

Article

Convolutional Neural Networks in Process Mining and Data Analytics for Prediction Accuracy

Ekene Obodoekwe¹, Xianwen Fang^{1,2,*} and Ke Lu¹

- ¹ School of Mathematics and Big Data, Anhui University of Science and Technology, Humph 232000, China eobodoekwe@yahoo.com (E.O.); 2019100059@aust.edu.cn (K.L.)
- ² Anhui Province Engineering Laboratory for Big Data Analysis and Earl Warning Technolo, Coal Mine Safety, Huainan 232000, China
- * Correspondence: xwfang@aust.edu.cn

Abstract: For the reliable prediction and analysis of large amounts of da big data analytics may be applied in many disciplines. They facilitate the discree of important info. + n in large amounts of data that would otherwise be obscured. Alme all org. ations stored thair data in the cloud as event logs over the last few decades. These day can be utilized a vertice useful information, which can be used to boost an organization's pre_auctivity and effective. b identifying, monitoring, and optimizing its processes. Supporting of erations, recognizing faulte in running processes, predicting event length, and predicting the ney activity are all ways of accomplishing this. As part of our strategy, we provide a data collection and machine learning technique. Process mining can help you achieve these objectives. The major enables of data-driver approaches in process mining is predictive process monitoring. Deep learning has L used in the realm of predictive monitoring to provide accurate future activity p "ons in a running mace by analyzing data from previous events. Using image-based data engine ring ... nvolutional neural networks, the next activity in a business process has been forecast in 'his p per (J. The use of CNN in process mining and data analytics guarantees that the propose. ystem hat nigh accuracy in predicting the next activity in a business process. The e. rimental evoluation shows that the proposed CNN algorithm is faster at training and ir erence then the Long to a t-Term Memory (LSTM) approach, even when the process has lor.gei res.

Keywords: N; predictive process analytics; next activity prediction; spatial data; business process

1. In duction

Pr scess mining is used to compare the events of a processor to enhance the process. In process mining, event logs are collected, which contain a set of events, including the ctivity, time-stamp, and case identifier, as well as case attributes, if available. These data should be from the same case, or the event attributes should be similar for all the events. Data analytics is used to analyze, clean, transform, and model the data to discover some useful information that can be used to reach a conclusion and to support perfect decisionmaking, which helps to effectively maintain the business processes. Advancements in information systems enable the management of an enormous number of event logs for a business process. The data extracted from the event logs are analyzed by the processmining approach and provide a better understanding of the processes to the business developers and end-users. Recently, in process mining, predictive process monitoring has been considered the main enabler of data-driven approaches. The prediction of future events in a business is extremely important to facilitate seamless decision-making in varying environments and reduce the effect of uncertainty. In business process analysis, predictive analytics is applied to predict running traces using the patterns associated with historical event logs. This can be carried out by predicting the next activity in an activity domain,

Citation: Obodoekwe, E.; Fang, X.; Lu, K. Convolutional Neural Networks in Process Mining and Data Analytics for Prediction Accuracy. *Electronics* **2022**, *11*, 2128. https://doi.org/10.3390/ electronics11142128

Academic Editors: Taiyong Li, Wu Deng and Jiang Wu

Received: 14 June 2022 Accepted: 5 July 207 Published: 7 July 202 Retracted: 24 July 3

Publisher's Note: ML. vys neutral wi'...eg. jurisdiction, ims in published n os and institutio. alions.

Copyright: ...022 by the authors. Licensee *M* ./PI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). its timestamp, and the time needed for completion of a cycle until a trace is determined. The major advantage of performing this task is that, by predicting the next activity, the expectations of the next activity are guaranteed to be achieved and, by predicting the remaining cycle time, one can avoid violating deadlines.

There are some existing solutions for predictive process monitoring based on process discovery algorithms using formal language models such as transition system - d Petri nets. These methods demonstrate the way of executing the logged processer 1 he dra. rck of such methods is that the situations of pre- and post-activities are har . to describe s the real business processes are unstructured [1]. The process discove logorithms most produce spaghetti-like models [2,3] that are difficult to predict. Moreo the growth machine learning in predictive analytics induces everyone tr us it to p. 'ict busin's process activities by analyzing the history of events to obtain accurate percept. of f[,] .ure activities. Machine learning approaches such as the Na³ ayes cla ifier [4], juictive clustering tree inducer [5], and parametric regression [6] a alr ady bein explored in predictive process analytics. These techniques mak use of the 'terns obt? . led from the activity sequences of a running trace, the time to in for its execution, and other traces of data from business processes that are accessible at time of execut. ...

In addition to machine learning approaches, det barning approaches such as Deep Neural Networks have recently attraction in the predictive analytics of process mining [7]. Deep Learning is a called automatic feature extraction is then processed using several layers to obtain the outcome. A major advantage of this ing deep learning is the presence of a unique function called automatic feature extraction, which can be a plied to solve a variety of complex problems. In this paper, business process process such as behavior is predicted using a Deep Learning-based Convolutional Neural Network by a spinor predictive process monitoring model.

The predictive promonitoring or a business process is conducted by predicting the next activity in the linning loss of a business event based on the event logs and the process execution data. If the linal side of a running case is predicted in advance, then the business manager car cleate valuable outcomes by avoiding any unwanted delays or barriers in the rocess. At resent, this prediction trending due to its benefits for business management a d the avail, with of many previous process execution data [8]. Figure 1 show, be method of process monitoring and control.

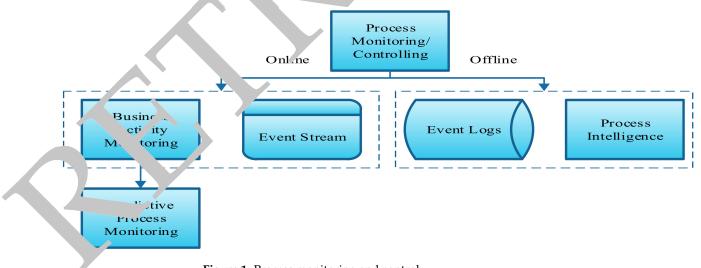


Figure 1. Process monitoring and control.

In this paper, a convolutional neural network algorithm is used to predict the next activity in an event trace from the event logs of a business process. To achieve this, a data engineering scheme is first designed to detect the spatial structure in the sequential order of event traces and transform these into spatial data. In other words, each trace of the history of event logs is converted into a set of prefix traces, which are then transformed into 2D images. The 2D images generated for the prefix traces of a historical event log are trained using the CNN architecture to generate a deep learning model to predict the next activity in an ongoing process. The feasibility of this predictive analysis was investigated using Helpdesk event logs and illustrates that this CNN-based predictive analytic model provides highly accurate next-activity prediction compared with the existing methods briefed in the literature and obtained with the deep learning-based LSTM approach. The **r** was part of this study is organized as related works that describe the literature **r** view of va. us existing methods that are carried out in the predictive process monitoring task in Section a proposed methodology that describes the data engineering scheme **a**. the involveme of CNN architecture in the prediction of the next activity in S⁻ tion 3, -1, finally, thes study is concluded in Section 4.

2. Related Works

A framework for the prediction of business pr coss me ring is de ribed in [9]. This provides the users with continuous recommendations and production related to the business activities that are to be performed an input values I. 46 ., and minimizes the possibility of violating business constraints. The onstraints of the business process can be specified using Linear Temporal ¹ og. (LTL), <u>using the process execution</u>. This framework depends on the sequence of the activitie. or for med in an event and the attributes obtained after the activity. The method can be appled to both recommendation and prediction. A decision tree alg rithm is used for this purpose. To predict an activity, the decision tree evaluates the likelihe d of its satisfying he business constraints for the given attributes. To recommend an activent the decision tree algorithm selects the attributes that maximize the likelihood of satisfyin, 'siness cor traints. This framework is implemented in the ProM toolset an included usinge dataset of cancer patients, obtained from use of Long Short-Term Memory (LSTM) neural networks a Dutch academic hosp tan. in predictive process m nitorir 5 idering the process metrics is explained in [10]. The next activity in a pro esc and its t me-stamp are predicted in this paper. Additionally, this meth odicts the c se results and aggregate performance indicators. In this paper, the au^{+} or sug_{i} sts that the use of deep learning approaches is the next step in the research odiction of the next calvity and the remaining time in business processes. In [11], into history that supports the prediction of business processes. The next ork ? fram activity is dicted by training the model with historical logs containing previous processes and this me. d is designed so that the results can be visualized. The domain experts compare these aalizations based on their experience. The model analysis technique is d for complex visualizations.

weaker bias-based predictive modeling system named RegPFA artifact is designed . bed in [12]. It has two components, namely, the RegPFA Predictor, which acts as and a the pr dictive model, and the RegPFA Analyzer, which performs visualization and analysis. The probabilistic model is fitted into a dataset that holds details of previous activity, which .elp to predict the future of the currently running activity. A visualization of the model is also designed to verify how the proposed probabilistic model works. This model was evaluated on both synthetic and real-world datasets and was found to be effective and outperform suitable benchmarks. Ref. [7] uses a deep recurrent neural network (RNN) to predict the next activity and case remainders in the business process. The specialization of this approach is that it uses separate data for training and validation to eliminate the overfitting problem, empirically assessing the parameters of neural networks, understanding and visualizing the states of neural networks, and encoding the information regarding timings. Most of the existing methods for the prediction of the next activity use logs of event behavior that have been completely executed; however, in [8], the next activity prediction is based on an analysis of the running events that have not yet been completed. This framework is designed for transforming event forecasting using the sliding window method. Process mining notifies the future activities of a running event. The ability to foresee future insights helps with decision-making.

The completion time of an ongoing process was predicted using process mining, which is demonstrated in [6]. This approach uses a configurable set of abstractions that help balance the problem of under-fitting and over-fitting. The model was trained on real-life event logs and implemented in ProM. The developed model was evaluated using real-life cases from two Dutch municipalities. This method differs from the existing approaches as the predictive model is explicit, can adjust the degree of abstraction based on the ents and amount of data, and provides improved diagnostics and a better p_rformance. he cycle time prediction was performed in [6] to answer the question, "W' en will the case finished?" This method uses a parametric regression of the data a a. 'e in the logs. I comparing the current event with the log of past events, the remaining converte time can be predicted. This regression-based system was found to be bettr. than the Nav "pproac' in terms of performance but needs improvements when no c se-data variables as a med. The assumption of the case-data variable is a human-bas a voach on he it requires more knowledge of the process. In [13], the remaining time 1 serv. secution we carried out using stochastic Petri nets with arbitrary firing del ys. This mether conside s the previous remaining time with better quality. Implementation onducted using the ProM tool. As this method employs Petri Nets, the parallel. m in the siness process can be naturally captured, as can the resources.

In [2], the process mining approach is shown to be explicable to both structured and unstructured processes to di cover and improve the processes. An example of the structured process is the Lasagna process, and an eximple of the unstructured process is the Spaghetti process, which has n explained in the paper. The process discovered in the Lasagna process is the initiation. int for a *v* se range of analysis techniques used to uysis is challenging, although the probable improve the process. Spaghetti proc "stributed learning of process models for prediction and benefits are significan recommendation of the 1 ext act ... gh "Nested Prediction Model" learning, based on the Nave Bayes classifier, regiven in [3]. In this method, the frequent and recurrent activity sequence 'irst identif d and, for each sequence, the predictive model is learned. By using parality and district uted solution, huge event logs are processed, which enable real² decisic 1-making without a perfect model. The datasets used in this system are the when the second PPI201 vhi the even rs of five rbox utch municipalities. In [3], a co-training technique for multiple view method has don process mining was presented. Here, the author shows that there re many proc. mining algorithms used to mine the event logs and deliver valuable

dels to describe the process execution. The developed models are similar to the spaghetti process and are difficult to recognize, as complex, real-life events are more flexible and less standard based on the expectations of stakeholders. This type of model is only used when all probable actions are combined into a single model, resulting in a set of traces being immediately considered in the event log. This issue can be eliminated by the use of ace clustering in preprocessing. Trace clustering means that the event log is split up into similar traces of a cluster to handle various actions and supports, discovering the process models. The developed clustering model is evaluated using machine learning and process mining metrics.

The authors of [14] declare that several techniques use distinct datasets, experimental setup, evaluation metrics, etc., to overcome the problems with the monitoring of predictive processes, but they all result in a poor capability and an uncertain depiction of the advantages and applicability of various methods. Hence, to solve this issue, a detailed survey of outcome-oriented predictive process-monitoring techniques and their evaluation procedures are described in this paper. The review results are more reliable and accurate regarding the Area Under the ROC Curve (AUC) while using lossy sequence encoding. A deep-learning-based prediction of the next event using a gated convolutional neural network (GCNN) and a key-value-predict attention network (KVP) is described in [15]. This method makes use of process data properties such as repetitiveness, variation, and sparsity

for evaluation and describes the impact of these properties on the prediction accuracy of various deep learning structures. This method is evaluated for classification properties such as the generalization and handling of class imbalances. This paper guides the researchers in selecting, validating, and benchmarking the models for predictive process monitoring. This paper also highlights the need for various process data properties in the history of events and the reporting of various performance indicators to attain the desired out this paper, the research is continued using convolutional neural networks, which are a rest class of deep neural network architecture that can be used for several oplications related to speech recognition and computer vision [16,17]. Some research end that CN provides a higher accuracy for image data with a clear spatial static relation. If algorithm works well due to the local filtering and max-pooling layers in its whitecture.

A convolutional neural network (CNN) is a deep learring neural network conviction and the process structured arrays of data, such as images [20]. Control ution choural networks are especially adept at detecting image patterns, such as 'the signal of the constraint of the second structure predictions of future activity in trunning trace to the dying data from past events. Using CNN in process mining and data collections of the proposed system in predicting the new too siness process class activity. Even with lengthier traces, the experimental evaluation de monstrates that the proposed CNN process is faster at training and inference than the Leing Short-Term Memory LSTM) method. The classifier utilized CNN to retrieve the data' high-level attributes. The proposed model comprises a series of fully integrated CNNs at layers.

3. Proposed Methodology

The methodolog f the proposed re-like data engineering scheme is first structured, which follows: In this method converts the set of prei x trace ^{PD} image-like data structures, and then the CNN architecture is applied to 'he 'ustorica' log of events to predict the next traces of an ongoing process. / ent log is supposed to contain data related to the activities involved in an event *r*, a bus. Ess process and its duration for completion. An event is characterized by tures: the action performed in an event and its time-stamp, which includes the date two and tin `t w' mens. The activity domain is a set of several different activities that occur in a vent, based on which the business process predictive model is constructed. An event log nsists of a set of events. Each of these events is associated with a specific, unique tracing. It is also represented as a bag of traces. A trace denotes the business cess of a business process execution. The sub-sequence of a trace is called a "prefix tra, "which considers the initial state of a trace until its end.

A prefix trace can be depicted from an activity perspective, i.e., the frequency or contre' flow of an activity and its performance, i.e., time consumption. This paper considers both perspectives to generate 2D image-like structures. The log of events is first converted b a labeled imagery dataset. For each prefix trace of a trace in an event log, a 2D image is constructed to depict the labeled prefix trace with its future activity. The activity channel measures the number of times that an activity takes place in a prefix trace, from the beginning to the end of the activity. The performance channel measures the duration of the activity from the beginning, to its last occurrence in a prefix trace before its end. As this paper mainly focuses on recent activities, the last occurrence of activity is considered in this paper. From this, it is possible to figure out how long the current execution has been occurring.

Consider an event as E, *event log as L*, *activity as A*, *activity domain as AD*, *timestamp as Ts*, *and the trace as T*.

Here, an event E_i *corresponds to the activity* A_i *with a timestamp* Ts_i *.*

The trace T is a finite sequence of l distinct events with $Ts_i < Ts_j, 1 \le i < j \le l$ *.*

Let l = |T| events, the prefix trace PT_k is the sequence of first k successive events of T with $1 \le k < l$.

From a prefix trace with l length, l - 1 prefix traces could be extracted. Let us now consider A_{k+1} as the next activity of a task related to PT_k . Where $PT_k = E_1, E_2, \ldots, E_k$.

Each event consists of (A_i, Ts_i) *pair with* $1 \le i \le k$.

 PT_k is depicted as a 2D image I_k of $k \times m$, where k is prefix trace length and m is activity domain size. The imagery rows of I_k are successive indices of events, while the imagery columns of I_k are the various activities of an activation domain. For a performing pixel (x, y) of I_k is a 2D vector consisting of an activity channel as its row as a performing channel as its column. The activity channel is the measure of the number of times an activation domain PT_k from Ts_1 to Ts_x , whereas the performance channel is the measure of the number of times and activation between Ts_1 and Ts_x , until the last activity befor PT_k . The predictions are used to predict the next activity. Using this stehod, the recent as it is are predicted in the proposed method.

An event log fragment is given in Table 1. This $r \rightarrow vides$. Lace ID, ac vity domain, and timestamp of a helpdesk. Six activities are crossidered in the experiment. These are raise ticket (R), inspect ticket (I), verify ticket (V', resion (D), rejectored verse (RJ), and accept ticket (AT). Each of these events is linked to repartic. These are trace, which exembles an activity in the activity domain and its equivalent time tamp. The experimentations of both the activity channel and performance channels are given in gravity scale in Figure 2.

Trace ID	Prefix Trace ID	F. Trace	Next Activity
1	1	(R,2021-10-15:(⁵)	V
1	2	(R,2021-10-15:09. '5), (, 10-16:10:16)	Ι
1	3	(R,2021-10-15:09:1), (V ² J21-10- 10:16), (I,2021-10-20:05:05)	V
1	4	(R 1-10-15:09:15, (V,2021-10-16:10:16), (I,2021-10-20:05:05), (V,202. 0-21:10:20)	Ι
1	5	(R,2021 10-15:09:15), (2021-10-16:10:16), (I,2021-10-20:05:05), 1/202 21-10-20) (1,2021-10-25:18:22)	D
1		(K 21-10-15:09:15), (V,2021-10-16:10:16), (I,2021-10-20:05:05), (V,2t 10-21:10:20), (I,2021-10-25:18:22), (D,2021-10-27:16:11)	RJ

Table 1. Event log fragment with pre trace and next activity.

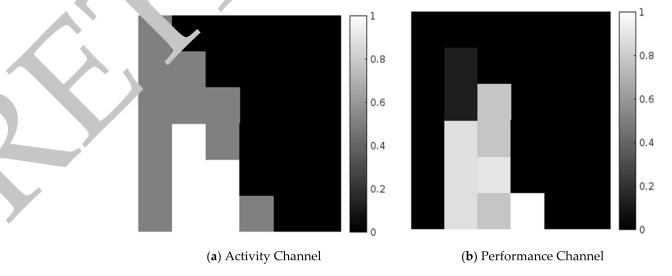


Figure 2. 2D Image representation of a prefix trace.

(a) Activity Channel Matrix								
Time/Activity	R	V	Ι	D	RJ	AT		
1	1	0	0	0	0	0		
2	1	1	0	0	0			
3	1	1	1	0	0	0		
4	1	2	1	0		0		
5	1	2	2	0	0	0		
6	1	2	2	1	0	0		
		(b) Perfor	mance Channe	el Mz				
Time/Activity	R	V	I	D	RJ	AT		
1	0	0	0	0	0	0		
2	0	0.9611	0	0		0		
3	0	0.9611	6.1.736	0	0	0		
4	0	7.0002	6.1736		0	0		
5	0	7.0020	7.1736	0	0	0		
6	0	7.000	6.1732	8.0111	0	0		

Table 2. Data matrix of prefix trace.

The generated imagery datase now trained with a CNN architecture as a business process analytic, cust mized to preak xt activity in an ongoing trace. There is a problem with the use learning analytics in the predictive process: the training dataset should have in vges or me size, whereas the number of rows in an image of a prefix trace can dit or e cording to its length. This problem can be overcome by generating images with several fixed rows, which are then projected as the length of the longest prefix the in even history. The empty values are assigned as '0' in these imagery row The CNN extends a back, fully connected, feed-forward neural network model with addith, 1 fer such 25 a convolution layer, pooling layer, and weight sharing. The Cr 'N con. vises single or multiple pairs of convolution layers and max-pool layers. The convolution ver in a CNN architecture is placed onto a set of filters, which are simulated over the entire out to process trivial input parts. The output of the pooling layer is a v-resolution form of the output obtained from the convolution layer. In higher layers, se al broad filters are used to process the complex regions of a low-resolution input. Final. ¹ - fully connected layer combines all the inputs and produces the outcome.

T¹ e generated imagery dataset is now trained with a CNN architecture as a business process analytic, customized to predict the next activity in an ongoing trace, as depicted • Figure 2 (a 2D image representation of a prefix trace). There is a problem with the use of deep learning analytics in the predictive process. The training dataset should have images of the same size, whereas the number of rows in the image of a prefix trace can differ according to its length. This problem can be overcome by generating images with several fixed rows, which are then projected as the length of the longest prefix trace in event history. The empty values are assigned as '0' in these imagery rows. The CNN extends a basic, fully connected, feed-forward neural network model with additional features, such as a convolution layer, pooling layer, and weight sharing. The CNN comprises single or multiple pairs of convolution layers and a max-pool layer. The convolution layer in CNN architecture is placed on a set of filters, which are simulated over the entire input to process trivial input parts. The output of the pooling layer is a low-resolution form of the output obtained from the convolution layer. This enables the translation invariance and tolerance to small variations in the pattern positions in the input. In higher layers, several broad filters are used to process the complex regions of a low-resolution input. Finally, the fully connected layer combines all the inputs and produces the outcome, as shown in

the Figure 2 (a 2D Image representation of a prefix trace in (a) the Performance Channel). The input of the CNN architecture is fed into the first convolutional layer, where a set of filters are applied. Each filter is a square matrix that serves as the kernel, which uses only a small part of the input, called a node, from the whole image to exploit the hidden local correlation. Feature maps are generated by applying the convolution operator to the input image. The activation function is generated by applying a nonlinear function function function is generated by applying a nonlinear function layer are composed by convoluting the input map with the respective kernel and the linear activation function.

After passing an image through a convolutional layer, the cat_1 is passed to a activation function. The sigmoid function is a typical activation function, expressed Equation (1)

$$h_{j}^{(1)}(x,y) = f\left(\sum_{(u,v)\in U} w_{j0}^{(1)}h^{(0)}(x+u,y) + b_{j}^{(1)}\right)$$

$$With \ U = \left\{(u,v)\in \mathbb{N}^{2} | 0 \le u \le y, 0 \le v \le z\right\}$$
(1)

where

 $h_j^{(1)}(x, y) = Feature Maps$ $h_j^{(0)}(x, y) = Input Map$ $w_{j0}^{(1)} = Respective Kernel$ I(x, y) = Input Image f = Nonlinear Activation Function j = Node s = Matrix size $w_{j0} = Weight of the ma.$

The activation function c_{r} any of the nonlinear functions that are differentiable and continuous, which is sinilar to the constraint -propagation learning algorithm. The activation function used in this paper is Relu, and is expressed in Equation (2). The ReLU function, also known the rectified linear unit, is the same as taking the positive component of the input:

$$F(x) = max(o, x) \tag{2}$$

A pc ing layer is introduced before each of the convolution layers to attain spatial invariance a minimizes the dimensions of feature maps, preserves relevant details, and removes unwa a information. Usually, a pooling operation would be a summation, raging, maximum, or combining of such operations. The pooling operation used in this parties max-pooling, since it provided the best results in some existing studies.

Let be proposed approach, three pairs of convolution layer and max-pool layer are used, *i* is shown in Figure 3. The layers at the end are the fully connected structures, which are similar to those of a feed-forward neural network. This layer combines the various local structures extracted in the low layers to generate the final prediction output. The activation function provides the convolutional neural network nonlinearity. In the absence of the activation function, all neural network layers could be reduced to single matrix multiplication. This paper uses a softmax activation function in the output layer, which is expressed as follows:

$$O_{j} = f(x)_{j} = \frac{e^{x_{j}}}{\sum_{k=1}^{H} e^{x_{k}}}$$
(3)

where H = Number of nodes.

When a ReLU function is applied to the output of the first layer, the result is a higher contrast that brings out the vertical lines and gets rid of the noise caused by other features that are not vertical.

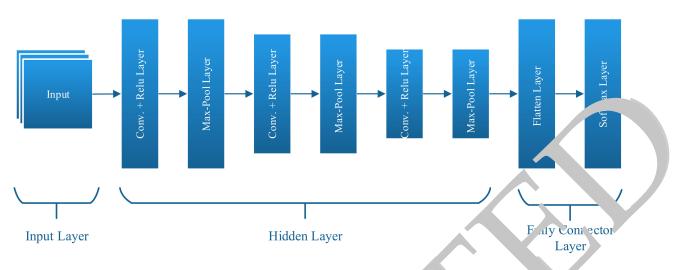


Figure 3. Architecture of convolutional neural netw ...

4. Experimental Results

The proposed predictive mode' is implemented in Fynand evaluated to predict the next activity. This evaluation ims to first determine the feasibility of transforming spatial data from temporal data, nen validate the efficiency of the image-like structures and the prediction accuracy of co olutional neural etworks. In this paper, a benchmark dataset named "Helpdesk event lo, f an Italian Sof ware Company" was used to evaluate the proposed model. This dataset c ists of reactivities of a business process, with a total of 13,710 even A 3804 traces of rength, ranging from 1 to 14. A fake event is added at the end of each trac a ticketing management system, every trace is started with a new ticket. The loss fur ction animized by performing Adam Optimization to achieve effective stochast ' ptimizat' on through the computation of first-order gradients, nemory, along with the computation of network weights with batch size only wit' 128 by ed on the running average of the first moment and second-moment estimates. This prc_____is desc_ibed in Algo_ithm 1.

The point of a point of two strides and a max-pool layer comprise the CNN architecture. The pooling of a point of two strides and the sliding window is of size 2×2 . The generated feature is formed of two strides and given to the denser output layer of the softmax with the CNN chitecture is trained on the same Helpdesk event log benchmark dataset. I channelization is performed by transferring the input from the convolution later to the max-pool layer. The application of batch normalization increases the speed of the training process by reducing the sensitivity of the weight initialization without any increase in the overfitting of the training dataset.

After all of the logs are resolved and closed, the traces are removed. A total of 70% of the traces in the event log are taken into consideration for training, while the remaining 30% of the traces are taken into consideration for testing. The following activity may be predicted for each of the testing traces in Figure 4, which depicts the distribution of training and testing classes in the Helpdesk Event Log. Temporal order is maintained between the training trace and the testing trace. This is so that the predictive model can be trained using the past data and its performance can then be evaluated using the incoming data. The distribution of training courses to testing classes can be seen in Figure 4, which is part of the Helpdesk event log. The third activity takes place at the beginning of the traces. In both the training and the testing phases, no labeled prefix traces are present. It was predicted that, after the conclusion of the running trace, this would be the subsequent activity.

	P and in a
1	Require; Lunit: Haladack Exant log, Dataset
1.	Input: Helpdesk Event log–Dataset
	data of training (that is the log cases; dict is unique [i] for I range;
	dataframe represent the concept case, concept, timestamp
	time is the number of iteration; test time,
	Test testing data, maximum trace, activities.
	Train_img: the train model n;
•	accuracy is model Evaluation result
2.	Initialize the algorithm
3.	Import Dataset
4.	Convert Dataset to Dataframes,
	unique_data = dataframe[concept].unique()
	dict = {unique[i] for i in range (0, len(unique))
	for k in dict:
	dict[k]+=1
	dataframe = [case, concept, timestamp]
5.	return dataframe To generate image ,
	train = (training_data, training_time, *ximm_trace, activit.
	test = (testing_data, test_time, maxi_um_trace, activities)
	train_img = array (train)
	test_img = array(test)
	return (train_img, test_img)
6.	To generate label,
	label_train = getLabel(train)
	label_test = getLabe.
	pp = preprocessing.la elEnc
	label_train = pp.fitTrai_form(1_sei
	label_test = pp.transfor, (lc' el_test)
	retur ¹ _train, label_ est)
7.	Cenvoluti, al Neural N twork
	odel = seg_ential
	n - 0.00 ·
	inp_{ν} 'ape = (mux n_trace, activities, 2)
	<i>if</i> $int(n, of_layers) == i$, where $i = number$ of epochs
	$model.ada$ $\mathcal{T}^{\mathcal{D}}(32, (2, 2), inputShape = inputShape, padding=same, kernelInitializer$
	= glorot_uni ,rm, kernelRegularizer = tensorflow.keras.regularizers.l2(reg)))
	model.add(BatchNormalization())
	odel.add (Activation(Relu))
	$n = 1.add(Max_pool2D(size = (2, 2)))$
	(nodel, reg) \leftarrow (generate feature of train and verify input shape)
0	end if
8.	Continue the process for 5 epochs with pooling layer of stride 2 and sliding window of siz
	2×2
	model.add(Flatten())
	<i>model.add</i> (<i>Dense</i> (<i>numOfClasses</i> , <i>activation</i> = <i>softmax</i> , <i>name</i> = <i>actOutput</i>))
~	accuracy = modelEvauluation
9.	Output: Average of the accuracies of epochs

Figure 4. Distribution of training and testing classes in the heipde. vent .og.

Overfitting of the training data can be avoided by validating proposed model with the validation dataset, which is 20% of the trained dataset. Once the set function stops improving the validation dataset for a specific number of iterations, the training procedure will be stopped. Training is performed on five trials, and the performance of the predictive model is calculated by averaging the strials.

The CNN and LSTM deep le rning models were implemented on the benchmark Helpdesk event log dataset. We reated two files for this purpose, one for training and one for testing the data. In the fost section, it was necessary to create an LSTM model to demonstrate prediction using same dataset Since we initially created two files, one for training and one for testin in the initial step, training data were created by designing, training a bottoring the mounter showing the required information on the screen, we created and routine, which was implemented in the file, loaded the model, and generated r. ndom en of numbers that were written and evaluated on the screen. Using the same outine e, the previous implementation, the user should be allowed + 'r a string i dicating a prediction operation and, once the string has been approvirately intered into 'he model, the outcome should be displayed on the screen. In the 'phase, ve were required to train the model, save it, and display relevant results for the dev vor cess on the screen, as well as from each category, based on the results. The econd phase required a model comparison.

Finally, Table 1, we presented a comparison of the accuracy of the CNN and LSTM nodels, based their predictions. Table 3 compares the accuracy of the deep-learninged CNN model and the LSTM model regarding the benchmark Helpdesk event log date. With a 73.93 percent accuracy rate, the proposed CNN predictive model based on deep to thing performed better than the LSTM model (22).

Table 3. Performance analysis.

Model	Accuracy		
LSTM model	71.23%		
Proposed CNN model	73.93%		

5. Conclusions

Process mining is a technique for comparing a processor's events to improve the process. The event logs, which include a collection of events, comprising the activity, timestamp, and case identifier, as well as case characteristics if available, are gathered in process mining. These data should come from the same case, or the event properties should be consistent across all events. Data analytics analyzes, cleans, transforms and models the data to uncover important information, which can be utilized to reach a conclusion and enable excellent decision-making, which aids in the effective operation of corporate processes. This paper describes a Convolutional Neural Network-based next-activity prediction of an event in a business process using process mining and data analytics. Initially, each trace of the historical events is converted into a set of prefix traces, which are then mapped into two-dimensional images. These are called "spatial data". The process data engineering approach is used to convert the temporal data for an event into spatial data, treating them as an image. These are then trained with the CNN to create a model that can predict the next activity in the running processes of a business process. This strates that generating 2D image structures from the traces of event logs is an e' ective mean of modeling the traces in the perception of activity, as well as the performance. The develop predictive model based on 2D images such as data engineering, and C N produces his accuracy results for the next-activity prediction of a currently running the in a busine is process when compared with the LSTM algorithm.

Author Contributions: Conceptualization, E.O. and K.L.; method gy, E.O , F. and K.L. software, E.O.; validation, E.O., X.F. and K.L.; formal analysis, E.O.: vestige p. 2.O.; resources, E.O.; data curation, E.O.; writing—original draft preparation, E.O.: vriting—revise and editing, E.O., X.F. and K.L.; visualization, E.O.; supervision, X.F.; project advistration, E.O; fulling a quisition, X.F. All authors have read and agreed to the published version of the manuscript.

Funding: Natural Science Foundation of Anb. Pr. vince, Ci. (No. 2008085QD178).

Conflicts of Interest: The authors declar no conflict of interest.

References

- Van Dongen, B.F.; Crosby, R.A.; van der Aalst, W.M.P. Cycle tic prediction: When will this case finally be finished. In *On the Move to Meaningful Internet Systems: OTM 2008*; Meersman, K Pari, Z., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 319–336.
- 2. Van der Aalst, W.M.P. Process mining: Discovering 'improving spage and lasagna processes. In Proceedings of the IEEE Symposium on Computational Intelligence and Data Vin. ("IDM 2011), Paris, France, 11–15 April 2011; pp. 1–7.
- 3. Appice, A.; Malerba, D. A co-training strategy for mul 'ple vier 'r'g in process mining. *IEEE Trans. Serv. Comput.* **2016**, *9*, 832–845. [CrossRef]
- Ceci, M.; Spagnoletta, M.; Lanotte, P.F. Salerba, D. D. ributed learning of process models for next activity prediction. In Proceedings of the 22nd International Data ase Engineeing & Applications Symposium (IDEAS 2018), Villa San Giovanni, Italy, 18–20 June 2018; Desai, V.B., Fresca, Zumpano, P. Masciari, E., Caroprese, L., Eds.; ACM: New York, NY, USA, 2018; pp. 278–282.
- Pravilovic, S.; Appice, A.; Morba, Lorocess and rorecast the future of running cases. In *New Frontiers in Mining Complex Patterns—Second Internotonal Workshop*, FMCP 2013, Revised Selected Papers, Ser. LNCS; Appice, A., Ceci, M., Loglisci, C., Manco, G., Masciari, Fors, Z.W., Eds.; Sporter Berlin/Heidelberg, Germany, 2014; Volume 8399, pp. 67–81.
- Van der Aalst, W.^{*}..P.; S. nenberg, M.H.; ng, M. Time prediction based on process mining. *Inf. Syst.* 2011, 36, 450–475. [CrossRef]
- Evermann, J., hse, J.-R.; Fett. P. Predicting process behavior using deep learning. *Decision Support Syst.* 2017, 100, 129–140. [CrossRef]
- Verenici I.; Duma, M.; la Rosa, M.; Maggi, F.M.; Di Francesco Marino, C. A general framework for predictive business process moritor. In Priceedings of the International Conference on Advanced Information Systems Engineering, Ljubljana, Slovenia, 13–17 June 1, pp. 186–20
- 9. quez-Cha ro, A.E Kesinas, M.; Ruiz-Cortes, A. Predictive monitoring of business processes: A survey. *IEEE Trans. Serv. Con. ut.* **2018**, *11*, *2–0*, *1*. [CrossRef]
- 10. Hni , T.; Oo, K.K. Lep Learning for Predictive Process Behavior. In Proceedings of the Sixteenth International Conferences on Communications (ICCA 2018), Beirut, Lebanon, 4–6 October 2018.
- Becker, J., E., Ser, D.; Delfmann, P.; Matzner, M. Designing and implementing a framework for event-based predictive modeling susiness processes. In *Enterprise modelling and information systems architectures-EMISA 2014*; Gesellschaft für Informatik e.V.: Ha. Ur., Germany, 2014; pp. 71–84.
- 12. Breu er, D.; Matzner, M.; Delfmann, P.; Becker, J. Comprehensible predictive models for business processes. *MIS Q.* **2016**, 40, 1009–1034. [CrossRef]
- Rogge-Solti, A.; Weske, M. Prediction of remaining service execution time using stochastic Petri nets with arbitrary firing delays. In *ICSOC*; Springer: Berlin/Heidelberg, Germany, 2013; pp. 389–403.
- 14. Teinemaa, I.; Dumas, M.; Rosa, M.L.; Maggi, F.M. Outcome-oriented predictive process monitoring. *ACM Trans. Knowl. Discov. Data* **2019**, *13*, 1–57. [CrossRef]

- 15. Heinrich, K.; Zschech, P.; Janisch, C.; Bonin, M. Process data properties matter: Introducing gated convolutional neural networks (GCNN) and key-value-predict attention networks (KVP) for next event prediction with deep learning. *Decis. Support Syst.* 2021, 143, 113494. [CrossRef]
- 16. LeCun, Y.; Bengio, Y. Convolutional networks for images, speech, and time series. In *The Handbook of Brain Theory and Neural Networks*; MIT Press: Cambridge, MA, USA, 1995; Volume 3361, p. 1995.
- 17. Prasad, B.; Prasanna, S.M. Speech, Audio, Image and Biomedical Signal Processing Using Neural Networks; Springer: Berlin (*****) elberg, Germany, 2007; Volume 83.
- 18. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. *J. Advances in N. Al Information Processing Systems*; Neural Information Processing Systems Foundation, Inc.: La Jolla, CA, US 2012; pp. 1097–11
- 19. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings o. IEEE Conferent on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.
- 20. Abdel-Hamid, O.; Mohamed, A.-R.; Jiang, H.; Deng, L.; Penn, G.; Yu, D. Convolutional neural *r* ctworks for spec recogn^{*i*} .on. *IEEE/ACM Trans. Audio Speech Lang. Process.* **2014**, *22*, 1533–1545. [CrossRef]