (WPT) has become a popular and promising technology in
transportation and medical industry [1–6]. The WPT technology has gained a lot of attention
due to its advantages, with the characteristics of convenience, clean and slight radiation.
It is beneficial to WPT systems since the parking locations are usually inaccurate and the
misalignment tolerance is crucial. When the misalignment occurs [7], the mutual inductance
between transmitting coils and receiving coils may substantially change, resulting in the
fluctuation of output power and the efficiency [8–11]. Nevertheless, the anti-misalignment
ability can be improved by shaping the magnetic couplers. For instance, Budhia et al. first
proposed a new polarized coil structure named as a double D (DD), which can provide
a charge zone five times larger than square coils [12]. The load characteristics of DD
coils and higher power density are explored in [13]. Also, the effects of the misalignment
with rectangular coils are analyzed in [14]. Yang et al. proposed a H-shaped magnetic
core to achieve 95% efficiency when the Y-axis offset is 0.3 m [15]. Yao et al. found that
when the magnetic coupler of split flat solenoid coupler (SFSC) was shifted within a
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0.4-m misalignment in the X-axis, the current fluctuation was less than 0.09 A [16]. This
paper analyzes the offset characteristics of the circular DD coils [17,18]. Compared by
rectangular DD coils [19], and due to the high symmetry of circular coils, the influence of
long and short sides of rectangular coils on all offset direction can be ignored [20]. This
can simplify the analysis on strong misalignment tolerance of DD couplers. Meanwhile, so
long as the reverse compensation coils are applied, the efficiency will be reduced as [21]
described. However, the anti-misalignment ability can be improved by adding antiparallel
winding wound in opposite directions to the original circular DD coils, which can ensure
the transmission efficiency and out power reliability in this process that occurs from
misalignment to alignment.

This paper proposes the novel structure with high misalignment tolerance and pa-
rameter configuration strategy of compensation coils based on DD couplers. Specifically,
the offset characteristic of circular DD coils and rectangular DD coils are analyzed and
compared in this paper. Taking the consumption of coils, manufacture convenience and
analysis difficulty into consideration, circular DD coils are selected as the DD coupler. It is
widely known that the DD coils share different horizontal anti-misalignment characteristics
in X-axis and Y-axis. Hence, this paper presents a compound DD coupler sets for stationary
wireless power chargers, which has significantly better anti-misalignment performance
than single DD coupler in all directions. Meanwhile, the optimization method of the com-
pound DD coupler is also proposed, which can be applied in wireless charging scenarios
with or without magnetic cores. Both the simulation and experiment have proved the
feasibility of compensation coils in improving misalignment tolerance of the DD coupler.

2. Theoretical Analysis of WPT

The WPT system is mainly composed of high-frequency AC power supply, compen-
sation capacitor, transmitting coils, receiving coils and equivalent resistance. Figure 1
illustrates the Series-series (SS) resonant compensation topology is adopted in this paper.
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Figure 1. SS resonant topology.

Where US is the high-frequency input voltage source, Rtx and Rrx are the total resis-
tances of the transmitting coils and receiving coils, respectively. RL is the resistive load.
M is the mutual inductance. Normally, the output power Pout of the system can be repre-
sented by

Pout =
(ωM · |Us|)2RL

[Rtx(Rrx + RL) + ω2M2]2
(1)

where ω is the operating angular frequency. The system transmission efficiency can also be
derived as:

η =
ω2M2RL

[Rtx(Rrx + RL) + ω2M2](R2 + RL)
(2)

According to Equations (1) and (2), the output power and efficiency are related to
frequency f, M, Rtx, Rrx and RL. Normally, if the load resistance and frequency remain fixed,
the output power and efficiency are related to the coil equivalent internal resistance and M.
Generally, the mutual inductance will change when the misalignment occurs, resulting in
the fluctuation of efficiency and output power. Therefore, it is effective to stable the mutual
inductance, which can suppress the variation of efficiency and output power.
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3. Optimization of Circular DD Coupler WPT System
3.1. Mutual Inductance Calculation of Non-Coaxial Circular Coils

The mutual inductance between non coaxial circular coils is given by [22].

M =
µ0
4π

∫ 2π

0

∫ 2π

0

r1r2 cos(θ−ϕ)√
(r1 cos θ− r2 cosϕ)2 + (r1 sin θ− r2 sinϕ− t)2 + h2

dθ (3)

where, r1 and r2 represent the radius of single transmitting coil and receiving coil, θ and ϕ
are angle integral parameters. The horizontal distance of the center of non-coaxial circular
coil is denoted as t, h is the separated gap, µ0 is the vacuum permeability. The multi-turn
wound spiral coil can be regarded as a series of coaxial circular coils. Thus, the mutual
inductance between two multi-turn spiral coils can be considered as the superposition of
mutual inductance between several circular coils. Figure 2 illustrates the half cross section
of circular DD coils for intuitive presentation.
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Figure 2. Half cross section of circular DD coils.

In Figure 2, R1 and R2 represent the horizontal distance from the outermost coil to the
center of the single coils, respectively. N1 and N2 represent the turns of the single circular
transmitting and receiving coils respectively. dw represents the litz wire diameter.

Consequently, the mutual inductance Mtr of the coupler is derived as:

Mtr =
N2

∑
j=1

N1

∑
i=1

Mij +
N2
∗

∑
j∗=1

N1

∑
i=1

Mij∗ +
N2

∑
j=1

N1
∗

∑
i∗=1

Mi∗ j +
N2
∗

∑
j∗=1

N1
∗

∑
i∗=1

Mi∗ j∗ (4)

where, Mij represents the mutual inductance between the ith transmitting coil and the jth
receiving coil. Similarly, Mij* represents the mutual inductance between the ith transmitting
coil and the j*th receiving coil. Also, Mi*j represents the mutual inductance between the
i*th transmitting coil and the jth receiving coil. Mi*j* represents the mutual inductance
between the i*th transmitting coil and the j*th receiving coil.

3.2. Analysis of Antimisalignment Characteristics of DD Coupler

To explore the characteristics of DD coupler under different shape of windings, the
parameters of circular DD coils and rectangular coils are set as follows, R1 = 0.205 m,
R2 = 0.109 m, N1 = 10, N2 = 20, h = 0.15 m, dw = 2.5 mm. Where R1 and R2 represent the
radius of the circular transmitting and receiving coils, respectively. h denotes the separation
distance between the transmitting coils and receiving coils. Also, the electromagnetic
simulation software Ansys Maxwell is employed to obtain the mutual inductance between
transmitting and receiving of circular DD and rectangular DD coils, respectively. It should
be noted that the rectangular DD coils share the identical circular size with the coils for the
fair comparison. The finite element simulation models are shown in the Figure 3. Moreover,
the maximum element length of mesh for each model is set as 5 mm.
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The anti-misalignment characteristics are illustrated as Figure 4 shown. Mrec and Mtr1
denote mutual inductance between the receiving coils and rectangular coils and circular
coils respectively. σrec and σtr1 represent the misalignment tolerance of rectangular coils
and circular coils, respectively.
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In Figure 4, the misalignment tolerance in the X-axis of DD couplers of both shapes
show better performance than that in the Y-axis. In this case, the area and the consumption
of rectangular DD coils are slightly larger than that of circular DD coils, which demonstrates
greater mutual inductance and better misalignment tolerance in X-axis. However, DD
coils in two shapes share the same curve concerning the anti-misalignment characteristic
in Y-axis. Nevertheless, different from rectangular DD coils, due to the high symmetry of
circular DD coils, the research on long side and short side on the offset characteristics can
be exempted. In this paper, the anti-misalignment based on DD couplers will be further
explored and optimized. Consequently, the circular DD coils are chosen as the resonator
coupler. Furthermore, the finite element simulation results are in good agreement with the
numerical simulation results implemented by Matlab based on circular DD coils. To ease
the workload of finite element simulation, the analytical simulation is adopted to analyze
the coupler without magnetic cores. The structure of the proposed magnetic coupler is
shown in Figure 5. The transmitting coils consists of two parts of wires wound in opposite
directions, the additional coils are named as compensation coils.

Where Mtr2 is the mutual inductance between the compensation coils and the receiving
coils. The values of Mtr1 and Mtr2 can be obtained from Equation (4). N3 represents the
turns of the single circular compensation coils. h1 represents the distance between the
compensation coils and the transmitting coils. R3 is the radius of a single compensation
coils. The above-mentioned parameters are chosen as the optimization factor to improve the
anti-misalignment ability of the system. The mutual inductance Mtr between the compound
transmitting and receiving coils can be deduced as:

Mtr = Mtr1 −Mtr2 (5)
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When offset occurs, Mtr1 and Mtr2 will decrease simultaneously. Theoretically, the
mutual inductance can be stable if the variation amplitude of ∆Mtr1 and ∆Mtr2 are the same.
Therefore, the radius, the number of turns and the gap between primary transmitting coils
and compensation coils are taken as the optimized variables to obtain high misalignment
tolerance.

3.3. Analysis on Optimization Strategy for Misalignment Tolerance of Circular DD Coils

To achieve the steady variation of mutual inductance between compound transmitting
coils and receiving coils when offset occurs, the joint optimization of multiple parameters
of the compensation coil is considered.

The dimension of the compensation coils is smaller than that of the transmitting coils,
resulting in a wide range of horizontal spaces for the layout of the compensation coils.
Hence, the first step is to optimize R3 for the improvement of the anti-misalignment ability.
If the optimized R3 still does not satisfy the desired misalignment tolerance, optimizing h1
and N3 should be considered. Note that the turns of the compensation coils and the gap
between the compensation coils and the transmitting coils, limited by internal resistance and
longitudinal space, should be appropriate. Then, the priority of the parameters optimization
is defined as follows, optimizing R3 > optimizing h1 > optimizing N3. Meanwhile, the
separated gap between compensation coils and primary transmitting coils is less than 1/3
of the maximum transmission gap. Denote a as the retention ratio of the original mutual
inductance. χ1 and χ2 are denoted as the minimum and maximum misalignment tolerance
in the X-axis. Similarly, set χ3 and χ4 as the initial values of the minimum and maximum
misalignment tolerance in the Y-axis. The objective function can be written as follows:

χ1 ≤ σi =
Mi
M0
≤ χ2

χ3 ≤ σj =
Mj
M0
≤ χ4

a Mmin
tr1

Mmax
tr1
≤ M0

Mmax
tr1

< 1

(6)

The parameter regulation strategy of the compensation coils is illustrated in Figure 6.
In Figure 6, Mi and Mj denote the mutual inductance of the right endpoint value

of the ith interval when offset occurs in the X-axis and the Y-axis, respectively, where
i, j = 1, 2, n. M0 is mutual inductance when the system is well aligned. Mmin

tr1 and
Mmax

tr1 represent the minimum and maximum mutual inductance of the original coupler
without compensation coils respectively, when offset happens in the Y-axis direction. σi
and σj are the misalignment tolerance in the X-axis and Y-axis respectively. χ1, χ2, χ3, χ4,
n, a are the value of the established boundary conditions. Assume that χ1 = χ3 = 95%,
χ2 = χ4 = 105%, n = 10, a = 80 mm. Based on the optimization method of compensation
coils, shown in Figure 6, the optimized results are calculated as follows: R3 = 86 mm,
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h1 = 120 mm, and N3 = 6. The Mtr, Mtr1 and Mtr2 versus offset in all directions is illustrated
in Figure 7 by numerical simulation.

Electronics 2022, 11, x FOR PEER REVIEW 6 of 11 
 

 

1 2

0

3 4

0

min
tr1 0

max max
tr1 tr1


 = 





 = 


 


＜

i
i

j

j

M
χ σ χ

M

M
χ σ χ

M

M M
a

M M
1

 (6) 

The parameter regulation strategy of the compensation coils is illustrated in Figure 

6. 

 

Figure 6. Flowchart of parameters optimization of compensation coils. 

In Figure 6, Mi and Mj denote the mutual inductance of the right endpoint value of 

the ith interval when offset occurs in the X-axis and the Y-axis, respectively, where i, j = 1, 

2, n. M0 is mutual inductance when the system is well aligned. min
tr1M  and axMm

tr1  repre-

sent the minimum and maximum mutual inductance of the original coupler without com-

pensation coils respectively, when offset happens in the Y-axis direction. σi and σj are the 

misalignment tolerance in the X-axis and Y-axis respectively. χ1, χ2, χ3, χ4, n, a are the 

value of the established boundary conditions. Assume that χ1 = χ3 = 95%, χ2 = χ4 = 105%, 

n = 10, a = 80 mm. Based on the optimization method of compensation coils, shown in 

Figure 6, the optimized results are calculated as follows: R3 = 86 mm, h1 = 120 mm, and N3 

= 6. The Mtr, Mtr1 and Mtr2 versus offset in all directions is illustrated in Figure 7 by numer-

ical simulation. 

Figure 6. Flowchart of parameters optimization of compensation coils.
Electronics 2022, 11, x FOR PEER REVIEW 7 of 11 
 

 

 

Figure 7. Offset characteristic maps in all directions without employing cores. 

The color of map based on the variation of Mtr is relatively uniform, which verifies 

the strong misalignment tolerance of the optimized system. Finally, the simulation results 

indicate that the misalignment tolerance fluctuates from 85.5% to 104.3% within the max-

imum offset range of 0.1 m × 0.1 m. When the WPT system is equipped with magnetic 

cores, the optimization results of parameters on compensation coils are inferred as fol-

lows: R3 = 103 mm, h1 =105 mm, and N3 = 7. 

When the proposed structure is applied, the misalignment characteristic maps in all 

directions of Mtr, Mtr1 and Mtr2 by finite element analysis software is simulated, as shown 

in Figure 8. 

 

Figure 8. Offset characteristic maps in all directions with the employment of cores. 

In Figure 8, the color of Mtr also shows basically uniform distribution, and the global 

misalignment tolerance ranges from 91% to 105%. To sum up, the optimization method 

proposed in this paper for the improvement of anti-misalignment ability can be applied 

to the case with or without magnetic cores. 

4. Verification Experiment 

An experimental prototype shown in Figure 9 is built to verify the proposed design 

method. 

Figure 7. Offset characteristic maps in all directions without employing cores.

The color of map based on the variation of Mtr is relatively uniform, which verifies
the strong misalignment tolerance of the optimized system. Finally, the simulation results
indicate that the misalignment tolerance fluctuates from 85.5% to 104.3% within the max-
imum offset range of 0.1 m × 0.1 m. When the WPT system is equipped with magnetic
cores, the optimization results of parameters on compensation coils are inferred as follows:
R3 = 103 mm, h1 =105 mm, and N3 = 7.

When the proposed structure is applied, the misalignment characteristic maps in all
directions of Mtr, Mtr1 and Mtr2 by finite element analysis software is simulated, as shown
in Figure 8.

In Figure 8, the color of Mtr also shows basically uniform distribution, and the global
misalignment tolerance ranges from 91% to 105%. To sum up, the optimization method
proposed in this paper for the improvement of anti-misalignment ability can be applied to
the case with or without magnetic cores.
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4. Verification Experiment

An experimental prototype shown in Figure 9 is built to verify the proposed design method.
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Figure 9. Experimental prototype of the proposed WPT system.

The system consists of an inverter, resonant capacitors, magnetic coupler, laptop for
resonant frequency regulation and resistance. The primary transmitting coils and receiving
coils are covered by the together piece of 100 × 100 × 10 mm ferrite cuboid NCD LP9.

All of the experimental parameters are listed in Table 1.

Table 1. Parameters of DD couplers.

Parameter Value Parameter Value

L1
Before compensation 315 µH
After compensation 297 µH L2 329 µH

R1
Before compensation 1.6 Ω
After compensation 1.7 Ω R2 1.7 Ω

US 20 V RL 24 Ω
f 190 kHz
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Where f denotes the resonant frequency. The waveforms of Us, I1, I2 and output
voltage Uout are recorded by the oscilloscope Tektronix MSO54 as Figures 10 and 11 shown.
The efficiency can be derived by:

η =
|Uout| · |I2 |
|Us| · |I1 |

(7)Electronics 2022, 11, x FOR PEER REVIEW 9 of 11 
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Figure 10. Experimental waveforms of Us, I1, I2 and Uout before compensation. Continuous wave-
form: (a) 0.1-m offset in the Y-axis occurs first and then 0.1-m offset in the X-axis occurs. Stationary
waveform: (b) well aligned; (c) 0.1-m offset in the X-axis and Y-axis occurs simultaneously.

The experimental results of the output power and efficiency show that during the
offset from (0 m, 0 m) to (0 m, 0.1 m) to (0.1 m, 0.1 m), the efficiency and power of the
magnetic coupler equipped with compensation coils change more stable. Meanwhile, the
efficiency before compensation decreases by 1.5% and the power increases 2.35 times when
maximum offset occurs. On the contrary, the efficiency after compensation decreases by
0.2% and the power increases 1.06 times, which indicates stronger misalignment tolerance
regardless of the value of efficiency. Additionally, according to Equations (1) and (2),
the output power is related to the Us, while the efficiency is only related to the intrinsic
parameters of the magnetic couplers. Hence, the specific efficiency and normalized output
power offset characteristic curves versus the X-axis and Y-axis are plotted in Figure 12.

η0 and η1 are the efficiencies without and with compensation coils respectively, P0
and P1 are the output powers without and with compensation coils, respectively. As can be
identified from Figure 12, the efficiency fluctuates from 85.5% to 85% when the antiparallel
winding is adopted, while that of the primitive system changes significantly from 87.1%
to 85.9%. Without compensation coils, the output power fluctuates in multiple-rate at
0.1-m misalignment. By contrast, the proposed system has a higher and basically more
stable output power, which greatly reduces the impact of large power fluctuation on power
electronic devices.



Electronics 2022, 11, 2163 9 of 11

Electronics 2022, 11, x FOR PEER REVIEW 9 of 11 
 

 

 

Figure 10. Experimental waveforms of Us, I1, I2 and Uout before compensation. Continuous wave-

form: (a) 0.1-m offset in the Y-axis occurs first and then 0.1-m offset in the X-axis occurs. Stationary 

waveform: (b) well aligned; (c) 0.1-m offset in the X-axis and Y-axis occurs simultaneously. 

 

Figure 11. Experimental waveforms of Us, I1, I2 and Uout after compensation. Continuous waveform: 

(a) 0.1-m offset in the Y-axis occurs first and then 0.1-m offset in the X-axis occurs. Stationary wave-

form: (b) well-aligned; (c) 0.1-m offset in the X-axis and Y-axis occurs simultaneously. 

The experimental results of the output power and efficiency show that during the 

offset from (0 m, 0 m) to (0 m, 0.1 m) to (0.1 m, 0.1 m), the efficiency and power of the 

Figure 11. Experimental waveforms of Us, I1, I2 and Uout after compensation. Continuous waveform:
(a) 0.1-m offset in the Y-axis occurs first and then 0.1-m offset in the X-axis occurs. Stationary
waveform: (b) well-aligned; (c) 0.1-m offset in the X-axis and Y-axis occurs simultaneously.
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5. Conclusions

In this paper, compared with rectangular DD coils and considering coil consumption,
winding convenience, and analysis difficulty, the circular DD coils are chosen as the res-
onator coupler. Then, compensation coils wound in the opposite direction are employed
to improve the horizontal omnidirectional misalignment tolerance of single circular DD
coils. Meanwhile, the parameter regulation strategy of the compensation coils is intro-
duced, which alleviates the fluctuation of efficiency and output power of wireless charging
system when offset occurs. Furthermore, the weakness of the single circular DD coils
anti-misalignment ability in the Y-axis offset direction is eliminated. Finally, simulations
and experiments have been carried out to verify the correctness and feasibility of the system.
Results show that the efficiency fluctuates from 85.5% to 85% with the employment of the
compensation coils when the 0.1-m offset in the X-axis and Y-axis occurs simultaneously.
Furthermore, the higher and more stable output power is also obtained. Hence, the system
can be widely used in UAVs (unmanned aerial vehicles) and EVs (electric vehicles).
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