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Abstract: With the advances in wireless communications and the Internet of Things (IoT), various
vehicular applications such as image-aided navigation and autonomous driving are emerging. These
vehicular applications require a significant number of computation resources and a lower processing
delay. However, these resource-limited and power-constrained vehicles may not meet the require-
ments of processing these vehicular applications. By offloading these vehicular applications to the
edge cloud, vehicular edge computing (VEC) is deemed a novel paradigm for improving vehicular
performance. However, how to optimize the allocation of computation resources of both vehicles
and VEC servers to reduce the energy and delay is a challenging issue when deploying the VEC
systems. In this article, we try to address this issue and propose a vehicular application offloading
and computational resources allocation strategy. We formulate an optimization problem and present
an efficient offloading scheme for vehicular applications. Extensive simulation results are offered to
analyze the performances of the proposed scheme. In comparison with the benchmark schemes, the
proposed scheme can outperform them in terms of computation cost.

Keywords: IoT; vehicular applications; VEC; MINP

1. Introduction

In recent years, due to the developments of the communication protocols [1] as well
as the advancements in the Internet of Things (IoT) and intelligent transportation system
(ITS) [2], varieties of applications such as autonomous driving and image-aided navigation
are emerging [3]. These applications covering the aspects of driving safety and information
entertainment demand a lot of computation resources and have strict requirements for
processing time. Vehicles are equipped with computing resources and sensors to handle
the generated data of these applications [4]. However, due to the limited physical spaces,
the local resources that are provided by the vehicles can not satisfy the Quality of Service
(QoS) requirements of the vehicle applications [3,5].

To address the above issue, vehicular edge computing (VEC) is deemed a novel
paradigm and technology in the 5G networks [3,6,7]. Vehicular cloud computing (VCC) was
introduced to provide computing resources for vehicles to reduce power consumption and
improve service performance. However, one challenge that the VCC has to face is the high
latency, which makes the VCC unsuitable for the delay-sensitive vehicle applications [8].
In VEC networks, the computational resources are deployed at the roadside units, which
are much closer to the vehicles. Therefore, VEC can migrate the computing resources to the
network edge, which reduces the transmission delay and relieves the computing pressure
on vehicles [3]. Vehicle applications can benefit a lot from the advantages of VEC. Thus, a
safe and efficient transportation system can be provided [9].
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Due to the development of intelligent transportation systems, the study of resource
allocation and vehicular application offloading in the VEC networks has attracted a signifi-
cant amount of attention, such as [3,6,7,9]. Nevertheless, jointly allocating the computing
resources of both vehicles and edge servers is not thoroughly investigated in the cur-
rent works.

In this paper, a joint study of allocating computing resources of vehicles and a VEC
server for vehicular application offloading in VEC networks is investigated. Each vehicle
user can decide its vehicular application offloading strategy by judging the computation
cost caused in the local vehicles and that of the VEC server. The objective is to minimize
the computation cost of all vehicles, which is calculated by the processing time of vehicular
applications and the consumed energy of vehicles. The studied problem is formulated as a
mixed-integer nonlinear programming (MINP) optimization problem, which is known as
an NP-hard problem and is not convex. We design an efficient algorithm that can optimally
solve the formulated problem.

In summary, we have the following contributions.

• We study vehicular application offloading in a VEC network system by jointly allocat-
ing computational resources of vehicles and the VEC servers. We try to minimize the
consumed energy and time cost of executing the vehicle applications. We formulated
the studied problem as an optimization problem.

• By analyzing the structure of the problem, we know that it is MINP and well-known
as non-convex, which is NP-hard. The objective problem is solved by decomposing it
into three subproblems. The optimal solution for each subproblem is obtained.

• Extensive simulation results are provided to prove that the proposed offloading
strategy achieves better performances than the three benchmark algorithms.

The remaining study of this work is structured as follows. An overview of the vehicular
application offloading and computational resources allocation in VEC networks is presented
in Section 2. The system model and problem formulation are given in Section 3. The
solution approach to the formulated problem is presented in Section 4. Simulation results
are shown in Section 5. Section 6 concludes this work and provides some prospective
aspects of research.

2. Related Work

Extensive research has been conducted on resource allocation and vehicular appli-
cation offloading in VEC networks and its counterpart vehicular fog computing (VFC)
networks in recent years. Some works assumed that the allocated resources are fixed when
studying vehicular application offloading. Hou et al. proposed the infrastructure of VFC
and studied the communication and computational resource utilization of each vehicle to
provide communication and computation services [10]. In [11], Zhou et al. studied service
provisioning for workload offloading in VEC networks. The workload offloading problem
was formulated to minimize the overall energy consumption of all vehicle users while
considering the total energy consumption and latency. An ADMM-based solution method
was proposed to solve the workload offloading problem. In [5], Zhao et al. proposed
a computation offloading framework in an SDN-enabled VEC system assisted by UAV
to minimize the system costs. A sequential game was applied to solve the multi-player
computing offloading problem. In [3], Wang et al. studied resource competition among
vehicles for computation offloading in VEC networks. They proposed a multi-user non-
cooperative game to maximize the utility of each vehicle. To overcome the limitation of
performance gain caused by the overhead when vehicles process their tasks on the same
edge server, Dai et al. studied the integration of load balancing and task offloading in
the VEC networks [6]. They formulated a MINP problem to maximize the system utility.
In [12], Zhu et al. studied service latency and quality loss trade-off in VFC by optimizing
task allocation. In [13], Du et al. studied the application offloading of vehicular terminals
in VEC networks, which was formulated as a dual-side optimization problem to minimize
the costs of VTs and the MEC server simultaneously. In [4], Sun et al. studied task replica-
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tion in a VEC system, where tasks of vehicles can offload their tasks to multiple vehicles,
such that the offloading delay can be minimized. However, this work did not analyze
computing resource allocation. In [14], Kang et al. studied data sharing security in the VEC
networks by utilizing blockchain technologies. Motivated by [14], the authors proposed
a consortium blockchain for securing computing resource sharing among vehicles. An
incentive mechanism based on the contract was designed to motivate the vehicles to share
their computing resources. In [15], Wang et al. studied computation task offloading in a
VEC system where vehicles offload tasks by using the computing resources of the available
neighboring VEC clusters. Their aim is to minimize the system energy consumption while
the task delay constraint is satisfied. An imitation learning algorithm was proposed to
schedule the tasks of vehicles. In [16], Shine et al. studied optimizing delay and energy
consumption considering the design of federated learning and the computation offloading
process. Their problem formulation is solved by proposing an evolutionary genetic-based
algorithm. However, in the above two works, the computing resources of VEC servers are
assumed to be fixed.

Some works studied the allocation of computational resources of VEC servers and
vehicular application offloading. In [17], NG et al. studied resource allocation of VEC
servers for coded distributed computing (CDC) task offloading in VEC. They proposed
a double auction mechanism for allocating computing resources of edge servers in or-
der to complete the CDC tasks. In [18], Ning et al. presented an intelligent offloading
framework for VEC systems, where the vehicular applications and resource allocation
strategy problem formulation were given, and an algorithm based on a two-sided matching
scheme and DRL was developed to obtain the solution with the aim of maximizing the
vehicles’ quality of experience. In [9], Khayyat et al. studied computational offloading and
resource allocation in multi-vehicle edge-cloud networks to minimize the entire system
costs in terms of energy and time. They proposed a deep-learning-based algorithm to
solve the NP-Hard problem. In [19], Wang et al. investigated the transmission power and
computation resources of a vehicle for vehicular application offloading in a single-user
VEC system. Due to the complexity of the studied problem, a low-complexity algorithm
was proposed to solve it. In [20], Tan and Hu studied the joint allocation of communication,
caching and the computation resource problem in VEC networks considering the vehicles’
mobility. A deep reinforcement learning (DRL) framework was proposed to address the
formulated problem. In [21], Zhou et al. studied computation resource allocation for opti-
mizing the task assignment in VFC networks. They proposed a contract-matching method
to minimize the network delay. In [22], Li et al. studied bandwidth and computation
resources allocation of edge servers in order to reduce the offloading delay. In [23], the
authors proposed an offloading scheme to complete delay and computation intensive tasks
in VEC networks. They jointly considered link reliability and the allocation of available
computation resources of vehicles. In [24], Wu and Yan studied multi-user computation
offloading in vehicle-aware MEC networks. They considered computing resources and
bandwidth distribution and proposed an algorithm based on deep reinforcement learn-
ing to minimize the system energy consumption and delay. In [25], Cui et al. proposed
an intelligent resource allocation strategy based on RL. They combined the allocation of
communication and computation resources so that the low latency and the reliability can
be addressed. In this work [26], Li et al. studied a resource allocation scheme considering
bandwidth allocation to minimize the total costs of energy and time. However, these
works did not jointly analyze the computing resources of vehicles and VEC servers. In the
work of [27], computation resource allocation and crowd sensing data offloading in the
VEC systems are studied for system latency minimization without considering the energy
consumption. In reference [28], Li et al. studied the computation resource allocation of
both devices and the edge server. They aimed to solve the minimization problem of the
energy consumption for all the devices.

For the existing works mentioned above, they either considered the allocation of the
resources of vehicles or the edge server but did not jointly consider the allocation of the
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computation resources of both the vehicles and the edge server. Although, in [29], Wang
et al. studied computation resource allocation of the MEC server, and the objective of
this work is different from ours. In this paper, computation resource allocation of the
vehicles and the VEC server for vehicular application offloading are investigated. Energy
consumption and time cost are taken into account.

3. System Model and Problem Formulation

In this section, we first overview the system model and then show the formulated opti-
mization problem. Consider a vehicular VEC system, which is composed of an VEC server
and the number of N vehicles, as illustrated in Figure 1. The VEC server provides compu-
tational resources to process the generated data from the vehicular applications of these
vehicles. We suppose that each vehicle has a vehicular application to be processed. The
VEC server is deployed at a roadside unit (RSU), through which each vehicle’s application
can be transmitted and processed by the edge server. All vehicles are assumed to be within
the range of the RSU. The application of vehicle i is denoted by Qi = (Li, Ii) [30], where Li
denotes the application’s data size in bits, and Ii is the computing intensity, which means
the required computing CPU cycles to finish computing one bit of the data. Let the binary
value oi denote the application offloading strategy of the vehicle i. If the vehicle i processes
its application by way of offloading using edge cloud resources, oi = 1. Otherwise, oi = 0.

Remark 1. It should be pointed out that we considered the case that all vehicles arrive at the range
of the RSU simultaneously. However, the vehicles may arrive at the range of the RSU sequentially.
In this case, the computation resources will be reallocated sequentially. This case corresponds to the
scenario in which computation resources are allocated according to the number of vehicles.

It should also be noted that the vehicles may take vehicle-to-everything (V2X) com-
munication, which allows the vehicular applications of some vehicles to be processed by
using the computation resources of other vehicles. In this case, the offloading strategies are
almost independent of the number of vehicles and the computation capacity of the VEC
server. For ease of analysis, we only considered the scenario of offloading applications to
the VEC server.

Figure 1. System model.

3.1. Local Execution

In local execution, each vehicle will use its own computing resources to complete its
application. For the vehicle i, the time cost and the energy cost for this vehicular application
completion are expressed respectively as:
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ti,l =
Li Ii

fi
(1)

ei,l = Pi
Li Ii

fi
(2)

where fi is the allocated computational resource of vehicle i in the CPU cycle numbers per
second, and Pi denotes the consumed power per second.

The power consumed by vehicle i is denoted by

Pi = ki f 3
i (3)

where ki depends on the vehicle i′s chip architecture, and its value can be 10−26 [13].
The computing cost for the local execution is denoted as

Ci,l = γi,tti,l + γi,eei,l

= γi,t
IiLi
fi

+ γi,ePi IiLi
(4)

where γi,t and γi,e ∈ [0, 1] represent the values of the weighting factors of time and energy
costs for vehicle i, respectively. If γi,t > γi,e, vehicle i places a higher value on the execution
time of vehicular application. Otherwise, if γi,t < γi,e, vehicle i pays more attention to the
energy cost.

3.2. VEC Server Execution

In the VEC server execution, each vehicle will offload its vehicular application to the
edge cloud. When the data of the vehicular applications are offloaded to the VEC server
via wireless communications, extra time for transmitting these data and energy costs will
be required. For the vehicle i, its data transmission rate in the uplink channel is

Ri = Bi log2(1 +
pihi

σ2
0
) (5)

where Bi is the bandwidth allocation, pi denotes the transmission power, hi is the channel
gain denoted as d−2

i , where di is the distance between the vehicle i and the RSU, and σ2
0

denotes the Gaussian noise.
Therefore, the time cost and energy cost for transmitting vehicle applications are

respectively denoted as,

ti,t =
Li
Ri

(6)

ei,t = piti,t = pi
Li
Ri

(7)

When the vehicular application of vehicle i is completed by using the computational
resources of the VEC server, the time cost is

ti,e =
IiLi
Fi

(8)

where Fi denotes the computational resources allocated to vehicle i.
The computation costs for the VEC server execution are denoted as

Ci,e = γi,tti,e + γi,eei,e

= γi,t(
Li
Ri

+
IiLi
Fi

) + γi,e pi
Li
Ri

(9)

For convenience analysis, a summary of the notations is shown in Table 1.



Electronics 2022, 11, 2130 6 of 16

Table 1. Notations summary.

Notation Description

N the number of vehicles
fi the allocated computing resources of vehicle i
Li the vehicular application size of the vehicle i in bits
Ii the needed number of CPU cycles to finish the vehicular application of vehicle i

γi,t the weighting factor of the execution time cost for vehicle i
γi,e the weighting factor the energy energy of vehicle i
λ the Lagrange multiplier
Bi the allocated bandwidth to vehicle i
pi the transmission power of vehicle i
hi the channel gain from vehicle i to the BS
σ2

0 the Gaussian noise
Ri the uplink rate for vehicle i
oi the vehicular application offloading strategy determined by vehicle i
Fi the allocated VEC computation resources to vehicle i

3.3. Problem Formulation

The resource allocation for the vehicular application offloading problem is formulated
with the objective of minimizing the time and energy costs of all vehicles.

Denote Ci as the computing cost for executing the vehicular application of vehicle i,
which is given as

Ci = (1− oi)Ci,l + oiCi,e

= (1− oi)[γi,t
IiLi
fi

+ γi,eki f 2
i IiLi]+

oi[γi,t(
Li
Ri

+
IiLi
Fi

) + γi,e
piLi
Ri

]

(10)

Therefore, the optimization problem for time and energy cost minimization of all
vehicles is expressed as,

Problem 1.

min
fi ,Fi ,oi

N

∑
i=1

Ci

s.t. 0 < fi ≤ fi,m

N

∑
i=1

Fi,e ≤ F

ai ∈ {0, 1}

(11)

where the first constraint means that the computing resource of vehicle i should not exceed the
maximum value fi,m, the second one is the constraint of computation resources allocated to vehicle i,
and oi is the vehicular application offloading strategy of vehicle i.

Remark 2. As the vehicular application offloading strategy is a binary value, the allocated comput-
ing resources of the vehicles and the VEC server are continuous values in the formulated problem.
Therefore, Problem 1 is an MINP problem and non-convex, and it is hard to obtain the solution.
In traditional methods, the optimal solutions to the MINP problems can be reached by applying
the Dinkelbach, Branch-and-Bound, and Alternating Direction Method of Multipliers (ADMM).
However, the time complexity is considered to be prohibitive [31]. In work [32], Yu et al. solved the
formulated MINP problem by making use of the traditional methods, and their performances were
compared. In the next section, an efficient method to solve Problem P is proposed.
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4. Methodology

As the formulated problem in the previous section is not a standard convex optimiza-
tion problem, an efficient methodology is introduced to solve it in this section. Firstly, a
lemma is shown, whose proof has been provided in [33]. Our proposed solution approach
is given by referring to this lemma.

Lemma 1. We always have
sup
x,y

f (x, y)=sup
x

f̃ (x),

where f̃ (x)=supy f (x, y).

This lemma shows that a function could be minimized by firstly optimizing some
variables and optimizing the left ones later.

By referring to Lemma 1, the solution to the formulated problem, Problem 1, can be
obtained by sequentially optimizing fi, Fi and oi. In other words, we can firstly optimize
the computing resources of vehicles, and the VEC servers, assuming that the offloading
strategies of vehicles are given. Therefore, Problem 1 can be decomposed into the following
subproblems:

(1) Local execution problem;
(2) VEC server execution problem;
(3) Vehicular application offloading strategy problem.

4.1. Local Execution Problem

From Problem 1, when oi = 0, vehicles will complete their application executions by
using their own computing resources. Therefore, the local execution problem is,

Problem 2.

min
fi

Ci,l( fi)

s.t. 0 < fi ≤ fi,m

(12)

where Ci,l( fi) is denoted as

Ci,l = γi,tti,l + γi,eei,l

= γi,t
IiLi
fi

+ γi,eki f 2
i IiLi

(13)

According to the second-order derivative of Equation (13),

∂2Ci,l

∂ fi
2 =

2γi,t IiLi

f 3
i

+ 2IiLiγi,e (14)

it is easily verified that C′′i,l is positive in the domain of fi, which means that Ci,l is
convex in its domain. The first derivative of Ci,l( fi) with respect to fi,

∂Ci,l

∂ fi
= −γi,t IiLi

( fi)2 + 2γi,eki fiLi Ii = 0 (15)

From Equation (15), the optimal solution is

f ∗i = 3

√
γi,t

2kiγi,e
(16)
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It can be readily observed that Ci,l( fi) is a monotonously increasing function when
fi > f ∗i and a monotonously increasing function when fi < f ∗i . From this conclusion, the
solution to the local execution problem P2 can be expressed as

Ci,l( fi) =

{
Ci,l( fi,m), f ∗i ≥ fi,m

Ci,l( fi), f ∗i < fi,m
(17)

Consequently, the minimum computing costs in the local execution problem can be
denoted as

Ci,l( fi) = γi,t
IiLi
f ∗i

+ γi,eki( f ∗i )
2 IiLi (18)

4.2. VEC Server Execution Problem

Based on Problem 1, when oi = 1, the vehicles will execute the vehicular applications
by using the computing resources in the VEC server. Therefore, the VEC server execution
problem is,

Problem 3.

min
Fi

N

∑
i=1

Ci,e(Fi)

s.t.
N

∑
i=1

Fi ≤ F

Fi > 0

(19)

where Ci,e(Fi) is denoted as

Ci,e(Fi) = γi,t
IiLi
Fi

(20)

From the objective function of Problem 3, we can obviously observe that it monotonously
decreases with fi. Therefore, the optimal solution of this function with respect to fi is fi,m.

As the domain of the objective function is convex, and from

∂2Ci,e

∂Fi
2 =

2γi,t IiLi

F3
i

> 0 (21)

we have the conclusion that Ci,e is a convex function [33]. We can formulate the following
Lagrangian function

L(Fi, u) =
N

∑
i=1

[
γi,t IiLi

Fi
+ u(

N

∑
i=1

Fi − F)] (22)

where u ≥ 0 denotes the Lagrange multiplier.
We can obtain the following dual problem of Problem 3 as

ϕ(u) = max
u≥0

min
Fi>0

L(Fi, u) =
N

∑
i=1

[
γi,t IiLi

Fi
+ u(

N

∑
i=1

Fi − F)] (23)

From
∂L
∂Fi

=
−γi,t IiLi

F2
i

+ u = 0 (24)

we know that u > 0, and

F∗i =

√
γi,t IiLi

u
(25)
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Substituting Equation (25) into Equation (23), the Lagrangian multiplier value is

u = (

N
∑

i=1

√
γi,t IiLi

F
)2 (26)

Substituting Equation (26) into Equation (25), the optimal computational resource
allocation of the VEC server is

F∗i =

√
γi,t IiLi

N
∑

i=1

√
γi,t IiLi

F (27)

Substituting Equation (27) into Equation (9), the optimal computation costs of the VEC
server execution can be obtained and expressed as

C∗i,e = γi,t(
Li
Ri

+
IiLi
F∗i

) + γi,e pi
Li
Ri

(28)

4.3. Offloading Problem

An efficient computing resource allocation for the vehicular application offloading
algorithm in the VEC system is put forward, which is illustrated in Algorithm 1. Vehicles
determine to process vehicular applications by applying the computational resources that
the VEC server provides if and only if the computation costs of the edge server execution
are less than the computation costs of the local execution. Vehicle i determines the vehicular
application offloading strategy by making a comparison of the computation costs caused
by the local execution model and the VEC server execution model,

oi =

{
1, Ci,l ≥ Ci,e

0, Ci,l < Ci,e
(29)

When the minimum computation costs for all vehicles are obtained, the system com-
putation costs are denoted as

C∗ =
N

∑
i=1

((1− oi)C∗i,l + oiC∗i,e) (30)

The computation resource allocation for vehicular application offloading strategy of
each vehicle is summarized in Algorithm 1.
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Algorithm 1 The Proposed Vehicular Application Offloading Algorithm

Input:

1: N applications of vehicles;

Output:

2: the computation resources allocation, vehicular application offloading strategy, and

computation costs;

3: Solving subproblem Problem2;

4: Obtain the optimal allocated computational resource for each vehicle based on

Equation (17);

5: Calculate the minimum computation costs for each vehicle in the local execution

problem according to Equation (18);

6: Solving subproblem Problem3;

7: Obtain the optimal allocated computational resources of the VEC server based on

Equation (25);

8: Obtain the minimum computation costs in the execution model of the VEC server

execution problem from Equation (28);

9: if Ci,l ≥ Ci,e then

10: oi = 1;

11: else

12: oi = 0;

13: end if

5. Experimental Evaluation

The performance gain from the proposed vehicular offloading strategy is quantified
by using the numerical experimental results. In addition, the performances are confirmed
by comparing our offloading scheme with the following two baseline schemes:

Local Scheme: In this scheme, all vehicles complete vehicular applications by using
their computational resources.

VEC Scheme: In this scheme, all vehicles complete vehicular applications by applying
the computational resources of the VEC server.

5.1. Simulation Settings

We assume that there are N = 5 vehicles and one VEC server in a VEC network
system. The computation capacity of the VEC server is F = 10 GHz, and the computation
capacity of each vehicle is 1 GHz. Each vehicle has a vehicular application that needs to
be executed. These vehicular applications can be the traffic efficiency applications, which
focus on planning the route for vehicles or sharing the information of geographical location
and road conditions, and the infotainment applications, which provide the location of car
rental services or video streaming services. For the vehicular application i, its data size
Li is chosen from the range [0.2, 1] Mbits, computing intensity is set as 1000 cycles per bit,
transmission power pi is set as 0.2 W and bandwidth Bi is set as 0.36 WHz. The Gaussian
noise is set as 10−13 W. The distance between the vehicles and the RSU ranges from 0 to
1000 m. The default parameter values are shown in Table 2. We set these values by mainly
referring to [15,25,34]. These values have been verified in real-world datasets.
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Table 2. Parameter values.

Parameters Values

N 5
Bi 0.36 MHz
Li [0.2, 1] Mbits
Ii 1000 Cycles/bit
pi 0.2 W
di [0, 1000] m
σ2

0 10−7 W
fi [0, 1] GHz
Fi 10 GHz

5.2. Impacts of the Values of Weighting Factor

The impacts of the values of weighting factors on the offloading strategies and the
time cost and energy of vehicular applications are analyzed. We set the vehicle number as
5, the capacity of the VEC server as 5 GHz, and γi,t as 0.2, 0.5, and 0.8, respectively. The
experimental results are shown in Figure 2a–c.

Figure 2a plots the impacts of values of weighting factors on the offloading strategies
of vehicle users. In Figure 2a, when γi,t = 0.2, it can be observed that vehicle users 2, 3, 4,
and 5 execute their vehicular applications in the VEC server while vehicle user 1 executes
its vehicular application locally. One reason is because of the fact that the data size of the
vehicular application of vehicle user 1 is smaller than other vehicle users. Another reason
is that vehicle users consider execution time the main factor in this situation. In Figure 2a,
when γi,t = 0.5, it can be found that only vehicle user 5 executes its vehicular application
in the VEC server. Especially when γi,t = 0.8, we find that all vehicle users execute their
vehicular applications locally.

In Figure 2b, it is easily found that the time cost decreases with the values of the
weighting factor γi,t increasing. Conversely, it is seen from Figure 2c that the energy cost
increases as the value of the weighting factor increases. By comparing Figures 2b and 2c,
we see that the weighting factor plays a vital role in the costs of time and energy.

5.3. Impacts on the Capacity of the VEC Server

The impacts of the capacity of the VEC server on the offloading strategies, the time and
energy cost, and the computation cost are analyzed, respectively. We set the vehicle number
as 5, varied the capacity of the VEC server from 4 to 8 GHz, and show the simulation results
in Figures 3–6.

Figure 3a–c plots the impacts of the capacity of the VEC server on the offloading
strategies that vehicles use, considering different values of the weighting factor. We set
the vehicle number as 5 and varied the capacity of the VEC server from 4 to 8 GHz. In
Figure 3a, it is observed that all vehicle users will offload their vehicular applications in
case the capacity of the VEC server increases. In particular, for the vehicular applications
of the vehicle users whose data sizes are larger than others, they are executed in the VEC
server when γi,t = 0.2. However, in Figure 3b, when γi,t = 0.5, only some vehicle users will
take the offloading strategies. In Figure 3c, when γi,t = 0.8, all vehicle users will execute
their vehicular applications in the local model. This is because the local execution time is
smaller than the time cost in the offloading and execution.
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Figure 2. Impacts of the values of weighting factors. (a) Offloading strategies; (b) time cost; (c) energy
cost.
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Figure 3. The impacts of the capacity of the VEC server on the offloading strategies. (a) γi,t = 0.2,
γi,e = 0.8; (b) γi,t = 0.5, γi,e = 0.5; (c) λi,t = 0.8, γi,e = 0.2.
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Figure 4. The impacts of the capacity of the VEC server on the time cost. (a) γi,t = 0.2, γi,e = 0.8;
(b) γi,t = 0.5, γi,e = 0.5.

Figure 4a,b depicts the impacts of the capacity of the VEC server on the time cost
considering different values of the weighting factor. We set the vehicle number as 5 and
varied the capacity of the VEC server from 4 to 8 GHz. In the two figures, we see that the
time cost of each vehicle user decreases as the capacity of the VEC server increases when
γi,t = 0.2. However, when γi,t = 0.5, the time cost of each vehicle user is not necessarily
decreased. This is because some vehicle users execute their vehicular applications locally,
and the local time cost is more minor compared to the time cost in the VEC server.

Figure 5a,b depicts the impacts of the capacity of the VEC server on the energy cost
considering different values of the weighting factor. In Figure 5a, we see that the energy
cost of each vehicle user will decrease with the increase in the capacity of the VEC server
when γi,t = 0.2. However, when γi,t = 0.5, the energy of some vehicle users, such as the 2,
3, 4, and 5, will increase. This is because some of these vehicle users execute their vehicular
applications locally while others offload.
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Figure 5. The impacts of the capacity of the VEC server on the energy cost. (a) γi,t = 0.2, γi,e = 0.8;
(b) γi,t = 0.5, γi,e = 0.5.
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Figure 6. The impacts of the capacity of the VEC server on the computation cost. (a) γi,t = 0.2, γi,e =

0.8; (b) γi,t = 0.5, γi,e = 0.5.

Figure 6a,b illustrates the impacts of the capacity of the VEC server on the computation
cost considering different values of the weighting factor. In Figure 4, we obtain the observa-
tion that the computation cost of all vehicle users decreases under the VEC Scheme and
the Proposed Scheme with the increase in the capacity of the VEC server. However, the
computation cost of the VEC Scheme does not change versus the increase in the capacity of
the VEC server. When γi,t = 0.2, the computation cost of the VEC Scheme is much higher
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than the computation cost of the VEC Scheme. From the two figures, we have the evident
observation that the Proposed Scheme can outperform the two baseline schemes.

6. Discussions

In this paper, we only considered the Vehicle-to-RSU (V2R) case, namely, offloading
vehicular applications to the VEC server. However, we can also consider the case of Vehicle-
to-Vehicle (V2V) [35–37], which allows applications to be processed by other vehicles.
Vehicle networks can apply the two communication models to support a series of vehicular
applications, which mainly include the following categories [36,38]:

Autonomous/Cooperative Driving: This kind of vehicular application mainly adopts
the V2V communication model and has a much higher requirement for latency, typically
less than 10 ms.

Traffic Safety: This kind of application is to provide traffic safety services for the
vehicle, such as the pre-sense crash warning, which requires 50 ms of round-trip latency.

Traffic Efficiency: The traffic efficiency applications mainly focus on planning the
route for vehicles and sharing information on geographical location and road conditions.
Such vehicular applications generally do not have strict requirements for tolerable latency,
ranging from 100 to 500 ms.

Infotainment: The infotainment applications can offer the location of car rental services
or video streaming services. These types of vehicular applications have the lowest require-
ments for tolerable latency compared with the other categories of vehicular applications.

According to the experimental results and analysis in Chapter 5 and the categories
of the vehicular applications, the proposed model of this paper can be applied to traffic
efficiency applications and infotainment applications. For the traffic safety applications and
traffic efficiency applications, as they have extreme requirements for latency, the operator
of the VEC system has to enlarge its cloud capacity to provide more computation resources.

Our study can be further investigated from the following aspects. First, the queueing
model can be applied to analyze the performances of the VEC system [39]. Second, the
Software Defined Networking (SDN) technology can be applied to the VEC system [2,5].
Third, the safety issue of the VEC systems needs to be further explored [40]. In addition,
the digital twin [41], unmanned aerial vehicle (UAV) [42] and reconfigurable intelligent
surfaces (RISs) [43] can be integrated into the VEC system. Other solution methods to the
MINP problems, such as the dandelion algorithm (DA) [44] and Bat algorithm [45], can
also be adopted to solve the formulated problem.

7. Conclusions

This paper has presented an investigation of computational resource allocation and
vehicular application offloading in a VEC network system. In a specific manner, we
analyzed the computational resource allocation of the VEC server and the vehicles to
minimize the computation cost in terms of time and energy costs. We formulated an
optimization problem by considering both the time and energy cost of vehicles. As the
objective function for the optimization problem is not convex, the formulated problem is
known as a MINP problem, which is NP-hard. To solve this problem, we decomposed it
into three sub-problems, and the solution to each one was obtained. We have analyzed
the impacts of different parameters, such as the values of the coefficient factors and the
capacity of the VEC server on the time and energy costs as well as the computation cost.
The simulation results have revealed that the proposed offloading scheme has the benefits
of efficient allocation of computation resources and vehicular application processing in
the VEC network system. The experimental results highlighted the fact that the values
of coefficient factors and the capacity of the VEC server have a dramatic impact on the
offloading strategies of vehicle users. In comparison to the two baseline schemes, the
proposed scheme reveals its superiority in the cost of time and energy. Moreover, the
computation cost can be significantly reduced.
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