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Abstract: Tropospheric duct is an anomalous atmospheric phenomenon over the sea surface that
seriously affects the normal operation and performance evaluation of electromagnetic communi-
cation equipment at sea. Therefore, achieving precise sensing of tropospheric duct is of profound
significance for the propagation of electromagnetic signals. The approach of inverting atmospheric
refractivity from easily measurable radar sea clutter is also known as the refractivity from clutter
(RFC) technique. However, inversion precision of the conventional RFC technique is low in the
low-altitude evaporation duct environment. Due to the weak attenuation of the over-the-horizon
target signal as it passes through the tropospheric duct, its strength is much stronger than that of sea
clutter. Therefore, this study proposes a new method for the joint inversion of evaporation duct height
(EDH) based on sea clutter and target echo by combining deep learning. By testing the inversion
performance and noise immunity of the new joint inversion method, the experimental results show
that the mean error RMSE and MAE of the new method proposed in this paper are reduced by
41.2% and 40.3%, respectively, compared with the conventional method in the EDH range from 0 to
40 m. In particular, the RMSE and MAE in the EDH range from 0 to 16.7 m are reduced by 54.2%
and 56.4%, respectively, compared with the conventional method. It shows that the target signal is
more sensitive to the lower evaporation duct, which obviously enhances the inversion precision of
the lower evaporation duct and has effectively improved the weak practicality of the conventional
RFC technique.

Keywords: evaporation duct; sea clutter; target echo; deep learning

1. Introduction

The marine atmospheric boundary layer (MABL) is a dynamic area in the lower
troposphere over the sea surface, which directly interacts with the marine environment
through energy, momentum and material exchange, and has a tremendous effect on the
weather and climate in local areas and even globally [1]. The MABL frequently occurs when
temperature and humidity are distributed abnormally across the vertical gradient, and
this abnormal environment can affect the atmospheric refractivity, which will influence the
propagation path and attenuation features of electromagnetic waves in the atmosphere [2].
This type of phenomenon, which is called tropospheric duct, causes electromagnetic waves
to be trapped within it, affecting the electromagnetic wave distribution in the area above
the duct layer, and creating unexpected voids and target identification errors, to affect radar
performance [3]. The main effects of tropospheric duct on radar performance are shown
in Figure 1.
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to as refractivity from clutter (RFC). The RFC technique can invert the atmospheric refrac-
tivity without using additional detection equipment, simply using the sea clutter data ob-
tained during the routine operation of radar, combined with an effective inversion algo-
rithm. Later, an experiment (called Wallops98) was performed to invert refractivity of 
tropospheric duct from radar clutter, whose results show the feasibility and efficiency of 
the RFC technique. For numerous important applications of tropospheric duct, recently, 
research on refractivity features in MABL is primarily focused on the application and op-
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In 1999, Rogers et al. [10] inverted the EDH using a least squares optimization 
method. In 2001, Vasudevan et al. [11] modeled the inversion problem as a parameter 
estimation problem in a nonlinear state space and carried out the solution using the serial 
importance sampling (SIS) method. In 2003, Gerstoft et al. [12] modeled the inversion 
problem as a global optimization problem, and applied simulated annealing (SA) and ge-
netic algorithms (GA) together with the RFC technique to invert the atmospheric refrac-
tivity from radar clutter. In 2004, Barrios [13] used the moment technique to invert the 
modified refractivity profile of surface based duct based on ray density and radar clutter 
data. In 2006, Yardim et al. [14] used the markov chain monte carlo (MCMC) sampling 
technique to sample the vector space of the profile parameters and calculated the posterior 
probability density distribution of the profile parameters by Bayesian theory. In 2007, 
Yardim et al. [15] proposed a hybrid GA-MCMC algorithm for fast calculation of the pos-
terior probability distribution of the refractivity profile.  

With the development of varied optimization algorithms, machine learning algo-
rithms are widely used in the study of inverting atmospheric refractivity. And as the re-
quirement for inversion precision increases, the disadvantages of shallow machine learn-
ing, such as simple structure and weak learning ability, gradually appear. In recent years, 
there are increasing numbers of scholars focusing on deep learning with unique structural 
features [16]. In 2018, Guo et al. [17] calculated the sea clutter power in different duct 
environments based on sea clutter calculation theory and used deep neural networks 
(DNN) to invert the refractivity profile parameters of evaporation duct and surface based 
duct.  

Figure 1. Effects of tropospheric duct on radar performance.

Evaporation duct is the commonest type of tropospheric duct, which often occurs in
the near sea surface atmosphere below 40 m height and is composed of a shallow trap
layer [4–6]. In addition, the occurrence probability of evaporation duct and evaporation
duct height (EDH) varies obviously with the geographical area, season and time of day.
Usually, the probability of evaporation duct occurrence is higher and EDH is higher during
summer and daytime in low-latitude seas.

Currently, there are disadvantages such as high cost and poor data collection when
using equipment to directly measure atmospheric refractivity for tropospheric duct [7].
Considering that tropospheric duct can obviously affect the sea surface scattering signal of
radar, in the 1990s, the US Naval Surface Warfare Center proposed a technique referred to
as refractivity from clutter (RFC). The RFC technique can invert the atmospheric refractivity
without using additional detection equipment, simply using the sea clutter data obtained
during the routine operation of radar, combined with an effective inversion algorithm. Later,
an experiment (called Wallops98) was performed to invert refractivity of tropospheric duct
from radar clutter, whose results show the feasibility and efficiency of the RFC technique.
For numerous important applications of tropospheric duct, recently, research on refractivity
features in MABL is primarily focused on the application and optimization of RFC [8,9].

In 1999, Rogers et al. [10] inverted the EDH using a least squares optimization method.
In 2001, Vasudevan et al. [11] modeled the inversion problem as a parameter estimation
problem in a nonlinear state space and carried out the solution using the serial importance
sampling (SIS) method. In 2003, Gerstoft et al. [12] modeled the inversion problem as a
global optimization problem, and applied simulated annealing (SA) and genetic algorithms
(GA) together with the RFC technique to invert the atmospheric refractivity from radar
clutter. In 2004, Barrios [13] used the moment technique to invert the modified refractivity
profile of surface based duct based on ray density and radar clutter data. In 2006, Yardim
et al. [14] used the markov chain monte carlo (MCMC) sampling technique to sample the
vector space of the profile parameters and calculated the posterior probability density
distribution of the profile parameters by Bayesian theory. In 2007, Yardim et al. [15]
proposed a hybrid GA-MCMC algorithm for fast calculation of the posterior probability
distribution of the refractivity profile.

With the development of varied optimization algorithms, machine learning algorithms
are widely used in the study of inverting atmospheric refractivity. And as the requirement
for inversion precision increases, the disadvantages of shallow machine learning, such
as simple structure and weak learning ability, gradually appear. In recent years, there
are increasing numbers of scholars focusing on deep learning with unique structural
features [16]. In 2018, Guo et al. [17] calculated the sea clutter power in different duct
environments based on sea clutter calculation theory and used deep neural networks (DNN)
to invert the refractivity profile parameters of evaporation duct and surface based duct.
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Using a more refined inversion model necessarily makes the inversion more difficult.
In addition to the model required for the inversion, the information amount of the inversion
input also greatly affects the precision of the inversion. Joint inversion is an important
technique for the geophysical industry in order to conduct quantitative studies, and plays
a major role in geological exploration and other fields [18]. In 1991, Alekseev [19] set out
in detail the method of solving the joint inversion problem and the general features of the
solution, giving a preliminary theoretical conclusion that joint inversion is superior to using
one kind of observed data. After continuous development and evolution, some scholars
proposed an inversion method using different kinds of observations, and this inversion
method is seen as the inevitable trend and the best choice for joint inversion [20]. In the last
decade, many scholars have proposed various improvements based on the joint inversion
method to enhance the inversion precision for the RFC technique [21–24].

Since the scattered echo from the sea surface target contains not only the location,
velocity, and size of the detection target, but also many important information about the
environmental conditions of the tropospheric duct can be also detected, and the strength of
the received target signal is much stronger than that of the sea clutter [25]. Therefore, the
refractivity profile parameters in the tropospheric duct environment can be inverted jointly
by using radar sea clutter and over-the-horizon target echo, and increasing the data of the
target echo signal can be regarded as increasing the information capacity of the inversion,
which can theoretically enhance the precision of the inversion.

The novelty of this paper is as follows. To solve the limitations of low inversion
precision and weak practicability for the conventional inversion model, on the basis of
deep learning, we introduce the over-the-horizon target signal with strong strength and
propose a new joint inversion method based on sea clutter and target echo, focusing on the
low-altitude evaporation duct environment over the sea surface. To thoroughly verify the
comprehensive performance of the joint inversion model, we use the conventional method
as the experimental baseline model. Then, we extensively test the general performance
of the joint inversion model through comparison of inversion performance and the noise
immunity test. Experimental results show that the performance of the new deep learning
joint inversion method is superior to that of the conventional inversion method. The new
method considers the effect of evaporation duct on both sea clutter and over-the-horizon
target signals, so it overcomes the problem that the inversion precision of low altitude duct
is very low when using only sea clutter.

2. Evaporation Duct Refractivity Profile, Sea Clutter Power and Target Echo
Power Calculation
2.1. Evaporation Duct Refractivity Profile Model

Atmospheric refractivity features in evaporation duct environments are still a research
hot spot and a challenge, because the probability of evaporation duct occurring is far
higher than that of other types of duct. A series of models for calculating the refractivity
profile of evaporation duct, such as the Paulus-Jeske (P-J) model, the Musson-Genon-
Gauthier-Burth (MGB) model and the Babin model, have been established based on the
Monin-Obukhov similarity theory of the atmospheric boundary layer, which has been
studied more intensively abroad [26].

The evaporation duct refractivity profile model in this study was originally proposed
by Jeske in 1973. Subsequently, Paulus found that using the Jeske model would result
in higher predicted EDHs than the actual values because of the effect that land would
have on the measurement of near-coastal atmospheric temperatures. Paulus performed a
specialized correction to the Jeske model and proposed the P-J model [27]. The modified
reflectivity profiles for different EDHs are shown in Figure 2. Based on the relationship
between the atmospheric refractivity and various atmospheric factors, the modified P-J
model can be modeled as a log-linear formula for the height:
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M(z) = M(0) + 0.125z− 0.125d ln(
z + z0

z0
) (1)

where, d is the EDH in meters, which is an important feature parameter of the evaporation
duct refractivity profile. z is the height on the sea surface in meters, and z0 is the aerody-
namic surface roughness of the marine, which generally takes the value of 1.5× 10−4 m.
M0 is the modified refractivity on the sea surface, and its typical value is 330.
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From the P-J model, the refractivity profile of the evaporation duct can be obtained by
knowing the height parameter of the evaporation duct. The inversion of the evaporation
duct is converted into the inversion of the refractivity profile parameter. Thus, it decreases
the complexity of the inversion and enhances the feasibility of inversion.

2.2. Target Echo and Sea Clutter Power Calculation

When a radar detects a target on sea surface, a portion of the signal that is re-radiated
to the radar is called back scattering [28,29]. This back scattering is the target echo signal
received by the radar. According to the radar equation, assuming that the range between
the radar receiving antenna and the target with an effective radar cross section (RCS) of
σ is r [30], the signal power received by the radar can be expressed as:

Ps =
4πPtGtGrσ

L2λ2 (2)

where Pt is the transmitter power, and Pt and Gt are the gains of the transmitting and
receiving antennas, respectively. λ is the wavelength, σ is the RCS of the target, and L is the
loss in the propagation of electromagnetic waves. In general, the propagation loss L arising
from the propagation of electromagnetic waves in tropospheric duct can be expressed as:

L = 32.45 + 20lg f + 20lgr− 20lgF (3)

where f is frequency, and F represents the propagation factor. The propagation factor takes
into account the influence of the atmospheric refractivity in the tropospheric duct and the
parameters of the radar system on the propagation of electromagnetic waves. According to
the definition of field strength, F can be expressed as:

F =
√

x|u(x, z)| (4)

where u(x, z) is the component of the field strength in the vertical and horizontal directions.
We can use the parabolic equation (PE) method to model the u(x, z). The final form of the
PE used in this study can be expressed as:



Electronics 2022, 11, 2157 5 of 17

∂2u(x, z)
∂z2 + 2ik

∂u(x, z)
∂z

+ k2(n2(x, z)− 1)u(x, z) = 0 (5)

where k is the number of electromagnetic waves, and n is the atmospheric refractivity index.
We can solve the PE by the mixed Fourier transform (MFT) method, and the final solution
result can be expressed as:

u(x, z) = eikm∆x/2{eiα24x/2ke−αzK(x)
+ 2

π

∫ ∞
0

α sin pz−p cos pz
α2+p2 e−ip2∆x/2k·

∫ ∞
0 u(x, z′)[α sin pz′ − p cos pz′]dz′dp} (6)

where ∆x is the horizontal distance step, p = k sin θ, θ is the elevation angle of the electro-
magnetic wave, m is the refractivity in the horizontal and vertical directions, and α is the
impedance characteristic. Eventually, combining the Equations (3)–(6), we can model the
propagation losses in different tropospheric duct environments.

For the scattered signal from the rough sea surface, the RCS cannot be used to express
its echo strength, it is necessary to distribute the received signal power equally to the radar
resolution unit, so that relation σ = Ac × σ0 can be used to express the RCS of the sea
surface, where Ac is the radar resolution unit area, σ0 is the sea surface back scattering
coefficient [31,32], and when the transmitting antenna and receiving antenna are the same
antenna, so that the above equation can be rewritten as:

Pt =
4πPtG2

t Acσ0

L2λ2 (7)

Ac can represent a linear function of the range r:

Ac =
rθazcτ

2 cos φ
(8)

where c is the velocity of light, θaz is the horizontal beam width, φ is the angle of incidence,
and τ is the pulse width. When the angle of incidence is very small, cos φ is approximately
equal to 1. Substituting Equation (8) into Equation (7), the sea clutter power can be
expressed as:

Pc =
Cσ0r

L2 (9)

C is a constant related to radar system parameters such as transmit power and gain,
which can be expressed as:

C =
2πPtG2

t θazcτ

λ2 (10)

Finally, the radar sea clutter power from Equation (9) can be expressed in the logarith-
mic form as follows:

Pc(r, M) = −2L(r, M) + σ0 + 10lgr + C (11)

where L(r, M) is a function of the atmospheric refractivity M and the range r [32], and σ0
can be calculated by empirical model [33]. Pc and L in Equation (11) are in dB.

Figure 3 shows the variation curve of sea clutter power with different EDHs. In
Figure 3, we see sea clutter power of evaporation duct with EDHs ranging from 2 to 40 m,
in 2 m increments. It can be seen that, as the EDH increases, the clutter power curve has
more complicated interference phenomena, and there are obvious non-linear features [34].
The radar system parameters used for the calculation are listed in Table 1.
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Table 1. Radar system parameters.

Parameter Value

Frequency 9410 MHz
Transmitter power 73.9 dBm

Transmitting antenna gain 41.4 dB
Antenna height 4 m

Elevation 0◦

Polarization VV

3. EDH Inversion Based on Sea Clutter
3.1. Pseudo-Real Radar Sea Clutter Power Simulation

Because the marine environment is very complicated, the sea surface is subject to
frequent sea breeze and associated sea breeze fronts of varying strength, uncertainty and
seasonality, which can cause short-term irregularities in sea surface roughness. Moreover,
the echo signal received by the radar is subject to the interference effect of the duct mode,
and in stronger tropospheric environments there are more duct modes and the interference
between them is more complex. The effect of thermal noise from the machine itself on the
radar system cannot be ignored either. In other words, the sea clutter power is really a
multivariate non-linear function formed under the effect of the above-mentioned factors. In
contrast, the clutter power calculated based on the PE and radar equation is the idealized
noise-free case [35]. Therefore, we add 10% Gaussian noise to the forward simulated clutter
power under evaporation duct so that the forward simulated clutter power is closer to the
experimental data.

In addition, because the strength of the clutter signal has a very obvious attenuation
phenomenon as the detection range increases, the clutter-to-noise ratio (CNR) of the sea
clutter received at the sea surface farther away from the radar is relatively low, and when
the received echo strength is lower than the radar receiver, sensitivity will be drowned in
the noise, and the amount of data at this elevation angle is reduced [36].

Figure 4 shows the simulation sea clutter power and the pseudo-real sea clutter power
when the EDH is 10 m, 20 m, and 30 m, respectively. When the radar receiver sensitivity
is assumed to be −110 dB and the EDH is 10 m, it can be seen that the sea clutter signal
is completely drowned in the noise beyond approximately 15 km. In this case, the noise
signal will bring negative effect to the inversion and seriously affect the inversion results of
refractivity profile parameters.
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3.2. Inversion Model Based on DNN

Figure 4 shows the simulation sea clutter power and the pseudo-real sea clutter power
when the EDH is 10 m, 20 m, and 30 m, respectively. When the radar receiver sensitivity
is assumed to be −110 dB and the EDH is 10 m, it can be seen that the sea clutter signal
is completely drowned in the noise beyond approximately 15 km. In this case, the noise
signal will bring negative effect to the inversion and seriously affect the inversion results of
refractivity profile parameters.

DNN can learn deeper features from smaller amounts of data by approximating
complicated functions with deep non-linear structures [37]. Thus it can continuously fit
the relationship between sea clutter power and refractivity parameters. The operations of
each layer are performed in the neuron, combining the input sea clutter data with a set
of weights, where the sum of the multiplications will enter the activation function of the
neuron. Then, by comparing and calculating the final output with the reference EDH, back
propagation is used to adjust the weights in the hidden layers and further reduce the error
using an optimization algorithm [38].

Choosing the DNN training function in the modeling process has an important effect
on the precision of the inversion results, and the suitable training function can make the
inversion model get more ideal results. We choose ReLu function as the activation function,
Adam as the optimization method and mean square error (MSE) as the loss function when
training the model. The formula for the loss function is as follows:

Loss = ∑n
i=1 (d̂i − di)

2

n
(12)

where d̂i is the inverted EDH, di is the reference EDH and n is the number of groups of
training data sets.

For the EDH inversion problem, the input data used to train the DNN model are the
calculated pseudo-real sea clutter power data, and the output data are the corresponding
EDH. The DNN-based EDH inversion model established in this paper is shown in Figure 5.

3.3. Inversion and Analysis of EDH Based on DNN

We use latin hypercube sampling (LHS) to extract 1000 sets of EDH samples in the
height range from 0 to 40 m, subsequently using the PE and radar equation to calculate the
corresponding 1000 sets of pseudo-real clutter power.

In the modeling process, the training set used to train the model is a 1000 × 250 matrix
of size composed of pseudo-real sea clutter power, and the output is a 1000× 1 matrix of size
composed of the corresponding 1000 sets of EDHs. After training the deep learning model,
we input pseudo-real sea clutter power into the model. Subsequently, the corresponding
output is the EDHs obtained by inversion.
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In practical applications, using the optimal network model that has already been
trained for inversion does not require model training again, which can significantly save
inversion time and enhance inversion efficiency and practicality. To establish the optimal
DNN model for the inversion problem, it is required to analyze the parameters’ configura-
tions that affects the precision of the model. In this paper, we extract 200 sets of different
EDHs in the range of 0–40 m, and calculate 200 sets of pseudo-real sea clutter power data
together to form a test set. 200 sets of pseudo-measured sea clutter power are input into the
established model, and the results of the inversion are compared with the reference EDH
of the test set to determine the quality of the established model. The cost function error
calculates the root mean square error (RMSE) between the inverted EDH and the reference
EDH. The RMSE calculation formula is as follows:

RMSE =

√
∑n

i=1 (d̂i − di)
2

n
(13)

By calculating the RMSE on the test set, the quality of the established model can be
evaluated. Smaller RMSE then represents the higher precision of the established DNN
inversion model. Combining the simulation data in this paper, according to the modeling
process, the following set of parameters for configurations is obtained through certain prior
knowledge and a large number of computer experiments. In the parameter adjustment
experiments, we explore the following parametric ranges: the number of epoch (1–1000),
the batch size (2–256) and the number of hidden layers (1–8). Finally, we choose a set of
parameters as follows—epoch: 1000, batch size: 32 and hidden layers: 5.

We input 200 sets of pseudo-real sea clutter data from the test set into the estab-
lished optimal DNN model, and calculate the absolute error at each EDH based on the
inversion results.

Figure 6 shows the absolute errors of sea clutter inversion. In Figure 6 we can see that
when the EDH is approximately in the range of 0 to 16.7 m, the inversion error is much
larger, and the maximum error is 3.19 m, when the inversion has been seriously distorted.
The reason for this result is analyzed to be the low sensitivity of the pseudo-real sea clutter
power with low EDH for different EDHs. The overall trend of the clutter power with range
is decreasing, so that the CNR is lower at further ranges. When the EDH is low, radar
clutter signals received at long ranges will be drowned in noise due to the small CNR. If
these clutter signals are input to the DNN, the noise in the signal will have a negative effect
on the inversion and cause it to fail. Moreover for EDH in the atmosphere above 16.7 m,
there is still some inversion error, but it is small compared to EDH in the range of 0 to
16.7 m. This is due to the fact that, as the EDH increases, the difference between the two
clutter power curves at adjacent EDHs becomes smaller and the sea clutter power curves
appear oscillating and intertwined.
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4. Joint Inversion Model of EDH Based on Radar Sea Clutter and Target
4.1. The Use of Maritime Target Echo Information

The above experiment shows that when the EDH is low, the radar received remote
clutter CNR is relatively small and cannot even reflect the real variation pattern of clutter, so
it causes the radar clutter signal received at a long range to be drowned in noise, which will
cause a greater negative effect on the inversion of EDH. Since the maritime over-the-horizon
target signal has a relatively high signal-to-noise ratio (SNR), the attenuation amplitude
is small and relatively stable. To reduce the negative effect of sea clutter information for
inversion at long ranges, this study introduces over-the-horizon target echo to jointly invert
the corresponding EDH with sea clutter on the basis of the RFC technique [39].

While the power of the maritime target signal can be calculated by the radar equa-
tion and PE, an important effect factor in the study of the target signal during practical
application is the target RCS, which is not essentially equal to the physical cross section
area of the target, but to an equivalent area. Usually, the RCS of a real target is hard to be
effectively described by a constant, and is generally constructed as a complicated function
that includes the angle of view, frequency, and polarization. When the actual RCS of a
maritime target is not known, the corresponding target echo power cannot be calculated
from the radar equation.

For the above problem, we propose the method of using the maritime target signal.
When the range between the antenna and the target satisfies the requirements of remote
field detection, the incident wave irradiating the target is approximately flat wave, and the
RCS is only related to the physical structure of the target, electromagnetic features, incident
wave frequency, and polarization. When a target exists at sea, single radar with different
antenna heights are used to irradiate the ship target respectively. Since the motion speed
of the maritime target tends to be relatively small, it can be considered that the motion
speed of the surface target is constant and the doppler shift of the target hardly changes
in a short time period. Two sets of target power data are obtained for two sets of antenna
height conditions, and their difference can be calculated from the radar equation:

∆Ps(r, M) = Ps h1(r, M)− Ps h2(r, M)
= −2[Lh1(r, M)− Lh2(r, M)] + (σh1 − σh2)

(14)

where h1 is the initial antenna height, and h2 is the adjusted antenna height.
The target echo signals received at different antenna heights are shown in Figure 7. In

the case of antenna height difference is not much, the incidence angle basically does not
change, so it can be assumed that the RCS is the same, when the σh1 − σh2 take the value
of zero. The over-the-horizon signal is only related to the difference Lh1(r, M)− Lh2(r, M)
in propagation loss at different antenna heights. In practice, the antenna height can be
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adjusted by a servo system, which is simple and easy to use, and a large amount of target
echoes information can be obtained by using a single radar.
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4.2. Echo Signal Sensitivity Analysis at Different Locations

This paper sets the initial antenna height as 4 m, the maximum height as 14 m, and the
adjustment unit of antenna servo system as 1 m. In a certain evaporation duct environment,
the target signal difference ∆Ps of 55 groups can be obtained, and it is sorted in ascending
order to obtain the final target signal data to be used.

We calculate multiple sets of target echo data at different locations on the sea surface
for different EDHs. Figure 8 shows the target echo differences at different locations. In
Figure 8, EDH ranges from 2 to 40 m, in 2 m increments, and the arrow represents the
direction of EDH increasing. As can be seen from the Figure 8, the difference between the
two target echo data curves separated by one height increases significantly in the range of
10 to 30 km as the target range increases, indicating that the correlation between the target
echo data in different evaporation duct environments decreases with the target location.
When the target range is greater than 40 km, the correlation of target signal data from
different EDHs also has a weakening phenomenon, but the change is weaker and not
easy to observe.

The larger the value of the MAD, the lower the correlation between the received echo
signals of target with different EDHs at that location. The calculated MAD values for
different locations are shown in Figure 9. In Figure 9 the MAD can be seen with ranges
ranging from 10 km to 100 km, in 10 km increments. It can be shown from the Figure 9
that the calculated MAD is the largest when the target location is located at 100 km, which
indicates that the correlation of the target data calculated at this location is the lowest when
the EDH increases from 2 to 40 m. Therefore, in this study, we use the target echo signal
calculated at 100 km to combine the sea clutter and invert the corresponding EDH.

Because the neural network differentiates and inverts the corresponding EDH based
on the correlation of a set of target power data, the weaker the correlation of the data,
the more favorable the inversion of the EDH. We therefore calculate the mean absolute
difference (MAD) between the two sets of target power data for different EHDs at a certain
location for all adjacent EDHs, with the following formula:

MAD =
∑n

i=1|xi+1 − xi|
n

(15)
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where x represents the target signal data of different EDHs and n represents the number of
target signal data at a certain location.
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4.3. DNN-Based Joint Inversion Model Framework

Based on the above analysis, this study enhances precision of EDH inversion by
introducing maritime target signals, and proposes a new model for joint inversion using
radar sea clutter and over-the-horizon target signal based on DNN.

The two-stream network was proposed in 2014 by Simonyan et al. [40]. It was first
applied in the field of video recognition and contains two convolutional neural network
branches, which extract different input features from the video for behaviour recognition
and finally fuse the two streams of information to obtain the final recognition result.
The method makes up for the shortcomings of traditional two-dimensional networks in
processing video data and achieves a high recognition precision. Once proposed, two-
stream networks have been enthusiastically researched by many researchers, who have
been conducting research on two-stream network and applying it to different fields [41].
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In this paper we draw on the idea of a two-stream network, we establish a DNN-based
two-stream joint inversion model, which inputs the pseudo-real sea clutter and the target
signal calculated in the same duct environment into two sub-networks respectively, and
then fuses the output of the two sub-networks with features in the fully connected layer
to obtain the final output. The input data used to train the joint inversion model are the
pseudo-real sea clutter data and the over-the-horizon target data, and the output is the
corresponding EDH, so we can calculate the corresponding evaporation duct refractivity
profiles. When training the joint inversion model, we still choose the ReLu function as the
activation function, Adam as the optimization method and MSE as the loss function. The
framework of the joint inversion model is shown in Figure 10.
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4.4. Joint Inversion and Analysis of EDH Based on Sea Clutter and Target Echo

In a certain evaporation duct environment, by adjusting the antenna height, we can
obtain 55 sets of target signal power difference, based on 1000 sets of EDH, we can obtain a
1000 × 55 over-the-horizon target data matrix, and the output is a 1000 × 1 EDH matrix.

For the sub-network model A in joint inversion framework, we perform the established
EDH optimal inversion model based on pseudo-real sea clutter. For the sub-network model
B in joint inversion framework, similar to the conventional inversion method, we calculate
a corresponding test set using the over-the-horizon target signal. The test set input is a
200 × 55 target echo signal matrix and the output is a 200 × 1 EDH matrix. After a certain
number of computer experiments and comparative analysis, an optimal set of parameters
(epoch: 1000, batch size: 16, hidden layer: 4) is chosen to train the EDH inversion model
based on the target signal, and we finally obtain the optimal sub-network model B. The
optimal joint inversion model can be obtained by combining model A and B.

The joint test set is input into the established optimal joint inversion model that
calculates the absolute error at each reference height in the test set and compares it with
the conventional inversion method. The experimental results are shown in Figure 11.
The absolute error of the joint inversion method is significantly lower than that of the
conventional method in the range of EDH from 0 to 16.7 m, which indicates that the
introduction of the target signal plays a greater role in enhancing the inversion precision of
the low-altitude evaporation duct. When the EDH is higher than 16.7 m, there is a part of
the inversion error that is slightly higher than that of the conventional inversion method.
However, on the whole, the joint inversion model has less extreme values of the difference
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compared with the conventional inversion method, indicating that the inversion ability of
the joint model is better than that of the conventional method.
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Moreover, we calculate the proportion of absolute errors in different intervals for
the test sets of the two inversion methods, and the results are shown in Figure 12. The
calculated results show that the EDH inversion errors of the joint inversion method and
the conventional method account for 59% and 41% in the range of 0 to 0.5 m, and 30%
and 25% in the range of 0.5 to 1 m, respectively. Most of the errors of the joint inversion
method are distributed in the range of 0 to 1 m, accounting for a total of 89%, while the
conventional method accounts for a total of 66% in the error range of 0 to 1 m, showing
that the overall performance of the joint inversion method is significantly higher than that
of the conventional inversion method.
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To quantitatively evaluate the inversion performance of the two inversion methods,
we use two types of indicators, RMSE and mean absolute error (MAE) to calculate the
inversion errors of the two inversion methods. The smaller the value of the two types of
indicators, the smaller the error of the inversion, the higher the precision of the inversion of
the method. MAE is calculated as follows:

MAE =
∑n

i=1

∣∣∣d̂i − di

∣∣∣
n

(16)
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Error results based on RMSE and MAE indicators are shown in the Table 2. We
calculate two inversion evaluation indicators for the two inversion methods in the range of
0 to 16.7 m, 16.7 to 40 m, and 0 to 40 m for EDH, respectively. From the mean errors of EDH
in the range of 0 to 40 m, the RMSE and MAE indicators of the joint inversion model are
0.636 and 0.491, respectively, which are smaller than those of the conventional inversion
method, and are reduced by 41.2% and 40.3%, respectively, compared with the conventional
method. It shows that the introduction of the maritime target signal has a considerable
contribution to improve the inversion precision of EDH. And the two indicators of the joint
inversion method are reduced by 54.2% and 56.4% compared with the conventional method
in the EDH range from 0 to 16.7 m. It shows that the target echoes are more sensitive to
the low-altitude evaporation duct, and effectively improves the limitation of low precision
of low-altitude evaporation duct inversion that exists in the conventional method. When
the EDH is more than 16.7 m, the two indicators calculated by the joint inversion method
are reduced by 16.2% and 18.1%, respectively, compared with the conventional method.
Although the inversion error is not reduced substantially, it is still effective for enhancing
the inversion precision.

Table 2. Errors of Sea clutter inversion and joint inversion.

Indicator EDH (m)
Error (m)

Sea Clutter Inversion Joint Inversion

RMSE
(0,16.7] 1.434 0.657

(16.7,40) 0.741 0.621
(0,40) 1.081 0.636

MAE
(0,16.7] 1.158 0.505

(16.7,40) 0.587 0.481
(0,40) 0.822 0.491

After establishing the joint inversion model with high precision, we use LHS to reselect
8.70 m, 14.56 m, 25.33 m and 32.36 m, as the reference EDH in the range of 0–40 m, and
calculate the corresponding pseudo-real sea clutter power and target echo power. We
input the above validation data into the established optimal joint inversion model to
obtain the EDH inversion results, so as to calculate the corresponding evaporation duct
refractivity profiles, as shown in Figure 13. In Figure 13, the joint inverted evaporation
duct refractivity profiles are close to the reference values, and high inversion precision
is obtained. The results obtained by the joint inversion method are shown in Table 3.
Although the inversion results have some errors with the reference values, they are within
acceptable ranges. The inverse error is minimized to 0.17 m when the EDH is 32.36 m.
Additionally, with the addition of noise, the small error between the joint inverted profile
and the reference profile is maintained, showing that using DNN to perform inversion
yields good anti-noise performance.

Table 3. Results of joint inversion method.

Reference EDH Result Error (m)

d = 8.70 9.26 0.56
d = 14.56 15.45 0.89
d = 25.33 26.58 1.25
d = 32.36 32.19 0.17
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5. Conclusions

In this study, a new method is proposed for the first time to jointly invert the refrac-
tivity profile parameter of evaporation duct using sea clutter and over-the-horizon target
signal. To address the limitations of using conventional method to invert the atmospheric
refractivity profile parameter of low-altitude evaporation duct. Two experiments are per-
formed to compare the inversion performance and test the noise immunity to explore the
comprehensive performance of the joint inversion model. To train the established new
model, firstly, we sample multiple sets of EDH samples in the height range from 0 to 40 m
and calculate the corresponding pseudo-real sea clutter power, and propose a method
to use the maritime over-the-horizon signal in practical situations according to the RCS
features of the target. Pseudo-real sea clutter power and difference of the target echo are
jointly formed into a joint data set, which is applied to the inversion problem of EDH.
The experimental results show that the RMSE and MAE of the joint inversion model are
smaller than those of the conventional method in the EDH range from 0 to 16.7 m, and
they are 54.2% and 56.4% lower than those of the conventional method, respectively. It
indicates that the introduction of the target echo power effectively improves the limitations
of low precision of the inversion of low-altitude EDH existing in the conventional method.
The anti-noise performance is tested to show that the inverse evaporation duct refractivity
profile matches well with the sample reference profile, and the inverse error is minimized
to 0.17 m when the EDH is 32.36 m. The joint inversion model has excellent comprehensive
performance and successfully breaks through the limitations of conventional inversion
methods, and its outstanding advantages provide an effective and reliable technical means
for precise inversion of EDH.
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