
����������
�������

Citation: Lukács, D.; Pongrácz, G.;

Tejfel, M. Model Checking-Based

Performance Prediction for P4.

Electronics 2022, 11, 2117. https://

doi.org/10.3390/electronics11142117

Academic Editors: Elisa Rojas,

Sándor Laki and Christian Esteve

Rothenberg

Received: 31 May 2022

Accepted: 1 July 2022

Published: 6 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Model Checking-Based Performance Prediction for P4
Dániel Lukács 1,* , Gergely Pongrácz 2 and Máté Tejfel 1

1 Faculty of Informatics, Eötvös Loránd University, 1117 Budapest, Hungary; matej@inf.elte.hu
2 Ericsson Hungary, 1117 Budapest, Hungary; Gergely.Pongracz@ericsson.com
* Correspondence: dlukacs@inf.elte.hu

Abstract: Next-generation networks focus on scale and scope at the price of increasing complexity,
leading to difficulties in network design and planning. As a result, anticipating all hardware- and
software-related factors of network performance requires time-consuming and expensive benchmark-
ing. This work presents a framework and software tool for automatically inferring the performance
of P4 programmable network switches based on the P4 source code and probabilistic models of the
execution environment with the hope of eliminating the requirement of the costly set-up of networked
hardware and conducting benchmarks. We designed the framework using a top-down approach.
First, we transform high-level P4 programs into a representation that can be refined incrementally
by adding probabilistic environment models of increasing levels of complexity in order to improve
the estimation precision. Then, we use the PRISM probabilistic model checker to perform the heavy
weight calculations involved in static performance prediction. We present a formalization of the
performance estimation problem, detail our solution, and illustrate its usage and validation through a
case study conducted using a small P4 program and the P4C-BM reference switch. We show that the
framework is already capable of performing estimation, and it can be extended with more concrete
information to yield better estimates.

Keywords: P4; performance prediction; cost analysis; PRISM; model checking; static analysis

1. Introduction
1.1. Background

Next-generation computer networks must solve a serious problem. On the one hand,
they need automatization (programmability and virtualization) in order to be scalable
and satisfy the diverse demands of a rapidly growing range of applications (in the cloud,
6G, IoT, etc.), while on the other hand, they depend on specialized hardware resources to
maximize throughput and optimize costs. As a result, several technological trends have
emerged in the last decade, such as software-defined networking (SDN), network function
virtualization, hardware offloading, and programmable switches.

For our work, arguably the most important of these developments is the introduction of the
P4 programming language [1]. P4 enables network operators to write arbitrary, SDN-capable
network protocols in a high-level, domain-specific language (in contrast to writing them in
low-abstraction, error-prone languages such as C) while retaining high performance by taking
advantage of hardware offloading. P4 runs on both programmable hardware switches (e.g., Intel
Tofino can run P4 with line rate, relying on TCAM to perform a lookup in SDN control tables)
and on virtual switches (e.g., T4P4S [2] compiles P4 to DPDK, a networking library enabling
direct interaction with the NIC through bypassing the Linux kernel).

1.2. Objectives

Unfortunately, this evolution had a price in the form of steadily rising complexity.
First, network designers and business decision makers have to take into account a very
large number of interconnected parameters. Second, complexity makes it difficult to ensure

Electronics 2022, 11, 2117. https://doi.org/10.3390/electronics11142117 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11142117
https://doi.org/10.3390/electronics11142117
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-9738-1134
https://doi.org/10.3390/electronics11142117
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11142117?type=check_update&version=1

Electronics 2022, 11, 2117 2 of 27

that the network is working correctly and efficiently (i.e., the functional and non-functional
requirements of the application are satisfied).

The long-term objective of our ongoing work is to develop a tool that assists in automat-
ically checking network software against the functional and non-functional requirements
in silico, (i.e., without the need to deploy the software into an actual network). Such a tool
can prove useful during the whole life cycle of the network. In the design phase, network
designers can use it to mix and match existing components and make buying decisions
regarding a network that does not exist yet. In the implementation phase, developers can
validate the efficiency of their implemented network protocols without having to deploy
the protocol in a real network. In the operational phase, such a tool can be used to predict
behavior and prevent or lower network downtime.

1.3. Existing Methods

The classical approach to requirement evaluation in networks is testing (which we
also refer to as “dynamic analysis”), and it is still valid in many cases both in industry and
research. Practitioners of this approach are the main audience of [3], proposing a set of
performance standards in order to compare P4 compilers and to help compiler developers
evaluate their optimizations by comparing the measured performance of the generated
code against the standards.

Yet, with the scale and complexity of next-generation networks, in-house testing with
scripted benchmarks became increasingly time-consuming and, as is it requires expert
personnel, very expensive. On the other hand, centralized network control in SDN makes
it easier to collect and process data about the network. For this reason, automatic re-
quirement evaluation regarding networks and network components became a popular
research question.

An increasingly useful approach to this end is simulation. In [4], the authors solved
the problems of handling multiple protocols and a complex network structure in medical
IoT networks by proposing an SDN-based network architecture, where prioritization and
machine learning-based (ML) load balancing are performed by the SDN controller. They
show how the introduction of SDN and ML improved network performance by using the
Riverbed network simulator, a sophisticated tool that estimates network performance based
on parameters such as the network topology, protocols used, and speed of individual nodes.

Beyond simulation, another common approach is formal verification. The authors
of [5] verified updates in SDN networks in real time by formalizing the network topology
and functional network policies as Computation Tree Logic (CTL) formulas and passing
these to the NuSMV tool. Very similar techniques were applied in the application layer for
service-oriented networks and the IoT by [6,7] as well.

The aforementioned works (with the exception of [3]) check the requirements on the
network level, treating individual nodes in the data plane as black boxes. Unfortunately,
the nodes can also have errors, and this becomes much more prevalent in the world of
SDN and P4, where network nodes are updated frequently and with custom programs.
The authors of [8] presented a method for performance evaluation and verification of the
non-functional properties for P4 programmable switches. Their approach is to synthe-
size the latency estimates for a program source based on isolated measurements of the
selected P4 features. In this work, we intend to tackle this problem as well but with a
different approach.

1.4. Approach

Our focus is on developing a framework that takes advantage of the high-level nature
of P4 and uses source code-based techniques (e.g., static analysis or model checking) to
automatically infer the costs (such as the time cost of execution (i.e., latency)) and properties
(e.g., correctness) related to packet processing on the data plane. In this paper, we focus
specifically on estimating latency, relying on automatic inference instead of benchmarking.

Electronics 2022, 11, 2117 3 of 27

One important challenge of this endeavor is that to accurately predict latency, one
has to take into account not just the parameters of the application (e.g., the P4 data plane,
control plane, and expected network traffic) but also the parameters of the execution
environment (e.g., machine specifications, the presence of specialized hardware, and
software switch implementation). This is especially true for P4, as most of the work
during packet processing is spent performing table lookups, whose implementations are
architecture-dependent.

To handle this challenge, we attack the problem using a top-down approach. From the
P4 program code, we can automatically extract an abstract, but complete understanding
of what the program does requires understanding not just the high-level program control
flow but also the complete semantics (program execution depends on the program input
and also the subsequent program states reached during execution). Then, we can proceed
even lower and plug architecture-specific details into this “skeleton”. How low we will go
and how much we detail the information we have depends on how much information we
have (for example, detailed hardware-level information is usually difficult to gather, or even
worse, it may be a propriety and withheld by the vendor) but also on our computational
capabilities to execute the analysis. In general, more detailed information will lead to better
estimates but also requires more computational resources to calculate.

1.5. Contributions

Our contributions in this paper are the following. In Section 2, we describe the previ-
ously outlined problem in detail, and introduce a formal notation to help us unambiguously
refer to the numerous factors and components involved in the process and its validation.
In Section 3, we introduce our performance estimation solution that makes use of the PRISM
probabilistic model checker [9] in order to handle the P4 program semantics and integrate
architecture-specific execution environment models of arbitrary complexity. In Section 4,
we present a case study to illustrate the complete performance estimation process, includ-
ing data requirement and collection, the parts handled by PRISM, and the validation of the
framework. We also briefly evaluate the current capabilities of the framework. We conclude
the paper with listing future directions in Section 6. Executable code of the tool is available
online (https://github.com/P4ELTE/P4Query, accessed on 5 July 2022).

2. Problem Description

In this section, we first concisely introduce the static cost analysis problem we solve in
this paper along with the main obstacles, and then we formalize the problem in terms of
basic statistical concepts.

2.1. Informal Problem Description

Our cost analysis tool estimates the latency of programmable switches. Given a target
switch and a P4 program, the tool estimates how long it will take the switch to execute the
P4 program for one input packet.

There are two main obstacles to delivering a useful, efficient cost analysis system.
First, static cost analysis solves the halting problem [10], which means there is no general
solution. Even in the case of the P4 programming language, where all executions are
guaranteed to be finite, analysis time is exponential. The second obstacle consists of the
large amount of unknown (or variable) factors we need to deal with: the input packets
that will be processed by the program are unknown, the internals of the machine that
will execute the program are unknown, and the implementation of the P4 compiler that
generates the machine code is unknown (or at least highly complex). We partially solved
this second problem by relying on probabilistic models. For example, instead of dealing
with specific input packets, we rely on a probability distribution that tells us the likelihood
that we will receive one or another packet as input. Such data are easy to collect or
assemble, given one has access to the historical records of network traffic in which the
analyzed switch will be deployed. Thus, we envision cost analysis as a two-step process: in

https://github.com/P4ELTE/P4Query

Electronics 2022, 11, 2117 4 of 27

the first, which we call bootstrapping, probabilistic data area collected about the unknown
factors (independent from the program code), and in the second, the static, deterministic
part of the cost analysis is performed using the actual program code and the previously
collected probabilistic data.

To validate (test) whether the cost analysis tool gives usable estimates, we need to
perform dynamic performance analysis (i.e., take actual measurements (benchmarks) by
running the program code on the target device and compare these to the estimates).

2.2. Formal Problem Description

Conventionally, benchmarks are performed in a statistical framework. Even though
static analysis is fundamentally a problem in formal semantics, we have seen that it is
still linked to statistics, since both modeling missing data and validation require statistical
sampling. For this reason, we see it as important to precisely specify the static cost analysis
problem in the language of statistics as well, and we will also rely on the notation introduced
here in later sections. Another motivation behind this effort was to harmonize probabilistic
model checking (see Section 2.4) with classic benchmarking. Using these notations, we
will define measurement-based and static cost analysis-based estimators side-by-side. This
more formal description of the roles of benchmarks, bootstrapping, and cost analysis is
given in Table 1. We now give the interpretation of this table.

Table 1. The place of cost analysis among statistical concepts used in conventional benchmarking.

Category Symbol Definition

Populations

I Possible input packets

Π Possible execution paths of a P4
program

E Possible environment behaviors

Ω = I×E Possible executions

Probability
distributions

fI : I→ [0, 1] Probability of input packets (known)

fΠ : Π→ [0, 1] Probability of execution paths
(known)

fE : E→ [0, 1] Probability of environments
(unknown)

f : Ω→ [0, 1] Probability of executions (unknown)

Random variables

X : Ω→ R+ Program execution time (benchmark)

Y : Inst×E→ R+
Instruction execution times

(bootstrap)

Z : Π×E→ R+ Path execution times (bootstrap)

Population
parameters

θX : P(Ω)→ R+ Population min, mean, and max of X

θY : Inst×P(E)→ R+ Population min, mean, and max of Y

θZ : Π×P(E)→ R+ Population min, mean, and max of Z

Samples

SX : Ωn → Rn
+ Benchmark sampling process

SY : Inst×En → Rn
+

Instruction bootstrap sampling
process

Estimators

θ̂X : Ωn → R+
Sample min, mean, and max of X

(using SX)

θ̂Y : Inst×En → R+
Sample min, mean, and max of Y

(using SY)

θ̂Z : Π×En → R+
Sample min, mean, and max of Z

(using θ̂Y)

#»

θ X : En → R+
CA min, mean, and max of X (using

θ̂Z and fI)

Electronics 2022, 11, 2117 5 of 27

Any program execution is uniquely determined by the program input space (denoted
as I)—or the space of the incoming packets in the case of P4—the program code (denoted
as the Π set of execution paths in the program), and the execution environment space
(E). For validation purposes, we will send in selected packets so we can assume I is
known. (In a real world scenario, I depends on the surrounding network.) We can also
assume that at least an abstract representation of Π is known. Programmers and static
analysis tools can completely understand high-level P4 program code. (On the other hand,
the true Π would be expressed in terms of the actual post-compilation machine code that is
executed by the CPU.) Each element in E covers all deep-rooted factors such as the machine
specs (architecture, cores, and TCAM memory modules), OS choice (e.g., caching behavior
and scheduling policies), and software implementation of the virtual switch (e.g., lookup
algorithms), including changes in their behavior during execution. As such, E is generally
unknown (although parts of it can be analyzed and made known). Notationally, the rest
of the table is to be interpreted in terms of a given (I, Π,E) triple (i.e., an input space,
a program code, and an execution environment space). Ω denotes the complete execution
space, where each execution depends on a pair of well-understood factors (currently, only
the input) and deep factors (the complete behavior of the background environment during
the execution). Note that we did not include Π in Ω, since each execution depends on the
whole program.

Our knowledge of the probability distribution of these spaces is also partial. The execution
path taken by the program is solely dependent on the program input (and the program itself),
which means fΠ is completely conditional on fI, and we can define it as follows:

fΠ(π) = ∑{ fI(p) | p ∈ I, such that input packet p triggers path π } (1)

Thus, the probability of observing a specific execution f is only dependent on I and E,
making f a joint probability distribution of fI and fE. If we assume the incoming packets
are independent from the execution environment (which intentionally does not include
the surrounding network), then f (p, e) = fI(p) · fE(e) holds, but as fE(e) is unknown, so is
f (p, e).

In performance analysis, we are interested in estimating the specific numeric attributes
of ω ∈ Ω executions, such as the time it takes to complete a specific ω. This attribute,
denoted by X, coincides with the concept of latency. Other attributes (energy used, profit
made, etc.) can also be of interest and be estimated similarly, provided we have the means
to sample them.

We will also observe in Section 4 that real hardware rarely exhibits stable latency,
making individual measurements practically unpredictable. As such, our goal is to estimate
the selected characteristics of X (e.g., the minimum, mean, or maximum latency). Table 1
denotes these characteristics collectively as the population parameter θX .

In conventional (dynamic) performance analysis, θX is estimated by a process we
refer to as benchmarking. We start up the switch, send in random traffic, and sample the
latency. SX denotes one such sampling process, resulting in a sample. In benchmarking,
the estimators (denoted as θ̂X) use an SX sampling process to collect a sample and then use
a statistic (e.g., the minimum, mean, or maximum) to aggregate the sample into a single
number that estimates θX .

In static cost analysis, on the other hand, our goal is also to estimate θX , but since static
analyses are not allowed to execute the program, we cannot directly rely on E. Instead,
we rely on select attributes of E, whose set we call a cost model. We assume any e ∈ E can
be decomposed or projected into a set of primitives, and we can express the attributes in
terms of these primitives. For example, both [11] and [8] cite the belief that by measuring
the execution time of primitive instructions (of varying granularities), we can inductively
infer the execution time of a complete instruction sequence. We also rely on the existence
and attributes of such primitives, where Y denotes the time it takes to execute an i ∈ Inst
primitive instruction in a given e ∈ E environment. Note that Y is independent of I and Π.
Y only models E, and we have to be able to observe it independent from specific program

Electronics 2022, 11, 2117 6 of 27

codes and inputs. (As such, these observations can be made by third-parties.) As in the
case of X, E is generally unknown and unpredictable, so instead of Y, we have to rely
on abstract characteristics of Y (e.g., the minimum, mean, or maximum execution time),
denoted by the population parameter θY. The cost analyzer assumes a bootstrapping process
(preferably conducted by a third-party, such as the switch vendors), which uses an SY
sampling process to generate a sample and aggregate it into an estimator θ̂Y, which can
estimate θY. As paths are just sequences of primitive instructions, by knowing the θ̂Y cost of
each i ∈ Inst primitive instruction, we can extrapolate from these the cost of the execution
paths in Π (denoted by θ̂Z). Specifically, given an e ∈ En sequence of environment outcomes
during sampling, the cost of an arbitrary m-length path π = (i1, i2, . . . , im) ∈ Π can be
calculated as

θ̂Z((i1, i2, . . . , im), e) =
m

∑
k=1

θ̂Y(ik, e) (2)

We now understand all the factors the static cost estimator (
#»

θ X) is using to estimate θX ,
and we can now give a general overview of the process. First, we have to acquire from the
vendor (or generate ourself) the estimator θ̂Y (i.e., a cost model that describes the execution
time of each primitive instruction i ∈ Inst). Using that, we can derive θ̂Z, which is the cost
of each execution path (Equation (2)). Next, the cost analyzer can use an fI probability
distribution of the input packets to produce fΠ, which is the probability distribution of the
paths (Equation (1)). Finally, we use the formulas in Table 2 to estimate the θX parameter.

Table 2. Comparison of dynamic and static cost estimators.

Parameter (θX) Dynamic Cost Analysis (θ̂X) Static Cost Analysis (
#»
θ X)

θminX (Ω) = min
ω∈Ω

(X(ω)) θ̂minX (ω) = min(SX(ω))
#»

θ min
X (e) = min

π∈Π
(θ̂minZ (π, e))

θavgX (Ω) θ̂avgX (ω)
#»

θ avg
X (e)

= ∑
ω∈Ω

(f (ω)X(ω)) =
∑(SX(ω))

|SX(ω)|
= ∑

π∈Π
(fΠ(π) θ̂avgZ (π, e))

θmaxX (Ω) = max
ω∈Ω

(X(ω)) θ̂maxX (ω) = max(SX(ω))
#»

θ max
X (e) = max

π∈Π
(θ̂maxZ (π, e))

Table 2 collects the static and dynamic estimators for the three population parameters
of the execution time (X): the minimum (θminX), the mean (θavgX), and the maximum (θmaxX)
with respect to all possible outcomes (executions). In real-world terms, the minimal
and maximal execution times can be interpreted as the upper and lower bounds of the
execution time, while the mean execution time tells us what kind of performance we can
realistically expect from the program when it is processing a long (possibly infinite) and
varied packet stream.

The second column summarizes how these parameters are estimated using conven-
tonial benchmarking. In essence, we take a random sample of execution times (SX(ω),
where ω denotes a given sequence of random outcomes) and calculate its minimum, mean,
or maximum. For example, we calculate the mean simply by summing up the measured
execution times in SX(ω) and dividing by the sample size |SX(ω)|. The third column
describes how we estimate these parameters in static cost analysis. For example, to estimate
the mean execution time, we calculate the weighted average of the path costs (θ̂avgZ , itself
an estimate, based on dynamic performance analysis as shown in Equation (2)), where each
weight is the probability of the path being executed (fΠ(π), calculated statically based on
the input probabilities and the program code as shown in Equation (1)).

We may interpret the min, avg, and max labels as a specific performance scenario. A
machine that executes a heavy load in the background will exhibit worse performance than
a lightly burdened one, and we would like to make separate estimates for each scenarios.
For example, θ̂minZ estimates the execution time of a path in the best-case scenario regarding
execution environments (i.e., the case when the environment is favorable (no cache misses,
no rival background processes, etc.)).

#»

θ min
X estimates the execution time when both the

Electronics 2022, 11, 2117 7 of 27

environment and the program input are favorable. Note that combinatorially, we can define
nine such static cost estimators altogether. In addition to the three already in Table 2, we
could calculate the estimators for favorable inputs in an average environment, favorable
inputs in an unfavourable environment, average inputs in a favorable environment, etc. (In
Table 3 of Section 4, we define some of these additions along with the dynamic estimators
we used to validate them.)

2.3. Limitations

We know of two hidden limitations regarding this model of P4 program execution
time. One is that it does not recognize that the input and environment can depend on each
other across executions, whereas in a real-world scenario, specific packet streams processed
by the switch will have a lasting influence on the environment. A common example of this
is MAC learning. Another one is that receiving similar packets in succession can help with
optimizing memory allocations (relevant in software switches). Moreover, P4 programs
can also store metadata which are preserved across executions. In our model, this can be
considered to be covered by I (in which case I needs to store the start states and not just the
input packets), but this still fails to acknowledge, for example, that the switch can cache the
metadata during an execution and take advantage of this during subsequent executions.

The other limitation is more about practicality. P4 allows updating the lookup tables
between packets. One possible solution is to include all possible table contents probabilisti-
cally, as we do with fI in the case of packets. Unfortunately, this is most likely unfeasible
for all but the simplest use cases, as each table candidate multiplies the number of potential
program paths exponentially. Alternatively, we can think of a table update as an operation
that changes program Π1 to some other program Π2. Since all estimators are defined to
predict the execution time of just one (random) execution, our model can handle table
updates by simply recalculating everything with Π2 instead of Π1 (although program-
independent, third-party produced estimators that require sampling—such as θ̂Y—do not
need recalculation). Here, given n table updates, we need to recalculate everything n times.

2.4. Probabilistic Model Checking

An important component of our cost analysis tool is the PRISM probabilistic model
checker [9]. We chose model checking over common static analysis methods (e.g., control
flow analysis, which was examined in our earlier work [12]) because these methods usually
do not understand program semantics fully and cannot take into account changes in the
program state entirely. The reason we chose probabilistic reward-based model checking
in particular over other forms of model checking (for example, UPPAAL, which is built
around timed automata and used for the verification of real-time requirements (e.g., in [7]))
was due to the large number of unknown factors in the case of P4. Probabilistic model
checking allows its users to handle these unknowns probabilistically. PRISM offers several
algorithms for calculation (performing better or worse depending on the use case) and good
documentation. As probabilistic model checking is a less well-known term, we introduce
here the most important definitions based on [13] (Chapters 6.2, 10.1, 10.2, and 10.5 of the
monograph). In the following paragraphs, we assume our readers already have a basic
understanding of temporal logic and the syntax and semantics of construction tree logic
(CTL).

CTL formulas are interpreted over transition systems. A transition system (TS) is
an (S, Act,−→, I, A, L) tuple, where S is a set of states, Act is a set of actions for labeling
transitions, −→⊆ S× Act× S is a set of transitions, I ⊆ S is the set of initial states, A is
a set of atomic propositions, and L : S → A is a labeling function deciding which states
satisfy which atomic formulas.

Probabilistic CTL (PCTL) is an extension of CTL. PCTL formulas are interpreted over
discrete-time Markov chains. A discrete-time Markov chain (DTMC) is an (S, P, ι, A, L)
tuple, where S is a countable set of states, P : S× S → [0, 1] is the transition probability
function, ι : S → [0, 1] is the initial state probability distribution, A is a set of atomic

Electronics 2022, 11, 2117 8 of 27

propositions, and L : S→ A is a labeling function. The P transition probability function can

naturally be for paths such that P(s0 s1 . . . sn)
def
=

n−1
∏
i=0

P(si, si+1).For every M = (S, P, ι, A, L)

DTMC with a labeling function l : S× S → Act over some action set Act, there exists
a transition system TS(M) = (S, Act,−→, I, A, L) such that I = {s ∈ S|ι(s) > 0} and
−→= {(s, l(s, t), t)|P(s, t) > 0}.

Probabilistic reward CTL (PRCTL) is an extension of PCTL. PRCTL formulas are
interpreted over Markov reward models. Given an M DTMC, a Markow reward model
(MRM) is a pair (M, r), where r : S → N is an arbitrary reward function, assigning a
“reward” (or “cost”) to each state that is earned whenever that state is left. Given an
s0 s1 . . . sn path, the reward function can be naturally generalized to the path reward

function r(s0 s1 . . . sn)
def
=

n−1
∑

i=0
r(si).

We define the language of PRCTL state formulas (i.e., propositions that make claims
about states) as the set of expressions generated by the grammar Φ ::= > | a | Φ1 ∧
Φ2 | ¬Φ| ∀ϕ| ∃ϕ|| PJ(ϕ) | EK(Φ), where p is an arbitrary atomic state formula and J is an
interval such that J ⊂ [0, 1]. PRCTL path formulas (i.e., propositions that make claims
about paths) can be defined by the grammar ϕ ::= # Φ | Φ1 U Φ2. Like in CTL, # Φ
is satisfied in path π if Φ is satisfied in the second (usually called the “next”) state on
π. Φ1 U Φ2 is satisfied in π if a state s ∈ π satisfies Φ2, and all states in π preceding s
satisfy Φ1. State formulas that also appear in CTL have the same meaning. For example,
the satisfaction of state formula a in a state d̄ is given by the L labeling function of the MRM.
Similarly, ∀ϕ is satisfied in state s if the path formula ϕ is satisfied for all paths starting
from s. It follows that ∀(> U Φ) is satisfied in state s if Φ is satisfied on each path starting

from s. For this reason, we define the syntax 3 Φ def
= > U Φ as well, where 3 is usually

called the eventually operator. Given a π path that satisfies a formula 3 Φ with its shortest
prefix π′, which still satisfies 3 Φ, we call π′ the minimal path fragment of π.

Formula PJ(ϕ) is satisfied in s if the probability that a path starting from s satisfies
ϕ is inside the bounds of the J interval. Formula EK(Φ) is satisfied in s if the expected
reward—accumulated over the minimal path fragments of paths that start in s and satisfy
3 Φ—is in inside the bounds of the K interval.

A PRCTL model-checking problem is the following decision problem: given a state s
of a DTMC M and a PRCTL formula Φ, decide whether Φ is satisfied in s. As PJ(ϕ) and
EK(Φ) presume producing a numeric value, we can derive from these formulas P∆(ϕ) and
E∆(Φ), which are meant to be solved for the variable ∆. In the case of P∆(ϕ), the solution
is the probability, while in the case of E∆(Φ), the solution is the expected reward according
to the original definitions. We also consider solving such formulas as part of PRCTL
model checking.

We should note that these definitions concern how PRISM works internally. In most of
the paper, we are concerned with higher abstraction levels and thus use some of these terms
with slight differences in meaning and notation. For example, in the above definitions, the
paths connect the program states, while in our terminology, the paths connect the program
statements (i.e., transitions). The translation between the two levels will be discussed in
Section 3.

3. Solution

In this section, we propose our solution for the P4 static cost analysis problem described
in Section 2, and more specifically for calculating the estimator

#»

θ X . In the first part, we go
over the data requirements and software architecture of the tool, and then we focus on our
approach to difficult computational questions inherent in calculating

#»

θ X , such as how to
account for memory state changes occurring during program execution.

Electronics 2022, 11, 2117 9 of 27

3.1. System Description

Figure 1 models the data requirements and architecture of the software we devel-
oped for estimating the program execution time (i.e., for calculating the estimator

#»

θ X).
In Section 2, we gave a theoretical view on what kind of data

#»

θ X could rely on, and now
we refine this view into a more practical one.

Hardware
model

PRISM

Execution model
(SIL)

UserVendor

Software
model

P4 program Traffic model

Data plane Control plane

Control tables

θ̂Y fI Π

#»

θ X

Figure 1. Overview of the cost analysis funnel.

In our intended usage scenario, there are two important stakeholders: (1) vendors,
who manufacture hardware or software switches and possess in-depth (possibly secret
or proprietary) knowledge about their product and (2) users who intend to run their P4
programs on the software switch in order to transmit packets and who would appreciate
knowing

#»

θ X before they invest into buying a specific switch, building a specific network,
etc. Unfortunately, none of the stakeholders have all the information needed to calculate
#»

θ X ; the vendors have no knowledge of the intended use case of their customers, while the
customers lack (and possibly are prohibited from acquiring) in-depth knowledge about
the internals of the product they use for running their use cases. As such, the cost analyzer
needs input from two sources. Vendors—having insider knowledge about and an adequate
testbed for the hardware or software they sell—know most about the program execu-
tion environment (E), and so they can successfully benchmark the program-independent,
instruction-level cost model (θ̂Y) and ship it together with their product. The concrete
instruction set (Inst) in question is codified by the cost analyzer API. Users own the Π
program code to be executed (composed of the P4 program code and the lookup table
contents), and they usually know enough about the expected network traffic to model it
probabilistically as fI. With this, all the necessary information (fI, Π, and θ̂Y) is available
for the cost analyzer to calculate the estimator

#»

θ X . In a business setting, either the vendor
runs a cost analyzer instance preloaded with θ̂Y and exposes this to potential users (e.g.,
through a web interface) who can upload there data (fI, Π) or the users run their own cost
analyzer instances and somehow acquire the missing θ̂Y information from the seller of
the prospective product. Either way, the cost analyzer needs a robust frontend to merge
all this information together so that the tool can process it. Internally, we deliver the
“heavy lifting” part of cost analysis to the PRISM probabilistic model checker [9], a tool
specifically designed to deal with the computational complexity inherent in static cost
analysis. As translating the input information to the computational model used in PRISM
is non-trivial, we dedicate the rest of this section to detailing this aspect of our solution.

Electronics 2022, 11, 2117 10 of 27

3.2. Implementing a Sequential P4 Interpreter in PRISM

While P4 programs tend to spend most of their time performing table lookups, cost
analysis requires a complete understanding of the semantics of P4, including the control
flow and side effects. For example, a program may conditionally execute an expensive
table or not based on the outcome of an earlier table lookup (see Listing 1 in Section 4).
To successfully estimate the execution time, we need to know whether this expensive table
was executed or not, which in turn requires us to know the outcome of the earlier lookup
and so on going back to the very start of the program. (We also need to know how table
lookups are performed. We dealt with this topic in [12], where we presented a probabilistic
(Markov) model of the DIR-24-8 algorithm.) For this reason, we compile P4 down to the
PRISM probabilistic model checker which, given the appropriate operational semantics of
P4, performs probabilistic cost analysis out of the box, taking into account the side effects
and program control flow as well.

The scope of PRISM is more general than programming languages, as its programs
have to be described using a simple, state-based language, which can easily be translated
into Markov models. In this section, we show our idea for compiling P4 code (or, in fact,
code written in any other C-like language) to the PRISM modeling language.

The subset of PRISM we target can be represented as a pair (V, C), where V is a set
of variable declarations in the form of (name, type, initial_value) triplets and C is a set
of guarded commands in the form of probability, guard −→ effect rules. The rules
declare that from an s state satisfying the guard, there is a state transition leading to the
state produced by applying the effect to s. PRISM allows both non-deterministic and
probabilistic evaluation. In case multiple rules are matching, one is chosen randomly using
the probability distribution specified by the probability attribute of the respective rules.
Naturally, probability attributes in rules with identical guard expressions should add up
to one. Guards are simple boolean expressions over constants and variables in V. Effects
are lists of assignments where the left-hand side is a variable in V and the right-hand side
is an expression over constants and the variables in V. We will omit probability from the
notation in case it is one.

Remark 1. In this work, we will not make use of PRISM’s more sophisticated features such as
concurrent processes and synchronization, but these are interesting for future work with respect to
parallel network switch architectures.

Figure 2 illustrates how we translate high-level P4 control flow to low-level PRISM
commands. Our central idea was to implement a stack-based instruction language (SIL)
interpreter in PRISM. An SIL supports call-by-reference function calls as well. We designed
the SIL to resemble JVM bytecode for two reasons: (1) to aid the ease of understanding, since
many programmers have at least some superficial familiarity with JVM bytecode, and (2)
because JVM bytecode is a tried-and-true target for many popular programming languages,
so we did not have to face unforeseen challenges when we compiled P4. We emphasize
that JVM bytecode is currently just an inspiration of the SIL, and faithful implementation
of the JVM bytecode is not among the immediate goals of this work.

if (hdr.ipv4.isValid ())
{
...
}
...

12: load 0
13: const 1
14: add
15: getfield

16: invoke 2306~1

17: ifeq 47

{(eip = 12 ∧ op = no_op) −→ (op := load, x1 := 0),

(eip = 13 ∧ op = no_op) −→ (op := const, x1 := 1),

(eip = 14 ∧ op = no_op) −→ (op := add),

(eip = 15 ∧ op = no_op) −→ (op := getfield),

(eip = 16 ∧ op = no_op) −→ (op := invoke, x4 := 2306, x5 := 1),

(eip = 17 ∧ op = no_op) −→ (op := ifeq, x1 := 47) } ⊂ C

(a) P4 code (b) SIL code (c) SIL represented in PRISM

Figure 2. Translating P4 code to bytecode in PRISM.

Electronics 2022, 11, 2117 11 of 27

One downside of this design is that the SIL interpreter may be a very different runtime
environment to the real-world environments (components of E) in which P4 programs are
executed. (For example, the P4 specification expects copy-in/copy-out call semantics [14],
but there are implementations, such as T4P4S, deviating from this for optimization reasons,
and SIL deviates as well) This is counterweighted by two factors: (1) as we will see, cost
models (θ̂Y) have a free hand in deciding the cost of instructions and may use this to
downplay (or overplay) elements in the SIL that are not relevant (or highly relevant) to the
target architecture in question, and (2) in real-world usage, P4 programs spend most of
their time in lookup tables anyway, so we expect that even large differences in the control
flow representation will introduce only minor errors in the estimates produced by

#»

θ X .
Figure 2a depicts a simple conditional structure in P4, where the condition is a call

to the isValid function in data field hdr.ipv4, which returns whether the validity bit of
hdr.ipv4 is set (which usually indicates that the data structure stores a successfully parsed
packet header). In Figure 2b, we load the address of hdr (supposedly stored in parameter
0) to the stack and then increment the address by one to obtain the address of hdr.ipv4.
(We store the struct size in the first cell at struct addresses followed by the field contents,
of which the first in the case of hdr is that of ipv4.) We then obtain the reference stored at
hdr.ipv4 (which supposedly points to the start of the actual IPv4 header) and pass this
reference to the isValid function (supposedly in line 2306) that we call. In case isValid
comes back as false, we jump to the else branch or the merge point of the conditional
(presumably starting at line 47); otherwise, we continue into the true branch. Figure 2c
depicts how the SIL actually looks when represented in PRISM. Each command is only
triggered when the program counter (eip : N variable) stores its line number, and no
other instructions are currently in progress (stored in the op : N variable, though note that
PRISM has no strings, so we had to represent instructions as named integer constants).
In case a command is triggered, we set op to the name (numeric identifier) of the current
instruction and store its argument in one of the registers (represented by xi : N variables).
The C set of PRISM commands must also contain the implementation of the SIL interpreter
(not depicted). On the one hand, these program-independent commands have to perform
housekeeping (implement heap and stack, increment the program counter after instructions,
etc.), and on the other hand, they have to implement the instruction set of the SIL.

We will not detail too deeply how we implemented the interpreter in PRISM, but we
present the most important ideas. The state of the interpreter consists of the following
variables (and possibly more): (eip : N, esp : N, ebp : N, op : Inst, nop : Inst, error :
Errors, (x)k : Nk, (z)n : Nn, (s)m : Nm).

Register eip stores the instruction pointer (a label), esp stored the stack pointer,
and ebp stores the base pointer. Register op stores the identifier of the current instruc-
tion. Some of these are meant to be internal (e.g., iread, iwrite, and ipush), while others,
such as const, add, or invoke, are public. Internal instructions are used in the implementa-
tion of public instructions. op = end_op means that the last instruction was finished and
eip can be incremented. op = no_op represents an idle state (i.e., that a new instruction
(at the current eip) can be started). nop stands for the next operation being used to chain
multiple steps of instructions internally. In case an illegal state is reached, op is set to
error_op which is used if the machine gets stuck, and an error code is stored into the
register error.

x0, x1, etc. and z0, z1, etc. are for passing arguments to instructions, as in the case of
const1. Finally, a very long s0, s1, etc. sequence stores the contents of the stack. In the
case of P4, the first segment of the stack is reserved for representing the program memory.
PRISM has no concept of random access arrays nor of other collections. This means we
have to generate (s)m automatically as a sequence of individual registers. Moreover, we
need to generate access (read and write) rules for each register as well. The iread and
iwrite rules generated for accessing address 23 on the stack are illustrated by Equation (3).
PRISM will apply the first rule when the current operation is iread and its arguments
measure is 23, and it “returns” the value at position 23 (i.e., the content of register s23)

Electronics 2022, 11, 2117 12 of 27

by storing it in the internal register. The second rule with iwrite is similar to iread,
except in this case, there are two internal arguments excepted: the first one is a value to
be written to a register, and the second one stores the address to be written. The third rule
illustrates handling illegal arguments, which in this case is an address pointing out of the
stack. Finally, the fourth rule with ipush is another internal instruction illustrating how
one generated iwrite can be used. It “passes” z1 to iwrite and loads the address of the
top of the stack into z2, which will cause the value in z1 to be written to the top of the stack
(unless the stack is full), leading to an error:

Cinternal =

{(op = iread ∧ z1 = 23) −→
(z0 := s23, op := nop, nop := no_op),

(op = iwrite ∧ z2 = 23) −→
(s23 := z1, op := nop, nop := no_op),

(op = write ∧ z2 > m) −→
(op := error_op, error := access_violation),

(op = ipush) −→
(op := iwrite, z2 := esp+ 1, esp := esp+ 1, nop := nop),

. . .

}

(3)

As emphasized in Section 2, one of the most important obstacles to static cost analysis
is handling unknowns during the execution (for example, not knowing what kind of
input packet the program will operate on), and our approach to handling this issue is to
model these unknown factors probabilistically. In terms of model checking, this means that
program execution can branch either probabilistically or non-deterministically (in case the
branching probability is unknown). For example, in the example in Section 4, it is unknown
which packets will be processed by the switch, so there are multiple possible program
executions (|Π| ≥ 1). Yet, in this example, we do know the fI probability distribution of
possible packets, so it is possible to calculate the fΠ probability distribution of possible
program executions (see Equation (1)).

In our implementation, this calculation is performed automatically by PRISM. We just
need to tell PRISM where and how it should branch executions. Equation (4) illustrates
a probabilistic PRISM command in the SIL that we use for this purpose. It states that the
goto instruction in line 661 should step forward to line 662 with a probability of 0.33, jump
to line 1055 with a probability of 0.34, and jump to line 1448 with a probability of 0.33.
In particular, we use this command in the case study in Section 4 to simulate receiving one
of three packets at the beginning of the P4 program’s execution. Line 662 is supposed to
assign one specific packet to the input buffer, line 1055 assigns a different one, and line
1448 assigns yet another:

{(0.33, eip = 661 ∧ op = no_op) −→ (op := goto, x1 := 662),

(0.34, eip = 661 ∧ op = no_op) −→ (op := goto, x1 := 1055),

(0.33, eip = 661 ∧ op = no_op) −→ (op := goto, x1 := 1448) } ⊂ C

(4)

Note that in Section 2, we limited the probabilistically modeled phenomena to input
packets (I), while we used statistics (θ̂Y) to address other environment-related unknowns
(E). Yet, with the above mechanism, we could easily expand the probabilistically modeled
factors (and shrink E at the same time) as well, which allows ample room for future work
(for example, to include the probabilistic model of DIR-24-8 in [12]).

Electronics 2022, 11, 2117 13 of 27

3.3. Static Cost Analysis for P4 in PRISM

As we specified earlier in Table 2, our approach to estimating the execution time
(that is, to calculating

#»

θ X) relies on the fΠ probability distributions of possible executions
and also on a cost model θ̂Y that assigns costs to elementary instructions (based on the
statistics of isolated measurements taken for the target architecture).

In Section 2.4, we discussed how PRISM, as a probabilistic model checker, augments
traditional property checking with the checking of probabilistic properties (that is, calcu-
lating the probability of whether a property is satisfied by the program) and also with the
checking of reward-based properties (accumulating expected rewards or costs over the set
of possible executions). For static cost analysis, we can rely on this latter facility.

In PRISM, a reward (or cost, as this is only a moral distinction) can be specified as
an r : G → N reward function, where G denotes the set of logical propositions over
the variables of the state space. In the case of a definition r(guard) = score), whenever
execution reaches a state that satisfies guard (a predicate over the program variables),
the reward is incremented by score (a number).

We implemented cost models (θ̂Y) as specific r reward functions. For example, in the
case study in Section 4, we used the reward definition in Equation (5) to represent a
cost model θ̂minY , which assigned a 0.114-ms overhead cost to the start of the program
and assigned an estimated cost formula (see Equation (7) in Section 4) to the function
invocation (supposedly a table lookup invocation, treated here as an elementary instruction)
triggered at line 45:

rbest_case(eip = 0 ∧ op = no_op) = 0.114

rbest_case(eip = 45 ∧ op = invoke) = 20000 ·2.031− 0.114
100000

(5)

For static cost analysis, we need PRISM to check or solve the reward-based properties
in the form of PRCTL predicates (see Section 2.4). In addition to EK(Φ) (checking whether
the expected reward is within interval K) and E∆(Φ) (solving the formula for variable ∆
(i.e., returning the expected reward)), PRISM can also calculate and check the maximum
and minimum rewards. We will denote the maximum reward operator as M ↑K(Φ) (and
M ↑∆(Φ)) and the minimum reward operator as M ↓K(Φ) (and M ↓∆(Φ)). In case the
name of the reward function is relevant, we write it in superscript.

Specifically, to calculate the minimum value of cost rbest_case (i.e., to calculate the
estimator

#»

θ min
X in Table 2), we need PRISM to solve the property in Equation (6) for the

variable ∆:
M ↓best_case

∆ (op = done) (6)

The PRCTL formula accumulates the rewards on the minimal path fragments that satisfy
3(op = done) (i.e., on the shortest path prefixes on which the program state, designated
as the final state, is eventually reached (the SIL register op eventually stores the special
done instruction)). For each of these paths, PRISM will keep a separate account for reward
rbest_case and increment it in each program state as per the rules defined for rbest_case.
Finally, PRISM returns the minimum of these reward instances.

Remark 2. In the case of bound checking (with EK(Φ), M ↑K(Φ), M ↓K(Φ), and even with
PJ(ϕ)), we expect users to specify their requirements manually. The exact requirements depend
entirely on the application. For example, a network engineer replacing a hardware switch with
a software switch will be possibly interested in checking the latency requirements of 10 Gigabit
Ethernet networks. One the other hand, a developer testing a P4 compiler will be more interested in
benchmarks, such as those in [3]. Alternatively, requirements can also be generated automatically.
In [6], Gao et al. generated PRCTL properties with exact bounds by finding suitable values for ∆
and then gave the user the option to relax these bounds if needed. Recently, in [15], the authors also
experimented with automatically generating complete CTL formulas. Such an approach is viable in
cases where manual requirement design cannot provide full coverage for a large system, as in the

Electronics 2022, 11, 2117 14 of 27

case of modern enterprise networks. Exploration of possible application scenarios with requirements
where the tool can be applied is an interesting and viable topic for future work.

4. Case Study

In this section, we introduce a case study to illustrate the usage of our cost analysis tool.
We will use the notations introduced in Section 2. First, we informally describe our goal,
namely to validate our static estimates (

#»

θ X) against actual measurements θ̂X . This section
is followed by the description of the software and hardware under testing. After that,
we describe the measurement environment and preparation of the data (θ̂Y) needed for
initializing the cost analysis tool. Finally, we perform validation and evaluate its results.

4.1. Objectives

Our goal is to illustrate the cost analysis process from beginning to end through a
simple case study. In Table 2 of Section 2, we introduced three statistics for estimating the
minimum, average, and maximum performance. For each (θ̂X,

#»

θ X) pair in the table, we
conduct measurements to find θ̂X , use the cost analyzer to estimate

#»

θ X , and then compare
the error between the two.

As we are currently restricted to simple models of complex processes (such as the
interoperation of lookup tables and hardware caches), our primary goal is not to show how
accurate the static cost analysis is but rather to show how it composes data from various
sources into cohesive performance estimates. Nonetheless, we will also attempt to evaluate
the estimation and highlight its weaknesses with the goal to facilitate future work.

Additional Estimators

In Section 2, we noted that we could construct nine possible estimators altogether by
combining the minimum, average, and maximum statistics of the respective components
of the three estimators in Table 2. In Table 3, we introduce two more of these estimators,
because we found them meaningful and relatively easy to infer using static cost analysis.
By simply taking the minimum (maximum) of the whole pool (as in the case of θminX and
θmaxX), we failed to capture the distinction between having good (bad) performance due
to fortunate (unfortunate) inputs from I versus having good (bad) performance due to
fortunate (unfortunate) environments from E. With θ

avg_best
X , we intend to represent a

population parameter that tells us how the program performs on average across multiple
inputs (i.e., across a packet stream) in case we find the most fortunate environments. We
denoted these beneficial outcomes with Ωbest. Note that Ωbest ⊆ Ω. The other parameter,
θ
avg_worst
X , has the same purpose, except it tells us about the average performance in

unfortunate environments (Ωworst).

Table 3. An extension of Table 2 with two more estimators.

Parameter (θX) Dynamic Cost Analysis (θ̂X) Static Cost Analysis (
#»
θ X)

θavg_best
X (Ω) θ̂avg_best

X (ω)
#»

θ avg_best
X (e)

= ∑
ω∈Ωbest

(f (ω)X(ω)) = ∑
π∈Π

min(SX(ω
∣∣
π
))

|SX(ω
∣∣
π
)|

= ∑
π∈Π

(fΠ(π) θ̂minZ (π, e))

θavg_worst
X (Ω) θ̂avg_worst

X (ω)
#»

θ avg_worst
X (e)

= ∑
ω∈Ωworst

(f (ω)X(ω)) = ∑
π∈Π

max(SX(ω
∣∣
π
))

|SX(ω
∣∣
π
)|

= ∑
π∈Π

(fΠ(π) θ̂maxZ (π, e))

In static cost analysis, we estimated the θ
avg_best
X parameter with

#»

θ
avg_best
X . Like

#»

θ
avg
X did, this estimator calculates the expected performance across all paths, except that

θ
avg_best
X uses the cost model θ̂minZ , which estimates the performance of a path in the best

possible environment. θ
avg_worst
X is analogous. To validate

#»

θ
avg_best
X , we used the estimator

θ̂
avg_best
X . Here, we partitioned the ω outcomes based on which π ∈ Π path was taken

(determined solely by the input and the program code). SX(ω
∣∣
π
) denotes samples taken

Electronics 2022, 11, 2117 15 of 27

in an environment where the input triggered the path π. To estimate the performance
of a path in the best possible environment, we took the minimum of SX(ω

∣∣
π
). We then

estimated the performance across inputs (paths). We calculated the mean of the minimums,
weighted by the size of each SX(ω

∣∣
π
) sample (which is again, determined solely by the

input and the program code).

4.2. Use Case

We will now enumerate the software and hardware components of the switch, whose
performance we will estimate both statically and dynamically. In particular, we will examine
the performance of the P4C Behavioral Model (BM) software switch [16] as it executes a P4
program that we selected from the test cases of the P4C compiler.

4.2.1. P4 Program

The particular P4 program whose performance we attempted to estimate is called
basic_routing-bmv.p4, a minimal L2 or L3 pipeline freely available from the P4C test
cases [17] with slight modifications (e.g., we configured each table to use ternary lookup for
the reasons we detailed earlier). We chose this program as it is publicly available, relatively
easy to read, and can be analyzed in a feasible time due to its size. The code excerpt most
relevant to this study is depicted in Listing 1, together with its abstract control flow graph
in Figure 3. When the ingress block of this P4 pipeline is reached, the program checks
whether there is a valid IPv4 packet stored in the hdr.ipv4 data structure, and it proceeds
to perform the table lookup on tables port_mapping and bd. Then, another table lookup
is performed on table ipv4_fib. Only if this lookup fails will we perform ipv4_fib_lpm
as well; otherwise, this is skipped. In the final line, we set the egress_spec field to 1 to
forward the packet to port 1 (where we listen for its arrival). As noted in Section 2, we will
assume the contents of the lookup tables are hardwired and therefore not changing (we can
handle different table contents by recalculating the estimators).

Remark 3. In P4, table lookups can have side effects. For example, a successful match in table
port_mapping may alter the current packet in a way that affects whether ipv4_fib succeeds,
in turn deciding whether the potentially time-intensive ipv4_fib_lpm will be executed. In Section 3,
handling this problem was one of the reasons we implemented the complete P4 language semantics
in PRISM.

hdr.ipv4.isValid() port_mapping.apply();
bd.apply();
ipv4_fib.apply();

!ipv4_fib.apply().hit

ipv4_fib_lpm.apply();

nexthop.apply();

Figure 3. High-level control flow of Listing 1.

Electronics 2022, 11, 2117 16 of 27

Listing 1. Modified P4 source code from [17].

1 control ingress(inout headers hdr, [...]) {
2 table bd {[...]}
3 table ipv4_fib {[...]}
4 table ipv4_fib_lpm {[...]}
5 table nexthop {[...]}
6 table port_mapping {[...]}
7 [...]
8 apply {
9 if (hdr.ipv4.isValid ()) {

10 port_mapping.apply();
11 bd.apply();
12 if (! ipv4_fib.apply().hit) {
13 ipv4_fib_lpm.apply();
14 }
15 nexthop.apply();
16 }
17 standard_metadata.egress_spec = 1;
18 }
19 }

Remark 4. Figure 3 depicts the three execution paths of the ingress block (|Π| = 3). We should
note that, depending on the incoming traffic and table contents, there are possibly many more
execution paths. A successful match will cause an early exit from the lookup and invoke an action,
and these also impact performance. To model these paths, we should model lookup algorithms in
PRISM as described in Section 3. While we omitted this step from our current work (and in this
experiment, we use tables that never match), in [12], we already modeled the DIR-24-8 lookup
algorithm probabilistically in the form of a relatively small Markov chain. This can be directly
implemented in PRISM as well.

In Figure 3, the leftmost path (thinly dotted with a blue arrow) is the least expensive
(no tables are executed), the rightmost path (dashed with a red arrow) is the most expensive
(all tables are executed), and the cost of the middle path is between these two (some tables
are executed).

4.2.2. Program Data

We filled the tables of basic_routing-bmv.p4 with entries up to the given count in
Table 4. We intentionally inserted entries that never matched any packets in I so that a
linear lookup (e.g., the ternary lookup in BM) had to go over the complete tables. The only
exception was ipv4_fib, as this table had only one entry that would match (leading to the
execution of ipv4_fib_lpm), depending on the packets. The role of this one entry table is
to make it easy to check that the PRISM implementation indeed performs the matching.

As our goal was to validate our estimation of θX, we would send in possibly the
simplest packet stream that triggered each path with an equal likelihood. As described in
Table 4, our input space I will consist of three packets: p1 triggers the leftmost path (π1), p2
triggers the middle one (π2), and p3 triggers the rightmost one (π3). To make a sufficiently
expressive plot of our SX sample as we measured θ̂X, the first 1

3 of our packet stream
consisted of p1 packets, the second 1

3 consisted of p2 packets, and the final 1
3 consisted of p3

packets. (Note that switches can take advantage of caching when they receive the same
packet many times.) Our sample size was |SX | = 5000, and we specified a delay of 50 ms
between packets in order to avoid buffering (although predicting anomalies introduced by
packet queues is an interesting avenue for future research).

Electronics 2022, 11, 2117 17 of 27

Table 4. (Π, I) configuration used for validation (θ̂X).

Π

Program basic_routing-bmv2.p4

Tables

Name Entries Keys (bits) Matches

port_mapping 10,000 9 ∅

bd 20,000 16 ∅

ipv4_fib 1 44 p3

ipv4_fib_lpm 50,000 44 ∅

nexthop 20,000 16 ∅

Total number of paths (|Π|) 3

I

Packets

Name Desc

p1 Packet failing hdr.ipv4.isValid

p2 Packet failing !ipv4_fib.apply().hit

p3 Packet satisfying !ipv4_fib.apply().hit

Sample size (|SX |) 5000 pcs with 50 ms delay + warm-up session

Packet distributions (fI)
Sample p1 p2 p3

SX 0.33 0.33 0.34

4.2.3. Set-Up

In this case study, we conducted our measurements according to the set-up described
in Figure 4, with the HW and SW specifications of the target computer listed in Table 5.
There are two notable features in this table. One feature worth mentioning is the caches,
as Core i7 processors have inclusive L3 and non-inclusive L1 and L2 cache policies [18].
This means that in the case of an L1 or L2 cache miss, the CPU can query the L3 cache
instead of waiting until an L1 or L2 reload (i.e., it only suffers a bandwidth penalty and not
a cache miss penalty (unless an L3 cache miss happens as well)). The other feature in the
table is that we used the P4C Behavioral Model (BM) software switch [16] for running our
P4 programs. This programmable switch was designed as a reference model with respect
to the expected behavior of P4 switches, but its performance was expected to be worse
compared with the highly optimized, production-grade switches (such as Intel Tofino or the
DPDK-based T4P4S). For our current validation purposes this is better, since we can expect
the BM’s performance to be easier to observe and consider. Additionally, the BM version
specified here uses linear searching for ternary lookups. While this is much less efficient
than the conventionally used sublinear lookup algorithms (such as cuckoo hashing, DIR-
24-8, or prefix trees), it again helps us in validating the cost analysis by making it easier to
observe and consider the performance. As of this writing, the BM pre-allocates entries using
a C++ std::vector, presumably to ensure contiguous storage for cache efficiency reasons.

Table 5. Specifications of hardware and software used in the case study.

E
Machine specs

Intel Core i7-7500U @ 4x3.5GHz

L1: 32KB, L2: 256KB, L3: 4MB, DDR4 RAM: 4GB

Ubuntu 20.04, tcpdump 4.9.3

Software switch P4C-BM 1.14.0

Electronics 2022, 11, 2117 18 of 27

Target system

P4-programmable
switch

Packet generator

Packet monitor

veth

Cost analyser

Cost analysis
system

(Π, fI) (Πtest , fItest)

θ̂X θ̂Y
#»

θ X

Figure 4. System set-up for validating estimates resulting from static cost analysis.

4.3. Data Collection

Our cost analysis tool estimates the latency (θX) of programmable switches. Given a target
switch and a P4 program, the cost analysis tool estimates (

#»

θ X) how long it will take the switch
to execute the P4 program for one input packet. To validate the cost analysis tool, we must
compare these

#»

θ X estimates with the actual measurements taken on the target switch (θ̂X).
We see the validation process as a sequence of experiments. With each validation

experiment, we associate a specific packet stream and a P4 program. On the one hand, we
install the P4 program on the target switch, send the packet stream, and measure the latency
step by step. On the other hand, we parameterize the cost analysis tool with the packet
stream and the P4 program and start the analysis tool. In the final step, we compare the
measurements (generated by the former) and the static estimates (generated by the latter).

The system we designed for conducting the experiments is depicted in Figure 4.
In the Figure, we denote the components related to the cost analysis with a dotted arrow,
those related to benchmarking and validation with a dashed arrow, and those that are
participating in both with continuous arrows.

On the left side, the target computer runs a virtual switch, which in turn runs a P4
program (Π or Πtest). The host environment sends packets on an input virtual network
interface (according to fI or fItest), where they are read and processed by the virtual switch.
In turn, the virtual switch copies the processed output packet onto the output virtual
network interface, from which the host environment reads the packet and duly records the
time the switch took to process the packet (i.e., the difference between the timestamp of the
packet appearing on the input interface and the timestamp of it appearing on the output
interface). The set-up assumes that no packets are dropped, but it can be modified to detect
packet drops as well. On this system, we conducted both the bootstrapping measurements
(resulting in θ̂Y, the cost model we used during cost analysis to calculate

#»

θ X) and—in a
separate phase—the actual benchmarks (θ̂X), which we compared with

#»

θ X .
On the right side, a separate workstation runs our static cost analysis tool. The P4

program is input into the tool, and the output is
#»

θ X, the cost estimate. Aside from the
program code, the tool also needs a cost model (θ̂Y) as input. These data contain quantitative
information that models the deep characteristics (such as lookup algorithms and machine
performance) of the target computer. To assemble θ̂Y, we ran special P4 programs on the
target computer in order to measure the execution time of the primitive language elements.
In real world usage, we envision that the θ̂Y cost model would be produced by the target

Electronics 2022, 11, 2117 19 of 27

switch manufacturer or vendor so users can make
#»

θ X estimates without having to acquire
the hardware.

Data Collection for Cost Models (θ̂Y)

To predict the performance, we will calculate
#»

θ X with PRISM for the (Π, I) config-
uration described in Table 4. However, for this we need θ̂Y (i.e., to estimate the costs of
the primitive program components (Inst = {i1, . . . , in})) independent from specific P4
programs (sets of (ik1 , . . . , ikm) program paths) in order to compose these costs during the
estimation of

#»

θ X for specific Π P4 programs. In this case study, we constructed θ̂Y to
model the cost of executing lookup tables of different sizes. We chose to use this model
for its simplicity, but the PRISM representation allows more intricate models (with better
predictive power) as well, including Markov chains.

The (Πtest, Itest) configuration we used for this is described in Table 6. We used a
simple P4 program (not depicted) called table-benchmark.p4 that performed a lookup in
the test_table if it received packet p2 while it avoided the lookup if it received packet p1.
test_table had 100,000 entries. We chose this number simply because it was the sum of
the entry counts in Table 4. The size of the individual entries to be matched was 48 bits
(the size of an Ethernet destination address), comparable to the key size of ipv4_fib_lpm.
We had two test cases, with each used to estimate the cost of specific primitive program
components. (Note that the cost analyzer can accept almost arbitrary components, as per
Section 3. The components we identify here are just for illustration.)

Table 6. (Πtest, Itest) configuration used for cost modeling (θ̂Y).

Πtest

Program table-benchmark.p4

Tables
Name Entries Keys (bits) Matches

test_table 100,000 48 ∅

Total number of paths (|Πtest|) 2

Itest

Packets

Name Desc

p1 No table lookup performed

p2 Table lookup performed

Sample size (|S1
Y | = |S0

Y |) 5000 pcs with 50 ms delay + warm-up session

Packet distributions (fItest)

Sample p1 p2

S1
Y 0 1

S0
Y 1 0

We used two samples to derive θ̂Y. We obtained sample S1
Y by sending in 5000 packets

of the type p2, and in each instance, an unsuccessful lookup was performed on test_table.
As the whole table was read through, we could use these measurements to estimate the cost
of performing a lookup on tables of other sizes as well. Unfortunately, the pipeline has steps
other than the table lookup (for example, packet parsing), and we should avoid counting
the cost of these for the table lookup costs. For this reason, we collected another sample (S0

Y)
by sending in p1-type packets, triggering the path where only the bare minimum amount
of work was performed (i.e., receiving and parsing a packet and forwarding it to the egress
port). As such, S0

Y measures the baseline cost of running a P4 program. We could correct
the statistics derived from S1

Y by subtracting S0
Y.

Figure 5 depicts our measurements of S1
Y and S0

Y based on the configuration in Table 6.
To produce a precise cost model θ̂Y for estimation purposes, we need to take into account
the peculiarities of the environment as much as possible. When we conducted the first
iteration of the validation and compared S1

Y in Figure 5 to the third portion of SX in Figure 6
(see Section 4.4), we noticed that the former had a much higher average, even though the

Electronics 2022, 11, 2117 20 of 27

total number of entries visited during the table lookups was identical (100,000). We suspect
this is because the entry count in itself does not tell us about the actual size of the data
moved during the lookup; we need to consider the size of each entry (notably, the key sizes)
as well. Tables with large keys (such as test_table) will have fewer entries per KB, which
means they need more time to move the same number of entries compared with tables
with small keys. With Equation (7), we estimated the actual amount of data moved per
table lookup as entry count times entry size, where the latter is the key size multiplied with
some c table-independent overhead (the work the BM performs to process an entry):

size(table) ∼= c ∗ keysize(table) ∗ entries(table) (7)

10 420 830 124
0

165
0

206
0

247
0

288
0

329
0

370
0

411
0

452
0

493
0

0

1

2

3

4

5

6

7

S0
Y S1

Y

Latency (ms)

Packet ID

Figure 5. Samples used for cost modeling (θ̂Y).

10 410 810 121
0

161
0

201
0

241
0

281
0

321
0

361
0

401
0

441
0

481
0

0

0.5

1

1.5

2

2.5

3

3.5

4

SX

Latency (ms)

Packet ID

Figure 6. Samples used for validation (θ̂X).

To create our cost models, we took the table applications as a primitive instruc-
tion together with a special start instruction (oo, which accounts for the baseline cost),
and as such Inst = { start, test_table, port_mapping, bd, ipv_fib, ipv_fib_lpm, nex-
thop}. For example, θ̂maxY x(t, e) denotes the cost of any P4 statement that performs lookups
on table t in some worst-case scenario e ∈ En

max.
To illustrate how we can simply plug in better (or worse) cost models in the static cost

analyzer according to our needs, we will derive two different cost models from these mea-
surements. Based on S1

Y, we constructed a more naive η̂Y cost model and a more elaborate θ̂Y
cost model and examined which one produced better estimates. More specifically, in the η̂Y
cost model (Equation (8)), we assume that table cost grows linearly with the table entries (we
calculated the measured cost per entry based on S1

Y and used this as a factor to estimate the cost

Electronics 2022, 11, 2117 21 of 27

of executing table t). On the other hand, in the θ̂Y cost model (Equation (9)), we assume that the
table cost grows linearly with the actual amount of data moved to perform the table lookup:

η̂maxY (t, e) =

max(S0

Y(e)) if t = start

entries(t) ·
max(S1

Y(e))−max(S0
Y(e))

entries(test_table)
if t is a table

(8)

θ̂maxY (t, e) =

max(S0

Y(e)) if t = start

size(t) ·
max(S1

Y(e))−max(S0
Y(e))

size(test_table)
if t is a table

(9)

Note that in case Equation (7) describes size(t) well, the c overhead constant is elim-
inated in Equation ((9)). Note also that after the measurements have been performed
(in some variable e environment), all elements of these equations are known constants.
In Section 3.3, we described how we can map Inst to P4 statements and accordingly assign
these constant costs to P4 statements in PRISM. To make simple changes in cost models
(such as moving from η̂Y to θ̂Y), we only needed to modify a few lines of code in the PRISM
representation of the cost model.

4.4. Evaluation

We now attempt to measure SX and estimate θ̂X (i.e., to dynamically estimate the
latency in the E environment described by Table 5) given the Π program and input space I
described in Table 4. We will use θ̂X to validate our

#»

θ X estimates.
The plot of the SX sample we collected is depicted in Figure 6. As expected, the plot

shows three distinct “steps”, corresponding to the paths triggered by the p1, p2, and p3
packet streams. As our device under testing was a general-purpose computer, we speculate
that the variance was partly due to the cache behavior. On path π3, the overall size of
the data moved was much more than that on path π2. This means cache misses were
more catastrophic.

Given the program code of basic_routing-bmv2.p4, packet distribution fI, and a cost
model, PRISM can automatically derive static cost estimates #»η X (based on cost model η̂Y)
and

#»

θ X (based on cost model θ̂Y). In Appendix A, we discuss how we can check in this simple
case that the PRISM indeed returned with correct results. In the scatterplots in Figures 7 and 8,
we compare the resulting static estimates with the dynamic estimates (θ̂X) we made (based on
the SX sample described earlier) for each statistic defined in Tables 2 and 3.

Figure 7. Estimates based on entry counts.

Electronics 2022, 11, 2117 22 of 27

Figure 8. Estimates based on table size.

η̂Y, our naive cost model based on the table entries, did not perform very well. It highly
overestimated most of the estimators. As η̂Y was derived using test_table, it was biased
toward large-key tables, and consequently, the small-key tables in basic_routing-bmv2.p4
were consistently overperforming #»η Y estimators.

Comparatively, θ̂Y performed with much fewer errors (e.g., considering the variance
in SX). Due to our reliance on just one sample and the dangers of overfitting, we should still
avoid making far-reaching conclusions about the reliability of these estimates. We also had
to circumvent the limitations of the (possibly excessively) simple θ̂Y cost model we used in
this example in order to keep this study concise. We applied table lookups implemented as
linear searching (instead of the more prevalent hash and search tree-based algorithms), we
were careful to evade packet buffering, and we only accounted for cost factors aside from
table lookups in the simplest possible way. Still, in our opinion, this case study illustrates
well that we could plug more elaborate models into the cost analyzer with ease (as most
of the analysis is handled automatically), and the resulting estimates reacted positively to
new information.

4.5. Additional Capabilities

As seen from the description in Section 3, we only used a very limited subset of the
capabilities of PRISM to perform static cost analysis. With very little modification (us-
ing a different property), we could transform the tool—using PRISM’s non-probabilistic
properties—into a conventional model checker for P4 to check the interesting CTL proper-
ties or, using PRISM’s probabilistic properties, answer questions of a probabilistic nature,
such as whether the likelihood that a complex P4 program drops a packet is within accept-
able bounds. In the rest of this section, we include a few such examples illustrating the
capabilities residing in the tool beyond performance evaluation.

4.5.1. Functional Verification

In this work, our stated goal—performance prediction for P4 programs—pertains
primarily to the verification of non-functional requirements. The essence of our solution
was to transform P4 into a probabilistic program representation that could be passed to
the PRISM probabilistic model checker, which could verify the properties written in PCTL.
However, PRISM is also capable of classical model checking (i.e., verifying properties
written in CTL). Since CTL is not defined for probabilistic execution models, we need
to transform our probabilistic representation into a non-deterministic one, which simply
means deleting the probabilities from the transitions. In practice, PRISM automatically
performs this transformation.

In P4, when a header is successfully parsed, it is marked as valid. Performing opera-
tions over invalid headers is illegal, which is why the P4 source code in Listing 1 contains

Electronics 2022, 11, 2117 23 of 27

a validity check over hdr.ipv4 before any table is applied. Unfortunately, if the compiler
wants to ensure that operations are only performed on previously validated headers, it
has to enumerate all program paths leading to the operation, which means this problem
has exponential worst-case complexity. This makes model checking a competitive solution
for this problem, particularly when the property should be checked against the given
program input. Using our representation described in Section 3, we can formalize the above
requirement as a straightforward CTL formula:

∀((�(s833 = 0)) ∨ (�(op = iread∧ 835 ≤ z1 ≤ 963))) (10)

The formula in Equation (10) states the validity requirement for the hdr.ipv4 field of
Listing 1. � is a derived CTL path operator (usually the so-called “global” operator). A
path satisfies �Φ if all states on the path satisfy Φ. The equation assumes that in the SIL
data representation, the bits of hdr.ipv4 are stored between address 835 and 963 (while
833 and 834 store the validity bit and the header size, respectively). The formula is satisfied
if, on all π ∈ Π paths, either the validity bit stays ⊥ all along or the header contents are
read only in states where the validity bit is >. As the SIL data representation is known at
the compile time, this formula can be extended in a straightforward manner to cover each
header in the P4 source file.

4.5.2. Probabilistic Characteristics

Understanding the interplay between protocols and network traffic is useful for optimizing
the pipeline. In [12], we examined how the effectiveness of a compiler optimization step—found
in the T4P4S compiler—depends on the probability that the size of packet headers is equal to that
emitted by a given protocol. Using our current program representation, we can formalize such
requirements in PRISM as PCTL formulas that check such probabilities. As an example, we will
show the calculation of the probability that a particular statement is being executed. The formula
in Equation (11) queries the probability of a path on which table ipv4_fib_lpm is eventually
applied (supposedly by the SIL instruction having label 40). Given that network traffic is
distributed according to Table 4, PRISM returns 0.34, as we expect. A similar PCTL formula or
its bounded variant for checking other statements can be generated in a straightforward manner
using basic source code analysis:

P∆(3(op = no_op∧ eip = 40)) (11)

5. Related Work

Automatic performance prediction of P4 switches is a hot topic among P4 researchers.
Harkous et al. [8] approached the problem by abstracting P4 programs to some c1, . . . , cn
attributes deemed by the authors as potentially important to latency (or other metrics to
be estimated), such as the number of parsed headers, modified headers, or tables. In a
preparatory phase, similar to our phase that constructs θ̂Y, they measured on target-specific
testbeds the relationship between the attribute and latency as a gi : Ii → O function, where
1 ≤ i ≤ n, Ii is the set of possible values of attribute ci, and O is the measurement space
for measuring the effects on latency (e.g., O = R+). Then, they modeled attribute ci by
constructing the function fi : Ii → O that fit the data points in gi very well. The authors used
static analysis (specifically control flow analysis) of the P4 program to select a π program
path that was triggered by a specific packet. If the π features attribute ci with value πi
(e.g., the number of modified headers is πi), then fi(πi) is an estimate regarding the effect
of attribute ci on the latency. The complete estimate of the program path π (somewhat
comparable to our θ̂Z estimator) was estimated using (f1(π1), . . . , fn(πn)) · ∆>, where
∆ = (∆1, . . . , ∆n) is a target-specific vector that weighs the importance of each attribute.

A specific method for modeling gi was presented by Scholz et al. [19], who first
automatically segmented Ii based on using the second derivative of gi and then constructed
fi using curve fitting over each segment. Through this segmentation, their method is even

Electronics 2022, 11, 2117 24 of 27

capable of modeling deep, target-specific events (that we abstracted as components of E)
such as cache misses or target-specific reactions to changes in packet size.

As the earlier parallels to θ̂Y and θ̂Z may have already foreshadowed, we see this
approach as complementary to ours. While in our discussion we limited θ̂Y as an estimator
over Inst (the set of “instructions”), it would not be too difficult to include the estimators for
the attributes selected by these authors into our PRISM cost models either. These estimators
could effectively predict the attributes (depending on the deep factors in E) important for
performance, while our approach would handle modeling other unknowns probabilistically
and inferring program paths based on precise program semantics.

The authors of Flightplan [20] also had to solve a problem similar to calculating the
device-dependent θ̂Y, although they utilized the results for a different purpose. Flightplan’s
objective is to use P4 to realize a P4 programmable “one big switch” by segmenting P4
programs into subprograms and allocating them to different devices inside the network.
Each program segment requires execution of functions (e.g., performing table lookups,
checksums, and parsers). To infer the optimal allocation of segments, Flightplan relies

on rule-based inference and formal rules in the form of constraint
device : function−−−−−−−−−−→

effect, with constraint describing the conditions (e.g., for the input traffic rate) to deter-
mine whether the device named device can be used for performing a function function

and effect describing how utilizing the device changes the optimized parameters (e.g., out-
put traffic rate, latency, or power consumption). The authors estimate constraint and
effect by running function on device under a specific workload. As the result depends
on the workload, the estimate is expected to have some error. Flightplan and our tool both
build on very similar data: predictions on how specific devices execute specific units of
computations. As we do not have constraints on the abstraction level of the “instructions”
contained by Inst, we see an opportunity for collaboration here as well.

In this work, we delegate the heavy lifting of cost analysis to PRISM [9], a proba-
bilistic model checker specializing in solving the problem as efficiently as possible using
matrix-based computations. We reviewed other approaches for static cost analysis as
well. Wegbreit [10], possibly one of first authors on the topic, syntactically transformed
Lisp programs into difference equations that could be solved as closed-form performance
formulas. A modern take using Wegbreit’s approach is [21], where the authors analyzed
standard JVM bytecode and used single static assignment to transform this into cost
equations and size relations. The former are recursive equations in the form of, for exam-
ple, Cp(x1, x2) = ∑{Tb}b∈stmt(p) + Cq(y), telling us that the cost of executing a program
beginning with block p (depending on some x1 and x2 attributes of the previous program
state) equals the sum of the cost of p’s statements plus the cost of executing the next block
q (depending on a certain y attribute of the program state). The effect of the statements
(the relation between x and y) is abstracted into size relations. For example, size relation
{y = x1 + x2} can express that after performing the concatenation of an x1-length and
an x2-length list, the resulting list will have a length y. By utilizing a computer algebra
system to solve the arising recurrence equations (i.e., to remove free variables using the
size relations), the authors derived a closed-form performance formula depending only on
the size abstraction of the program input. We note the similarity between {Tb}b∈stmt(p) and
our θ̂Y. The authors also rely on target-specific profiling to estimate the cost of individual
bytecode statements.

P4 shares similarities with workflow languages applied in Service-Oriented Computing—
such as Business Process Execution Language (BPEL)—in the sense that it is a high-level
description of packet switching workflows, and in many cases, the exact implementation
of an individual task is application-specific. Gao. et al. [6] verified the functional and non-
functional requirements (e.g., evaluated performance) of service-based systems described
as BPEL workflows using PRISM. This analysis can be used for evaluating services and
selecting those that are most optimal for the business process. Their approach and ours
follow a similar outline: as BPEL cannot represent non-functional, quantitative user require-
ments (e.g., costs and reliability), the authors transformed BPEL into a formalism called a

Electronics 2022, 11, 2117 25 of 27

Probabilistic Reward Labeled Transition System (PRLTS), which allowed the users to also
specify non-functional requirements. The authors automatically generated the verification
properties in the PRCTL based on threshold analysis and let users customize the properties
on a graphical interface. Finally, the PRLTS model was transformed into PRISM so that it
could be checked against the generated verification properties.

6. Conclusions

This paper presented a framework that can automatically estimate the performance of
programmable network switches based on P4 [1] source code and probabilistic models of
the switch internals (i.e., hardware and software execution environments). As the problem
at hand has many domain-specific factors and components, we introduced a formal notation
to be able to refer to these factors and components unambiguously in the text. The core
idea of the solution is to compile P4 to a Markov chain-based representation used by the
PRISM probabilistic model checker [9]. PRISM performs the heavy weight calculations
required to predict performance while taking into account the complete semantics of P4. In
this way, on the one hand, we can successfully handle input-dependent behavior (such as
the P4 switch performing different lookup table operations based on the packet it receives),
and on the other hand, we gain a representation that can be extended with probabilistic
models of the execution environment. To show the framework in action, we described the
results of a case study where we used the tool to estimate the performance of a simple
P4 program running on the P4C-BM reference switch [16] and compared these results to
estimates gathered using conventional benchmarking over the same use case. With this
example, we also illustrated that the framework allows for incrementally adding into it
extra information (in the form of more concrete models of the environment) in order to
improve the precision of the estimation.

While our method is now complete in the sense that it covers the whole process of
inferring estimates from source code and basic information about the environment and
expected traffic, there are several open questions about making the framework more pow-
erful and more usable. One avenue of future research is to improve the environmental
models used by the tool. In the case study, we used a simplistic linear model for table
lookups, but in real life, a table lookup is usually implemented sublinearily. Our earlier
work [12] already contains an example on how the DIR-24-8 lookup algorithm (also used
by DPDK) can be modeled using Markov chains, which means it should be possible to
integrate it into our PRISM-based representation, and this way, we could model DPDK-
based targets (e.g., T4P4S [2]) as well. A similarly interesting question is how more complex
hardware behavior could be modeled into the tool. While questionable on the feasibility
side, in theory, we could integrate complete, well-defined hardware models automatically
by relying on tools like P4-to-VHDL [22] to first create deep, target-specific representations
of the P4 pipeline and then compile this representation to PRISM for very high-precision
performance prediction. In this work, we discussed packet processing as a sequential
process, but industrial-grade switches such as the Intel Tofino series are capable of pro-
cessing multiple packets in parallel. At the same time, PRISM is capable of modeling
concurrent processes out of the box. As such, performance prediction of concurrent P4
packet processing also seems to be a lucrative path to explore.

Author Contributions: Problem formulation, solution, and validation, D.L.; review and supervision,
G.P. and M.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the ÚNKP-21-4 New National Excellence Program of
the Ministry for Innovation and Technology from the National Research, Development and Innova-
tion Fund. This research was supported by the project “Application Domain Specific Highly Reliable
IT Solutions”, implemented with the support of the NRDI Fund of Hungary and financed under the
Thematic Excellence Programme TKP2020-NKA-06 (National Challenges Subprogramme) funding
scheme. This research was supported in part by project no. FK_21 138949, provided by the National
Research, Development and Innovation Fund of Hungary.

Electronics 2022, 11, 2117 26 of 27

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

Appendix A

We intentionally designed the case study to be simple so that the correctness of
the estimates could be checked manually. In this appendix, we show how to check the
correctness of

#»

θ
avg_best
X in Figure 8. In Table A1, we include the numeric results from the

bootstrapping measurements depicted in Figure 5. Based on this data, we also calculated
the factors in Equations (8) and (9).

Table A1. Measurements and factors for Equation (9).

g max avg min

S0
Y(e) 0.438 0.309394 0.114

S1
Y(e) 6.13 4.810818 2.031
g(S1

Y(e))−g(S0
Y(e))

entries(test_table) 0.000057 0.000045 0.000019
g(S1

Y(e))−g(S0
Y(e))

size(test_table) 0.009714 0.007682 0.003272

Based on Equations (7)–(9), we then calculate the instruction costs θ̂minY (t, e) for each t
table. We collected the results of this calculation in Table A2.

Table A2. Instruction costs of lookup tables.

t size(t) θ̂minY (t, e)

port_mapping 11 0.0359
bd 39 0.1275
ipv4_fib 0 0
ipv4_fib_lpm 269 0.8799
nexthop 39 0.1275

Finally, since we are looking for
#»

θ
avg_best
X , we want to calculate the best-case expected

time over the paths in our use case. As we described in the main text, by using the source
code in Listing 1 and the packet distribution in Table 4, we can infer that the second
path (having only port_mapping, bd, and nexthop tables) is executed with a probability of
0.33, while the third path (with all the tables, including ipv4_fib_lpm) is executed with a
probability of 0.34. On the first path, no tables are executed, but even here (as well as on
the other two paths), we have to account for the overhead cost (0.114). The expectation is
then given by Equation (A1).

0.114

+ 0.33 ∗ (0.0359 + 0.1275 + 0.1275)

+ 0.34 ∗ (0.0359 + 0.1275 + 0.8799 + 0.1275)
∼= 0.608

(A1)

We can now compare
#»

θ
avg_best
X in Figure 8 with this value to check whether the

state-based calculation by PRISM returns a plausible result.

Electronics 2022, 11, 2117 27 of 27

References
1. Bosshart, P.; Daly, D.; Izzard, M.; McKeown, N.; Rexford, J.; Talayco, D.; Vahdat, A.; Varghese, G.; Walker, D. P4: Programming

Protocol-independent Packet Processors. SIGCOMM Comput. Commun. Rev. 2014, 44, 87–95. [CrossRef]
2. Laki, S.; Horpácsi, D.; Vörös, P.; Kitlei, R.; Leskó, D.; Tejfel, M. High Speed Packet Forwarding Compiled from Protocol

Independent Data Plane Specifications. In Proceedings of the 2016 ACM SIGCOMM Conference, SIGCOMM ‘16, Florianopolis,
Brazil, 22–26 August 2016; ACM: New York, NY, USA, 2016; pp. 629–630. [CrossRef]

3. Dang, H.T.; Wang, H.; Jepsen, T.; Brebner, G.; Kim, C.; Rexford, J.; Soulé, R.; Weatherspoon, H. Whippersnapper: A P4 Language
Benchmark Suite. In Proceedings of the Symposium on SDN Research, SOSR ‘17, Santa Clara, CA, USA, 3–4 April 2017;
Association for Computing Machinery: New York, NY, USA, 2017; pp. 95–101. [CrossRef]

4. Cicioglu, M.; Calhan, A. A Multi-Protocol Controller Deployment in SDN-based IoMT Architecture. IEEE Internet Things J.
2022, 1. [CrossRef]

5. Kim, H.; Reich, J.; Gupta, A.; Shahbaz, M.; Feamster, N.; Clark, R. Kinetic: Verifiable Dynamic Network Control. In Proceedings
of the 12th USENIX Conference on Networked Systems Design and Implementation, NSDI‘15, Oakland, CA, USA, 4–6 May 2015;
USENIX Association: Berkeley, CA, USA, 2015; pp. 59–72.

6. Gao, H.; Miao, H.; Liu, L.; Kai, J.; Zhao, K. Automated Quantitative Verification for Service-Based System Design: A Visualization
Transform Tool Perspective. Int. J. Softw. Eng. Knowl. Eng. 2018, 28, 1369–1397. [CrossRef]

7. Gao, H.; Zhang, Y.; Miao, H.; Barroso, R.J.D.; Yang, X. SDTIOA: Modeling the Timed Privacy Requirements of IoT Service
Composition: A User Interaction Perspective for Automatic Transformation from BPEL to Timed Automata. Mob. Netw. Appl.
2021, 26, 2272–2297. [CrossRef]

8. Harkous, H.; Jarschel, M.; He, M.; Kellerer, W.; Priest, R. P8: P4 With Predictable Packet Processing Performance. IEEE Trans.
Netw. Serv. Manag. 2020, 18, 2846–2859. [CrossRef]

9. Kwiatkowska, M.; Norman, G.; Parker, D. PRISM 4.0: Verification of Probabilistic Real-time Systems. In Proceedings of the 23rd
International Conference on Computer Aided Verification (CAV ‘11), Snowbird, UT, USA, 14–20 July 2011; Gopalakrishnan, G.,
Qadeer, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6806, pp. 585–591.

10. Wegbreit, B. Mechanical Program Analysis. Commun. ACM 1975, 18, 528–539. [CrossRef]
11. Sapio, A.; Baldi, M.; Pongrácz, G. Cross-Platform Estimation of Network Function Performance. In Proceedings of the 2015

Fourth European Workshop on Software Defined Networks, Bilbao, Spain, 30 September–2 October 2015; pp. 73–78. [CrossRef]
12. Lukács, D.; Pongrácz, G.; Tejfel, M. Control flow based cost analysis for P4. Open Comput. Sci. 2020, 11, 70–79. [CrossRef]
13. Baier, C.; Katoen, J.P. Principles of Model Checking (Representation and Mind Series); The MIT Press: Cambridge, MA, USA, 2008.
14. P4 Language Consortium. P416 Language Specification, Section 6.7. Calling convention: Call by Copy in/Copy out. 2022.

Available online: https://p4.org/specs/ (accessed on 31 May 2022).
15. Gao, H.; Dai, B.; Miao, H.; Yang, X.; Barroso, R.J.D.; Walayat, H. A Novel GAPG Approach to Automatic Property Generation for

Formal Verification: The GAN Perspective. ACM Trans. Multimed. Comput. Commun. Appl. 2022. Just Accepted. [CrossRef]
16. P4 Language Consortium. The Reference P4 Software Switch. 2012. Available online: https://github.com/p4lang/behavioral-

model/ (accessed on 31 May 2022).
17. P4 Language Consortium. Basic_routing-bmv2.p4, Official P4 Reference Compiler Test Case, P4C. 2022. Available online:

https://github.com/p4lang/p4c/blob/master/testdata/p4_16_samples/basic_routing-bmv2.p4 (accessed on 31 May 2022).
18. Intel Corporation. Intel 64 and IA-32 Architectures Optimization Reference Manual, Section E.4.4 Cache and Memory Sub-

system. 2022. Available online: https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32
-architectures-optimization-manual.pdf (accessed on 31 May 2022).

19. Scholz, D.; Harkous, H.; Gallenmüller, S.; Stubbe, H.; Helm, M.; Jaeger, B.; Deric, N.; Goshi, E.; Zhou, Z.; Kellerer, W.; et al.
A Framework for Reproducible Data Plane Performance Modeling. In Proceedings of the Symposium on Architectures for
Networking and Communications Systems, ANCS ‘21, Layfette, IN, USA, 13–16 December 2021, Association for Computing
Machinery: New York, NY, USA, 2021; pp. 59–65. [CrossRef]

20. Sultana, N.; Sonchack, J.; Giesen, H.; Pedisich, I.; Han, Z.; Shyamkumar, N.; Burad, S.; DeHon, A.; Loo, B.T. Flightplan: Dataplane
Disaggregation and Placement for P4 Programs. In Proceedings of the 18th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 21), Online, 12–14 April 2021; USENIX Association: Berkeley, CA, USA, 2021; pp. 571–592.

21. Albert, E.; Arenas, P.; Genaim, S.; Puebla, G.; Zanardini, D. Cost Analysis of Java Bytecode. In Programming Languages and Systems;
De Nicola, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 157–172.

22. Benácek, P.; Pu, V.; Kubátová, H. P4-to-VHDL: Automatic Generation of 100 Gbps Packet Parsers. In Proceedings of the 2016
IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), Washington, DC,
USA, 1–3 May 2016; pp. 148–155. [CrossRef] .

https:/doi.org/10.1145/2656877.2656890
https:/doi.org/10.1145/2934872.2959080
https:/doi.org/10.1145/3050220.3050231
http://doi.org/10.1109/JIOT.2022.3175669
http://dx.doi.org/10.1142/S0218194018500390
http://dx.doi.org/10.1007/s11036-021-01846-x
http://dx.doi.org/10.1109/TNSM.2020.3030102
http://dx.doi.org/10.1145/361002.361016
https:/doi.org/10.1109/EWSDN.2015.64
http://dx.doi.org/10.1515/comp-2020-0131
https://p4.org/specs/
http://dx.doi.org/10.1145/3517154
https://github.com/p4lang/behavioral-model/
https://github.com/p4lang/behavioral-model/
https://github.com/p4lang/p4c/blob/master/testdata/p4_16_samples/basic_routing-bmv2.p4
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https:/doi.org/10.1145/3493425.3502756
 https:/doi.org/10.1109/FCCM.2016.46

	Introduction
	Background
	Objectives
	Existing Methods
	Approach
	Contributions

	Problem Description
	Informal Problem Description
	Formal Problem Description
	Limitations
	Probabilistic Model Checking

	Solution
	System Description
	Implementing a Sequential P4 Interpreter in PRISM
	Static Cost Analysis for P4 in PRISM

	Case Study
	Objectives
	Use Case
	P4 Program
	Program Data
	Set-Up

	Data Collection
	Evaluation
	Additional Capabilities
	Functional Verification
	Probabilistic Characteristics

	Related Work
	Conclusions
	Appendix A
	References

