
Citation: Gyöngyössy, N.M.; Erős, G.;

Botzheim, J. Exploring the Effects of

Caputo Fractional Derivative in

Spiking Neural Network Training.

Electronics 2022, 11, 2114. https://

doi.org/10.3390/electronics11142114

Academic Editor: Maciej

Ławryńczuk

Received: 14 June 2022

Accepted: 3 July 2022

Published: 6 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Exploring the Effects of Caputo Fractional Derivative in
Spiking Neural Network Training
Natabara Máté Gyöngyössy , Gábor Erős and János Botzheim *

Department of Artificial Intelligence, Faculty of Informatics, ELTE Eötvös Loránd University, 1/A Pázmány Péter
Sétány, 1117 Budapest, Hungary; natabara@inf.elte.hu (N.M.G.); gaboreros96@gmail.com (G.E.)
* Correspondence: botzheim@inf.elte.hu

Abstract: Fractional calculus is an emerging topic in artificial neural network training, especially
when using gradient-based methods. This paper brings the idea of fractional derivatives to spiking
neural network training using Caputo derivative-based gradient calculation. We focus on conducting
an extensive investigation of performance improvements via a case study of small-scale networks
using derivative orders in the unit interval. With particle swarm optimization we provide an example
of handling the derivative order as an optimizable hyperparameter to find viable values for it. Using
multiple benchmark datasets we empirically show that there is no single generally optimal derivative
order, rather this value is data-dependent. However, statistics show that a range of derivative
orders can be determined where the Caputo derivative outperforms first-order gradient descent
with high confidence. Improvements in convergence speed and training time are also examined
and explained by the reformulation of the Caputo derivative-based training as an adaptive weight
normalization technique.

Keywords: spiking neural networks; tempotron; caputo derivative; particle swarm optimization

1. Introduction

Neural networks have been around in machine learning for decades by now [1–4].
They evolved from implementing elementary logical gates through solving everyday,
monotonic tasks, such as character recognition, to exceeding human intelligence in complex
intellectual tasks, such as chess or go. However these static, artificial neural networks
(ANNs) still work in a digital manner, they work well on time-multiplexed machines,
such as CPUs and GPUs. The next step in their evolution came with the first spiking
neural networks (SNNs). These SNNs are analog-valued, dynamic simulations of biological
neurons based on more complex mathematical representations when compared to ANNs.
They transmit information between neurons via strictly timed spikes, rather than real
values, thus they resemble the behavior of human brains and natural intelligence.

Along with the practical data encoding, SNNs novelty relies on their specific hardware
architecture. In the last few years, there were several artificial neural arrays designed
to work with various SNN models, and training methods. When it comes to the energy
efficiency of these neuromorphic processors, all models report a huge improvement, with
three or four orders of magnitude less energy consumed than a regular CPU or GPU. Even
modern TPUs cannot achieve as low training and inference energies as specifically designed
SNN processors; therefore, SNN technology favors energy-efficient applications [5–7].
Recently developed memristive approaches might widen this gap even more [8].

While ANN-to-SNN conversion-based training has been a hot topic in the last few
years [9,10], direct SNN training should also be considered as an alternative. Direct SNN
trainings are mostly based on local learning rules which are native operations on a neuro-
morphic computing device. These are mostly variants of Spike-Time Dependent Plasticity
(STDP) learning [11,12] and gradient learning. STDP-like learning rules are local in the

Electronics 2022, 11, 2114. https://doi.org/10.3390/electronics11142114 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11142114
https://doi.org/10.3390/electronics11142114
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-8806-7338
https://orcid.org/0000-0003-3707-1366
https://orcid.org/0000-0002-7838-6148
https://doi.org/10.3390/electronics11142114
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11142114?type=check_update&version=1


Electronics 2022, 11, 2114 2 of 20

sense, that they only need the pre- and postsynaptic spikes to apply appropriate weight
modifications. There are successful mixed applications where gradient-based or evolution-
ary operators are used in addition to local plasticity, to handle global convergence [13,14].

The third main method for SNN training is the gradient-based, global approach [15,16],
which is the focus of this paper as well. Gradient-based methods use spike-timing, or rate-
based metrics to interpret the outputs of the SNN, and therefore use these metrics to
formulate cost functions too.

From the gradient-based SNN architectures in our case study, we utilize the Tempotron
model [17]. The errors in this model are the excess or absent voltages compared to the
spiking threshold. These voltage differences are in the end functions of the weight param-
eters, and by taking their gradients, classic Gradient Descent (GD) learning can be used.
While Tempotron is not the latest architecture, its various applications and enhancements
are carried out by numerous research groups even nowadays [18–20]. Such reusability of
classical methods can be observed in the field of artificial intelligence in general [21–24].

As this paper is a pioneer in applying Caputo fractional derivative in gradient-based
SNN training, we use a simple two-layer architecture without any backpropagation (BP)
tricks used to bypass the thresholding step function, and carry out extensive optimization
experiments with more than 10,000 SNNs trained. We will also apply restrictions and use
first-to-spike encoding to pass information between spiking neurons, and evaluate results.
For the experiments, we use four basic classification datasets also used for introducing
Caputo derivative-based ANNs by [25], so our work will be comparable in the sense of
improvement. Of course, as we explore basic ideas in this paper, the aim of this comparison
is not to outperform similar ANNs (especially as SNN models tend to be less accurate
compared to structurally similar ANNs), but rather to highlight empirical analogies.

Looking back to these ANN training possibilities, several recent studies are reporting
more efficient, and more precise learning, when standard, integer-order derivatives are
replaced with fractional-order derivatives [25,26]. These methods interpolate between the
cost function and the gradient of it based on different mathematical methods described
by fractional calculus. Recent studies include joint first and fractional-order methods and
global proofs of convergence when using these methods with ANNs [27,28], thus making
them a promising future research path.

The theorem of fractional calculus dates back several hundred years; however, the
possibility of its effective use has only become relevant in the last few decades. The
basic idea of fractional calculus is the extension of derivative orders from the integers to
reals or even imaginary numbers. There is a crucial property of these fractional-order
derivatives which is important when it comes to gradient-based training. fractional-order
derivatives are not local properties, rather they are interpreted over an interval. This means
that every single point of the fractional gradient includes information from an interval of
the cost manifold. Altogether using Caputo derivatives leads to a small, but significant
improvement in training, and thus they are to be used when training artificial neural
networks [25].

In most cases, when training ANNs with fractional-order derivatives, the Caputo
derivative, defined by [29] is one of the best operators to use, while the ideal order of this
derivative is around 7

9 [25]. Caputo derivative has also been proven to be useful when
calculating SNN neural dynamics [30], however to the best of our knowledge, it has not
been used for gradient-based SNN training before.

In this paper, as a case study, we propose a method for utilizing Tempotron-like [17]
learning using Caputo derivatives, in the training of two-layer spiking neural networks,
which later could serve as a basis of fractional-order training of more complex models. The
main contributions of the paper are as follows:

• We propose the Caputron optimizer, an efficient matrix formula for computing
fractional-order derivative-based weight updates of Tempotron-like architectures.

• By using shallow models and basic benchmark datasets extensive experiments are
carried out to show how Caputron with derivative orders from the (0, 1) open interval



Electronics 2022, 11, 2114 3 of 20

outperforms classic first-order derivative-based optimization in terms of categorization
accuracy and convergence speed.

• Using particle swarm optimization [31] we search for near-optimal derivative orders
for specific datasets and investigate if there is a generally suitable value for the
derivative order which is viable for multiple datasets.

• We discuss the possible reformulation of Caputo-derivative-based learning as an
adaptive weight normalization, which introduces a degree of sparsity to the net-
work architecture.

With this case study, we wish to provide empirically suitable values for Caputo
derivative orders for SNN training based on a large number of model evaluations. We
also aim to encourage discussion and future research of more complex fractional-order
derivative-based SNN architectures, which can achieve state-of-the-art performance due to
a higher number of parameters and more complex information flow.

The structure of this paper is as follows. In Section 2, Tempotron learning rule is
used in our case study, and the mathematical background of the Caputo derivative is
introduced. Section 3 presents the used algorithms for SNN simulation and Caputron,
a novel Caputo derivative-based Tempotron optimizer. Section 4 contains various tests,
on standard benchmark datasets, and summarizes our experiments and comparisons.
Section 5 draws conclusions, possible future work is also presented here.

2. Problem Statement
2.1. Fractional Derivatives in Tempotron Learning

The Tempotron SNN model was introduced in Nature by [17]. The model uses spike-
time-based information representation. Rather than solving a differential equation, this
SNN model has a kernel function, which is an ordinary function derived from neural
dynamics. This kernel function takes the elapsed times from every presynaptic spike as
arguments, to calculate the postsynaptic potentials (PSPs). The weighted sum of these
gives the momentary membrane potential of the postsynaptic neuron. The kernel function
is given by Equation (1).

K(t− ti) = V0 ·
(

e
−(t−ti)

τM − e
−(t−ti)

τS

)
, (1)

where K(.) is the kernel function, V0 is the normalization coefficient, t is the current
simulation time, ti is the presynaptic spiketime, τM and τS are the membrane and synaptic
time constants, respectively. A representation of the kernel function with common time
constants and unit normalization coefficient is shown in Figure 1.

The postsynaptic neuron’s potential is then calculated according to Equation (2).

Vj(t) = ∑
i

wji ∑
ti

K(t− ti) + Vrest, (2)

where Vj(t) denotes the membrane potential of postsynaptic neuron j, wji is the synaptic
weight between presynaptic neuron i and postsynaptic neuron j, ti is the series of spiketimes
of the presynaptic neuron i, and Vrest is the equilibrium potential of the neuron.

Tempotron is trained in a classical gradient-based manner, based on the cost function’s
first order partial derivative with respect to the weights. A learning rate is also applied
when calculating the weight updates. The main idea behind the Tempotron cost function
is the following. If there was a desired spike, but the neuron was inactive, the error is the
difference between the firing threshold and the maximal membrane potential. If there is
an undesired neuron activation, the error is the voltage difference by which the maximal
membrane potential exceeds the firing threshold. The cost function’s definition is given by
Equation (3).



Electronics 2022, 11, 2114 4 of 20

E(Vj) =


VΘ −Vj(tmaxj) expected spike did not occur

Vj(tmaxj)−VΘ unexpected spike occured

0 otherwise

(3)

The above mentioned derivative of this cost function and the weight update rules are
as follows (Equations (4) and (5)).

∂E
(
Vj(wj0, . . . , wjN)

)
∂wji

=


−∑ti<tmaxj

K(tmaxj − ti)

+∑ti<tmaxj
K(tmaxj − ti)

0

, (4)

where the cases are the same as in Equation (3). tmaxj here is the simulation time at which
the membrane potential of output neuron j had the highest value.

∆wji = −λ
∂E
(
Vj(wj0, . . . , wjN)

)
∂wji

, (5)

where ∆wji is the weight change and λ is the learning rate.

Figure 1. Tempotron kernel function with example neural parameters. With parameters: V0 = 1 mV,
τM = 15 ms and τS = 5 ms.

A schematic of the forward and backward pass of two neurons in the Tempotron
model is depicted in Figure 2. Here T denotes the discrete simulation time steps, Ti and Tj
are spike times of neuron i and j, respectively. Neurons form two layers the presynaptic one
is denoted by I the postsynaptic layer is denoted by J the weight parameter of the synapse
between neuron i and j is described by wji. K(T − Ti) is the postsynaptic potential derived
from presynaptic spike Ti. Vj(Tmaxj) is the maximal membrane potential of neuron j at time
step Tmaxj . E(Vj) is the Tempotron loss calculated from the output spikes, target spike times,
and maximal membrane potentials. ∂E

∂wji
is the partial derivative of the loss with respect to

the weight parameter. The weights are updated based on this derivative the formulation
of which depends on the derivative order, as it can be either 1 or a fractional value for
the Caputo derivative between 0 and 1. Inspired by results in ANN research [25,26] this
paper aims to investigate the effect of replacing the first-order partial derivative with a
fractional-order Caputo derivative.



Electronics 2022, 11, 2114 5 of 20

Figure 2. Forward and backward pass for each synapse between two layers of spiking neurons
using Tempotron loss. The forward pass includes the calculation of neural dynamics in layer I
and J by utilizing K Tempotron kernel function and Ti as spike times. wji weights represent the
synapses and are the learnable parameters of this architecture. The network outputs Tj spike times
of the postsynaptic layer. The backward pass includes the calculation of Tempotron loss according
to Equation (3). Then the weights are updated based on the partial derivative ∂E

∂wji
which can be

calculated with an integer or a fractional Caputo order as well.

2.2. Caputo Derivative

In the following section, we introduce the specified fractional-order derivative we
used for training our spiking neural network.

There have been several definitions for fraction-order derivatives such as the Grünwald–
Letnikov or the Riemann–Liouville definition. In this paper, we would like to utilize the
most promising one based on ANN studies, this is the fractional-order derivative by Caputo.
The main mathematical reason for this choice is that Caputo and the ordinary first-order
derivative have the same initial value for differential equations. Another useful advantage
is that the derivative of a constant is always 0.

Caputo
cDα

t F = 0, (6)

where F is a constant function and Caputo
cDα

t is the Caputo derivative operator of order
α over interval [c, t].

The definition of Caputo fractional-order derivative of order α is defined in Equation (7).

Caputo
cDα

t f (t) =
1

Γ(1− α)

∫ t

c
(t− τ)n−α−1 f (n)(τ)dτ, (7)

where α is the fractional derivative order, n is the upper integer neighbor of α, Γ(.) is the
Gamma function and function f (.) is differentiable on [c, t] interval. This Caputo derivative
is valid on the same [c, t] interval.

Simplifying Equation (7) is possible with the restriction of the derivative order. Equation (8)
presents the situation where α is between 0 and 1.

Caputo
cDα

t f (t) =
1

Γ(1− α)

∫ t

c
(t− τ)−α f ′(τ)dτ (8)

It is important to emphasize, that in the case α is −1 then according to the definition
Caputo derivative becomes the first integral, furthermore in the case α is 1, then we
obtain the first integer-order derivative of the original function. Since even with the
simplified version of Caputo derivative calculation there is a wide range of α values to
choose from, this paper aims to give an empirical overview of the most suitable values for
the derivative order and even investigate the existence of data-independent optima based
on experimental results.



Electronics 2022, 11, 2114 6 of 20

3. Proposed Algorithm

In this section, the proposed algorithms for SNN training and evaluation are presented.
First, the used SNN layers are described. These are spiking neurons simulated at discrete
time steps only. Then the Caputron (Caputo derivative-based Tempotron) optimizer is
introduced. After these, an artificial swarm intelligence-based hyperparameter-optimizer
is presented, which we used for derivative order selection.

3.1. Proposed Spiking Neuron Model

As neuromorphic processors are not widely available, for SNN simulation we used a
CPU-based architecture. This means using analog values for simulation is impossible. This
implies the need for numerical differential equation solvers, to find the exact moment of
threshold crossings. In this work, some simplifications are used, to eliminate the need for
these computationally demanding operations, while maintaining relatively low error rates.
The idea of these simplifications was experimentally validated in previous works [32,33].

The simulation (e.g., membrane potentials, PSPs, spikes) is evaluated at discrete,
equidistant time steps only. Threshold value comparison and spike generation only happen
at these steps.

Each input is presented to the network for several time steps constantly. Input layers
take the role of spike generation in an integrate-and-fire way. After the preset number of
time steps elapsed, the neural potentials are reset to their default values, while the weights
are kept.

The information carried by spikes is interpreted in a first-to-spike manner, therefore
only one spike per neuron is allowed. Membrane potentials are saved for later evaluation
and it is not to be recalculated in the upcoming time steps.

In this paper, we only consider single-label classification problems, this means that the
first spike in the output layer may halt the simulation with only a marginally increment of
error rates, thus saving time and computational power.

For training, we built two shallow (two-layer) models, one for the UCI datasets, and
one for the MNIST benchmark dataset. The output layers of these neural networks are the
same Leaky Integrate-and-Fire Layers. For processing the inputs different input layers are
used, Gaussian Receptive Field Layer for the UCI datasets and Integrate-and-Fire Layer for
the MNIST dataset.

3.1.1. Leaky Integrate-and-Fire Layer

This layer consists of a column of leaky integrate-and-fire neurons. These neurons
use the kernel function defined in the original Tempotron paper [17] which is presented
in Section 2.1. The effect of presynaptic spikes, after a quick jump, is slowly decreasing
over time, and the effects of presynaptic spikes are commulated for each postsynaptic
neuron. The former characteristic makes the layer “Leaky”, and the latter implies the
integrate-and-fire naming.

Membrane potentials are updated in a discretized manner similarly to Equation (2).
The above-mentioned simplification of one spike per neuron makes it easier to detect spikes
too. The direction of threshold crossing can only be rising, so only a simple comparison is
needed with the threshold potential, to determine if a spike is generated or not. Equation (9)
describes the base mechanisms of this process.

Vj(T) = ∑
i

wji ∑
Ti

K(T − Ti) + Vrest

Ti = T where Vi(T) ≥ VΘ and Vi(T − ∆T) < VΘ,
(9)

here T is the discrete simulation time which follows a series of time steps with equal
differences ∆T. Ti is the time step at which the i-th presynaptic neuron elicits a spike.

As an enhancement we introduced a layer-wide winner-take-all mechanism for this
layer, meaning that the first neuron to spike suppresses other neurons which will not
be able to spike. Spikes in the same simulation time step are not differentiated, thus if



Electronics 2022, 11, 2114 7 of 20

no neuron fired before, multiple “first spikes” can occur. Winner-take-all is observed to
enable neural networks to solve optimization problems much more efficiently [34]. This
mechanism is implemented in a computationally beneficial way, meaning the first output
spike will interrupt the simulation.

This layer is used as the output layer in the two-layer models.

3.1.2. Gaussian Receptive Field Layer

This layer consists of a column of at least two integrate-and-fire neurons, which are
excited by positive Gaussian receptive fields over a real-valued input dimension. For every
input dimension, the minimal and maximal input value is given for all expected inputs. The
first two neurons’ receptive field’s maxima are assigned to the minimum and maximum
of the input dimension. The other receptive fields are arranged equally between the first
two. Each receptive field has a deviation equal to the distance between the two receptive
field centers. Each receptive field is evaluated over an input value every time step and the
result is added to the membrane potential of the corresponding neuron. A representation
of the receptive fields scaled by 0.3 of a 4 neuron layer with input minimum −1 and input
maximum 1 is pictured in Figure 3. Generated spike timings can be directly derived from
the excitation of each receptive field, therefore they will be characteristic for a small interval
of the input values.

Figure 3. Gaussian receptive fields of a 4 neuron layer with equally placed maxima over the interval
[−1, 1] of expected input values. Gaussians here are scaled by 0.3. Activation values are added to
each neuron’s membrane potential.

This layer is used for spike generation receiving the inputs directly from every di-
mension of the real-valued input data. Of course, this is a loss-making representation of
these input dimensions, however, it is easy to control the resolution of this spike generation
method via the number of neurons assigned to each dimension, and the resolution of
simulation time steps.

3.1.3. Integrate-and-Fire Layer

This layer consists of a column of integrate-and-fire neurons. These neurons are excited
by constant input values, which are scaled down enough to create meaningful results over
several time steps. These input values are added to the membrane potential every time
step until the firing threshold is reached. This structure was used to generate spikes from
serialized images in the authors’ previous work with success [32].

In this paper, this layer is utilized in training on the MNIST [35] database, where the
serialized pixel lightness values are fed to the network.



Electronics 2022, 11, 2114 8 of 20

3.2. Caputron Learning

As described in Section 2, Caputo derivative can be utilized to calculate the partial
derivative of the Tempotron cost function with respect to synaptic weights. To acquire the
equation by which each weight could be updated using this novel Caputo-based Tempotron
(Caputron) optimizer, first the Caputo derivative of the cost function should be considered
over a restricted interval of the weight values [c, wji], and with a derivative order between
0 and 1, similarly to Equation (8).

Caputo
cDα

wji
E(Vj) =

∫ wji
c (wji − τ)−α ∂E(τ)

∂wji
dτ

Γ(1− α)
, (10)

where notations are similar to Equation (8), but c is the minimum of weight values corre-
sponding to the j-th postsynaptic neuron, wji is the weight between the i-th presynaptic and
j-th postsynaptic neuron. Here, Vj = Vj(wj0, . . . , wjN) is a function of weights (wj0, . . . , wjN)
belonging to postsynaptic neuron j, where N is the neuron count of the presynaptic layer.

The first order partial derivative in Equation (10) is constant with respect to weight
values, and is defined in Equation (4). With the simplifications and restrictions defined at
the beginning of this section, the first order derivative of the cost function only has to take
one spike into account, thus the sum has only one member.

After simplification, the following formula is acquired.

Caputo
cDα

wji
E(Vj) = Ψj

K(tmaxj − ti)

Γ(1− α)

(wji − c)1−α

1− α
, (11)

where Ψj is the sign correction coefficient derived from the cost value of postsynaptic
neuron j. Ψj has the same effect as the signs in Equation (4), it is negative when expected
output spike did not occur, positive when an unexpected spike occurred, and zero in any
other case.

In conclusion the update rule for a single weight with Caputron learning, taking into
account that each neuron can only spike once in this architecture, is defined in Equation (12).

∆wji = −λΨj
K(tmaxj − ti)

Γ(1− α)

(wji − c)1−α

1− α
(12)

For efficient weight updates Equation (12) must be reformulated with matrix opera-
tions. Using the definition of a single weight update, some matrices and vectors should be
constructed to obtain the final formula of mass weight updates.

∆W =
−λ
(
Ψ · 1>N

)
�Kmax �

(
W− C · 1>N

)◦(1−α)

Γ(1− α) · (1− α)
, (13)

where N and M are the number of neurons in the pre- and postsynaptic layers, respectively.
W is the M × N matrix of synaptic weights, Ψ is the M × 1 vector of sign correction
coefficients for each postsynaptic neuron, Kmax is the M × N matrix of kernel function
values, where Kmax[j, i] is K(tmaxj − ti). If no ti spike happened before tmaxj was reached,
Kmax[j, i] is set to 0. Vector C contains minimal weight values for every postsynaptic
neuron (i.e., it consists of the minima of each row in matrix W), this vector is M × 1 in
dimensions. Symbols � and (.)◦ denote the element-wise multiplication and element-wise
power operators, respectively.

This definition of the Caputron optimizer can be used with shallow (two-layer) spiking
neural networks, where information is represented in a time-to-first spike or spike order-
based manner. A weight update of Equation (13) is performed after each training step
when the simulation stops. Maximal membrane potential and PSP values are stored and
updated along with the simulation time, during the evaluation of each time step. The data
processing diagram of these networks is depicted in Figure 4.



Electronics 2022, 11, 2114 9 of 20

Figure 4. Training and inference process of simulated Tempotron SNNs. The steps enhanced by
Caputron are denoted by dark gray color.



Electronics 2022, 11, 2114 10 of 20

3.3. Particle Swarm Optimization of Derivative Order

As it is visible from Section 3.2, the Caputron optimizer highly depends on the deriva-
tive order used for calculations. To observe the impact of this parameter’s value on the
accuracy of the whole model, a simple hyperparameter-optimizer is utilized. As there are
infinite values for this α parameter, and testing is complex, and intelligent optimizer should
be used. Rather than using a grid or gradient-based algorithm, the authors propose to
use a particle swarm optimizer (PSO) [31] here, while leaving other hyperparameters (like
learning rate, or network dimensions) unchanged.

Particle swarm optimization is a swarm method that uses a set of search points in the
parameter space, often referred to as individuals or swarm members. These individuals
start with a random velocity at a random or pre-assigned point in the parameter space. In
each step, these individuals are evaluated, and their fitness value is stored. After evaluation,
the velocity of each individual is changed. They accelerate towards their personal best
and to the global best of the whole swarm with random coefficients. Using this new
velocity a simple step is performed, adding each velocity vector to the last position of the
corresponding individual. These steps are described by Equation (14) and (15) originally
published in [31].

vt+1
i = vt

i + U(0, cp) · (pt
i − xt

i ) + U(0, cg) · (gt − xt
i ) (14)

xt+1
i = vt

i + xt
i (15)

Here, xi and vi are the position and velocity of a swarm member in the search space.
U(0, cp) and U(0, cg) are samples from uniform distributions where the upper limit is
described by two constants cp and cg which correspond to the accelerations towards the
personal best of the swarm member pi and the global best g. Upper indices denote discrete
timesteps t and t + 1.

PSO was successfully used for numerous parameter optimization problems in the last
few decades, with recent achievements ranging from engineering applications, such as
distributed generator integration of smart cities [36] to federated learning aggregation [37]
and large-scale hyperparameter optimization of deep learning networks [38].

To observe the effect of α parameter change, and seek the optimal value of it, this
PSO optimizer has a one-dimensional search space bound with a minimal and maximal
value. Individuals (swarm members) are bound between these values and cannot leave
the predefined interval. Here, choosing the best fitting initialization, starting velocities
are chosen randomly, and the population is equally distributed over the above-mentioned
interval, including one initial search point on each boundary value too. The pseudocode of
this hyperparameter search is described by Algorithm 1.

Algorithm 1 Derivative order optimization via PSO

1: Initialize PSO equally between αmin and αmax
2: while generation < max PSO generations do
3: Calculate new positions and velocities in search space . Defines α
4: Bound swarm members by αmin and αmax
5: while member index < population size do . Evaluation
6: while trial index < maximum trials do
7: Reinitialize SNN with α derivative order
8: Train network for preset number of epochs
9: Save maximal test accuracy

10: end while
11: Fitness←maximal test accuracy averaged over trials
12: end while
13: end while



Electronics 2022, 11, 2114 11 of 20

4. Experimental Results

Experiments were carried out on a desktop environment with regular multi-core CPUs
(Intel i5-8300H@3.90 GHz) used for training.
The networks were constructed in Python using NumPy [39] and SciPy [40] for mathemati-
cal operations, and Seaborn for visualization.

For evaluating model performances we used categorization accuracy. We compared
the results on the test set. To make accuracy values stable and less initialization-dependent,
when performing PSO-based derivative order parameter search we take averages of test
accuracy values of multiple trainings with different initializations. For measuring conver-
gence speed we take the number of epochs needed to reach the best performing model
state during training. When performing PSO-based derivative order parameter search we
average these values as well for trainings of the same derivative order.

4.1. UCI Dataset Results

Using the novel Caputron learning rule several tests were carried out. First, three
UCI [41] datasets were examined, to compare Caputron optimizer and first order Gra-
dient Descent. The datasets we used were the same as the ones used by [25] for ANN
training. These datasets are Iris (4 input features, 3 classes, 150 samples), Liver (6 input
features, 2 classes), and Sonar (60 input features, 2 classes, 208 samples), all three are
categorization problems.

For finding the optimal derivative order values a 20 generations long particle swarm
optimization [31] was carried out for each dataset separately. To cover the search space,
initially, the swarm members were distributed equally between 0.001 and 1 along the
derivative order axis. The swarm had 8 individuals in it. The coefficients for accelerating
towards the global best were randomly drawn from a uniform distribution between 0 and
0.2, while coefficients for accelerating towards personal best results were drawn from a
uniform distribution between 0 and 0.3. Each dataset was split into a train and test subset
with 40% of test data. The learning rate was 0.05, for every evaluation.

A two-layer model was constructed with a Gaussian receptive field layer as an input
layer and a leaky integrate-and-fire layer as an output layer with a weight matrix between
them. The input layer had 15 neurons per dimension, while the output layer’s neuron
count was equal to the number of classes the dataset had. The Gaussian receptive fields
were scaled down by 0.3. The threshold potential and normalization coefficient (V0) was
1 for all neurons, while the resting potential was set to 0. The membrane and synaptic time
constants were 15 ms and 5 ms, respectively.

Each α parameter evaluation of an individual returned a score of average best valida-
tion accuracy, where these best validation accuracies were accumulated from 10 different
trainings over the same dataset, where the weight matrices were randomly reinitialized,
drawn from a uniform distribution from 0 to 1. Each training lasted for 30 epochs from
which the best one’s validation accuracy was passed on for averaging. Each input was
presented to the neural network for 50 equitemporal steps between 0 ms and 15 ms.

It is important to note, that when setting exactly α = 1 the optimizer was changed
to a simple, first integer-order derivative-based Gradient Descent optimizer, described in
Section 2.1. Although Caputron with derivative order α → 1 should theoretically also
work such as classical Gradient Descent, to avoid any mid-computation imprecision the
algorithm was changed to solely use the mathematical expression from Equation (5).

After the first optimizations over all three datasets, another one was carried out, to
let the PSO work more on the interval with the best results. The second intention behind
another hyperparameter optimization was, to see if there is a clear convergence to any
given constants for all the datasets, or if the existence of this optimal derivative order is not
that trivial. With only the interval lower boundary changed to 0.65, all the other parameters
remained the same.



Electronics 2022, 11, 2114 12 of 20

Results are presented in Figures 5–7, and Table 1. For each dataset, all derivative
orders evaluated by the two PSO runs are plotted, with the average test accuracies. The
average training epochs used to reach Gradient Descent’s accuracy for each evaluation
during the second run are also presented as a third diagram. Those alpha values were
excluded in this diagram, where average test accuracy was under Gradient Descent’s test
accuracy. Horizontal dashed lines indicate the performance of Gradient Descent, while in
the third subplot for each dataset shades of gray, and the star marker refers to the best final
test accuracy of the given training.

Table 1. Comparison of Gradient Descent and Caputron including the best fractional derivative
orders for each dataset with the classification error reduction induced by replacing Gradient Descent
with Caputron, and the percentage of epochs taken to reach Gradient Descent’s accuracy by Caputron
(with Gradient Descent training epochs being 100%).

Parameter/Dataset Iris Liver Sonar MNIST

Caputron α 0.947 0.768 0.810 0.800
Caputron accuracy 97.33% 73.91% 87.71% 89.54%
Gradient Descent accuracy 91.78% 71.23% 84.82% 88.96%
Error reduction of Caputron 67.52% 9.32% 19.04% 5.25%
Relative Caputron training epochs to reach GD’s accuracy 51.39% 150.87% 41.52% 65.68%

Table 1 concludes the best average accuracy values, with the best gradient order
parameters. As an indicator of improvement, the ratio of erroneously classified test cases
was reduced by the percentage shown in the table, when Caputron was used instead of
Gradient Descent. Additionally, the percentage of training epochs taken until reaching
Gradient Descent’s accuracy by Caputron-with respect to epochs taken by Gradient Descent-
is also presented.

For every dataset, Caputron was more accurate, and in most cases, it provided faster
convergence too, or at least there is a derivative order, where the convergence was faster
for the same test accuracy reached by the first order optimizer. It is clear that no overall
optimal alpha value was found, it is most likely data-dependent. However, the derivative
orders, where Caputron outperforms Gradient Descent are mostly between 0.7 and 0.9 for
all observed benchmark tests. This recommended interval is a safe parameter choice, as the
second, refined PSO searches point out. For all three datasets together 355 alpha values
were observed in the [0.7, 0.9] interval, on average using 94.6% of these observed derivative
orders resulted in improved accuracy compared to first order Gradient Descent. Therefore
it can be concluded that using this interval as a thumb rule of derivative order selection is a
safe choice based on our experimental results.

These results of SNN experiments are similar to ANN training results by [25]. These
ANN experiments found that the suitable range for Caputo derivative orders is between 6

9
and 8

9 .
Although our shallow Caputron optimized model cannot compete with more complex,

deep architectures, it outperforms SpikeProp-based brain-inspired SNN architectures on
the Iris dataset [42] despite having only two layers compared to the 3-layer architecture
of the compared SpikeProp models. The performance increases from 96.1% classification
accuracy to 97.33% in the case of our approach.



Electronics 2022, 11, 2114 13 of 20

Figure 5. Average test categorical accuracy of the two PSO runs, and the average training epochs
taken to reach Gradient Descent’s accuracy for the second run (from top to bottom) on the Iris dataset.



Electronics 2022, 11, 2114 14 of 20

Figure 6. Average test accuracy of the two PSO runs, and the average training epochs taken to reach
Gradient Descent’s accuracy for the second run (from top to bottom) on the Liver dataset.



Electronics 2022, 11, 2114 15 of 20

Figure 7. Average test accuracy of the two PSO runs, and the average training epochs taken to reach
Gradient Descent’s accuracy for the second run (from top to bottom) on the Sonar dataset.



Electronics 2022, 11, 2114 16 of 20

4.2. MNIST Results

Caputron learning of a shallow SNN has also been tested on the MNIST [35] bench-
mark dataset of handwritten digits, which contains 60,000 images for training and 10,000 im-
ages for testing. These grayscale 8 bit images were scaled down by 1536, so the maximal
input value was 1

6 .
PSO here was not utilized, only an equally spread population of 21 search points were

used with the evaluation similar to those with the UCI Datasets. The only difference is
the number of reinitializations, which in this case is halved, using only 5 different random
weight initializations to determine an average best epoch accuracy.

A two-layer model was constructed here as well with an integrate-and-fire and a
leaky integrate-and-fire layer in this order. The input layer has one neuron for each pixel,
resulting in an input size of 784, as MNIST images are 28× 28 images. The output layer
contains a neuron for every decimal digit, thus the output layer size is 10. Individual
neuron parameters remain the same.

Results are presented in Figure 8 and Table 1. Similarly to the UCI Datasets, Caputron
performed better than Gradient Descent. The ideal interval of the derivative order remained
the same [0.7, 0.9].

Figure 8. Average test accuracy, and the average training epochs taken to reach Gradient Descent’s
accuracy (from top to bottom) on the MNIST dataset.



Electronics 2022, 11, 2114 17 of 20

Training times for the best derivative order 0.8 and the first order derivative can be
compared, with an average training time of 2830 s for Caputron, and 2910 s for Gradient
Descent, resulting in a 2.8% drop in training time when using Caputron. As the first spikes
with the winner-take-all mechanism introduced in Section 3.1.1 would halt the simulation,
we examined training times with this mechanism turned off. The results showed the same
tendency with Caputron taking 3588 s, and Gradient Descent taking 3691 s on average.
The same 2.8% drop in training time can be observed here. To investigate, even more,
we compare the ∆W calculation speed of both optimizers for the weight matrix used by
MNIST. For a million randomized updates Gradient Descent became an average weight
update time of 20.85 µs, while for Caputron it took 198.33 µs to perform a full weight
matrix update. Although in weight updates Caputron is slower, when it comes to network
simulation Caputron regains its lead over Gradient Descent, with earlier fire times resulting
in more sparse and slightly faster computations.

When evaluating the MNIST database, information about the improvements of Caputo
derivative-based ANN training is available. We observe a closely located peak of test
accuracy at 0.8 derivative order, where as [25] reports 0.78 as their best candidate. Thus,
it can be concluded that both ANN and SNN architectures have the same ideal value for
Caputo derivative-based training, while SNN test accuracies are lower than those achieved
by their ANN counterparts, the error reduction rates are in a similar range around 5–10%
depending on network size.

Compared to the reimplementation of the original Tempotron [17] (denoted by Gradi-
ent Descent accuracy in Table 1) our model performed slightly better on the MNIST dataset,
reaching 89.54% test accuracy over the original 88.96% but this improvement still lacks
the performance of modern architectures. To reach state-of-the-art performance on MNIST
more complex deep neural networks have to be used with refined temporal simulation.
Such models achieve 97.9% testing categorical accuracy on the digit dataset without con-
volution [43]. We expect improvements of the same magnitude over these results when
applying fractional-order optimization, however, no research on this has been conducted
yet according to the best of our knowledge.

4.3. Inherent Adaptive Weight Normalization

To this point, experiments indicate a significant performance increase without provid-
ing insights into the underlying causes. To address the question, of why Caputron is better
than standard Gradient Descent, the reformulation of Equation (12) is necessary. For this
single spike per neuron scenario, the sums from Equation (5) of basic Gradient Descent
weight update are reduced to a single member. Thus, in Equation (16) the factors from
Gradient Descent are gathered together.

∆wji = ∆wGD
ji · L

α(wji − c), (16)

where ∆wGD
ji is the weight change caused by standard Gradient Descent, and

Lα(wji − c) = 1
Γ(1−α)

(wji−c)1−α

1−α is an adaptive weight normalization function of the differ-
ence of the weight and the minimal weight value corresponding to the same postsynaptic
neuron.

The limit of this weight normalization value is as follows limα→1 = 1, thus indicating
the theoretical equivalence of Gradient Descent and first integer-order Caputron learning.
In this case, no adaptive weight normalization happens.

The behavior of this weight normalization coefficient is visualized in Figure 9. Capu-
tron multiplicatively reduces the value of weight changes near the minimal weight value.
The minimal weight of each training step is hardly ever changed. However, the weight
change of much higher weights is multiplicatively increased. For α values other than 1
these functions have no upper bound, however, loss changes mostly prevent them from ex-
ploding. The order of fractional derivative here controls the curve of weight normalization
and sets the point where the coefficient reaches the value of 1.



Electronics 2022, 11, 2114 18 of 20

Figure 9. Inherent adaptive weight normalization coefficient Lα(wji − c) of Caputron.

This effect makes it harder for inhibitory synapses to change, or eventually become
excitatory, while excitatory synapses can converge in larger steps, thus reaching the needed
amplification value if they remain excitatory, or changing to inhibitory type synapse if
their value is updated to be negative. This enforces a certain level of sparsity concerning
inhibitory and excitatory neurons.

Since the information from the network is extracted in a “first-to-spike” manner, even
when no negative weights (i.e., no inhibitory synapses) are present in the network, lower
weight values are more stable. This results in the same effect of insignificant synapses
changing slowly, while significant, excitatory connections are easier to change.

5. Conclusions

As experiments in Section 4 have demonstrated, the usage of fractional-order Caputo
derivative increases the performance of shallow Tempotron SNNs. Caputo derivative is
successfully applied for weight updates of shallow Tempotron SNNs, with one spike per
neuron, thus creating the novel method of Caputron learning. Training models on different
datasets point out, that the high-performance range for the derivative order is between
0.7 and 0.9 for the benchmark datasets observed in this paper, while the results are not
comparable to that of the latest deep architectures, our aim to verify the effectiveness of
Caputron learning over Gradient Descent was achieved. Not only Caputron learning is
better than first-order Gradient Descent in increasing classification accuracy, but faster
convergence is also observed in most cases. Based on the results we propose to replace clas-
sic first-order derivative-based Gradient Descent with fractional-order Caputo-derivative
having an order in the range of [0.7, 0.9], as it leads to higher accuracy in approximately
95.3% of the examined test cases with a marginal increase, or even decrease in training time.
Handling α as an optimizable hyperparameter for Caputron training is also recommended,
as the preferred derivative orders are data-dependent.

The problem of backpropagation, a wider range of possible α and learning rate values,
and handling multiple spikes per neuron, as well as using learning method enhancements
such as momentum, AdaDelta or attention [44], which proved to be successful in applied
Deep Learning [45,46] are to be addressed in future works.

Although two-layer spiking neural architectures have been utilized in multiple real-
world applications [18,19,32] we would like to promote the adaptation of fractional-order
derivative-based optimization for more complex state-of-the-art architectures as well. These
architectures require further theoretical investigation and a wide range of experiments.
Such research on event-based fractional derivative optimized SNN architectures is being
conducted currently by the authors.



Electronics 2022, 11, 2114 19 of 20

Author Contributions: Conceptualization, N.M.G. and J.B.; methodology, N.M.G. and G.E.; software,
N.M.G. and G.E.; validation, N.M.G. and G.E.; formal analysis, N.M.G. and J.B.; investigation, N.M.G.;
resources, N.M.G.; data curation, N.M.G. and G.E.; writing—original draft preparation, N.M.G. and
J.B.; writing—review and editing, J.B. and N.M.G.; visualization, N.M.G.; supervision, J.B.; project
administration, J.B; All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Supporting code is available at: https://github.com/nata108/Caputron
(accessed on 2 July 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, T.; Wang, J.; Yang, B.; Wang, X. Facial expression recognition method with multi-label distribution learning for non-verbal

behavior understanding in the classroom. Infrared Phys. Technol. 2021, 112, 103594. [CrossRef]
2. Zhang, Z.; Lai, C.; Liu, H.; Li, Y.F. Infrared facial expression recognition via Gaussian-based label distribution learning in the dark

illumination environment for human emotion detection. Neurocomputing 2020, 409, 341–350. [CrossRef]
3. Wu, H.; Liu, Y.; Liu, Y.; Liu, S. Fast facial smile detection using convolutional neural network in an intelligent working

environment. Infrared Phys. Technol. 2020, 104, 103061. [CrossRef]
4. Liu, H.; Nie, H.; Zhang, Z.; Li, Y.F. Anisotropic angle distribution learning for head pose estimation and attention understanding

in human-computer interaction. Neurocomputing 2021, 433, 310–322. [CrossRef]
5. Indiveri, G.; Sandamirskaya, Y. The importance of space and time for signal processing in neuromorphic agents: The challenge

of developing low-power, autonomous agents that interact with the environment. IEEE Signal Process. Mag. 2019, 36, 16–28.
[CrossRef]

6. Luo, Y.; Wan, L.; Liu, J.; Harkin, J.; Cao, Y. An efficient, low-cost routing architecture for spiking neural network hardware
implementations. Neural Process. Lett. 2018, 48, 1777–1788. [CrossRef]

7. Paul, A.; Tajin, M.A.S.; Das, A.; Mongan, W.M.; Dandekar, K.R. Energy-Efficient Respiratory Anomaly Detection in Premature
Newborn Infants. Electronics 2022, 11, 682. [CrossRef]

8. Varshika, M.L.; Corradi, F.; Das, A. Nonvolatile Memories in Spiking Neural Network Architectures: Current and Emerging
Trends. Electronics 2022, 11, 1610. [CrossRef]

9. Mostafa, H. Supervised learning based on temporal coding in spiking neural networks. IEEE Trans. Neural Netw. Learn. Syst.
2017, 29, 3227–3235. [CrossRef]

10. Stöckl, C.; Maass, W. Optimized spiking neurons can classify images with high accuracy through temporal coding with two
spikes. Nature Mach. Intell. 2021, 3, 230–238. [CrossRef]

11. Gerstner, W.; Kistler, W.M. Spiking Neuron Models; Cambridge University Press: Cambridge, UK, 2002.
12. Legenstein, R.; Pecevski, D.; Maass, W. A Learning Theory for Reward-Modulated Spike-Timing-Dependent Plasticity with

Application to Biofeedback. PLoS Comput. Biol. 2008, 4, e1000180. [CrossRef] [PubMed]
13. Kasabov, N. Integrative connectionist learning systems inspired by nature: Current models, future trends and challenges. Natural

Comput. 2009, 8, 199–218. [CrossRef]
14. Tan, C.; Šarlija, M.; Kasabov, N. Spiking neural networks: Background, recent development and the NeuCube architecture. Neural

Process. Lett. 2020, 52, 1675–1701. [CrossRef]
15. Neftci, E.O.; Mostafa, H.; Zenke, F. Surrogate gradient learning in spiking neural networks: Bringing the power of gradient-based

optimization to spiking neural networks. IEEE Signal Process. Mag. 2019, 36, 51–63. [CrossRef]
16. Anwani, N.; Rajendran, B. Training multi-layer spiking neural networks using NormAD based spatio-temporal error backpropa-

gation. Neurocomputing 2020, 380, 67–77. [CrossRef]
17. Gütig, R.; Sompolinsky, H. The tempotron: A neuron that learns spike timing–based decisions. Nature Neurosci. 2006, 9, 420–428.

[CrossRef]
18. Iyer, L.R.; Chua, Y. Classifying Neuromorphic Datasets with Tempotron and Spike Timing Dependent Plasticity. In Proceedings

of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8. [CrossRef]
19. Kasi, S.K.; Das, S.; Biswas, S. Energy-efficient event pattern recognition in wireless sensor networks using multilayer spiking

neural networks. Wirel. Netw. 2021, 27, 2039–2054. [CrossRef]
20. Shi, C.; Wang, T.; He, J.; Zhang, J.; Liu, L.; Wu, N. DeepTempo: A Hardware-Friendly Direct Feedback Alignment Multi-Layer

Tempotron Learning Rule for Deep Spiking Neural Networks. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 1581–1585.
[CrossRef]

21. Liu, H.; Fang, S.; Zhang, Z.; Li, D.; Lin, K.; Wang, J. MFDNet: Collaborative Poses Perception and Matrix Fisher Distribution for
Head Pose Estimation. IEEE Trans. Multimed. 2022, 24, 2449–2460. [CrossRef]

22. Liu, T.; Liu, H.; Li, Y.F.; Chen, Z.; Zhang, Z.; Liu, S. Flexible FTIR Spectral Imaging Enhancement for Industrial Robot Infrared
Vision Sensing. IEEE Trans. Ind. Inform. 2020, 16, 544–554. [CrossRef]

https://github.com/nata108/Caputron
http://doi.org/10.1016/j.infrared.2020.103594
http://dx.doi.org/10.1016/j.neucom.2020.05.081
http://dx.doi.org/10.1016/j.infrared.2019.103061
http://dx.doi.org/10.1016/j.neucom.2020.09.068
http://dx.doi.org/10.1109/MSP.2019.2928376
http://dx.doi.org/10.1007/s11063-018-9797-5
http://dx.doi.org/10.3390/electronics11050682
http://dx.doi.org/10.3390/electronics11101610
http://dx.doi.org/10.1109/TNNLS.2017.2726060
http://dx.doi.org/10.1038/s42256-021-00311-4
http://dx.doi.org/10.1371/journal.pcbi.1000180
http://www.ncbi.nlm.nih.gov/pubmed/18846203
http://dx.doi.org/10.1007/s11047-008-9066-z
http://dx.doi.org/10.1007/s11063-020-10322-8
http://dx.doi.org/10.1109/MSP.2019.2931595
http://dx.doi.org/10.1016/j.neucom.2019.10.104
http://dx.doi.org/10.1038/nn1643
http://dx.doi.org/10.1109/IJCNN48605.2020.9207474
http://dx.doi.org/10.1007/s11276-021-02555-9
http://dx.doi.org/10.1109/TCSII.2021.3063784
http://dx.doi.org/10.1109/TMM.2021.3081873
http://dx.doi.org/10.1109/TII.2019.2934728


Electronics 2022, 11, 2114 20 of 20

23. Li, D.; Liu, H.; Zhang, Z.; Lin, K.; Fang, S.; Li, Z.; Xiong, N.N. CARM: Confidence-aware recommender model via review
representation learning and historical rating behavior in the online platforms. Neurocomputing 2021, 455, 283–296. [CrossRef]

24. Liu, H.; Zheng, C.; Li, D.; Shen, X.; Lin, K.; Wang, J.; Zhang, Z.; Zhang, Z.; Xiong, N.N. EDMF: Efficient Deep Matrix Factorization
With Review Feature Learning for Industrial Recommender System. IEEE Trans. Ind. Inform. 2022, 18, 4361–4371. [CrossRef]

25. Wang, J.; Wen, Y.; Gou, Y.; Ye, Z.; Chen, H. Fractional-order gradient descent learning of BP neural networks with Caputo
derivative. Neural Netw. 2017, 89, 19–30. [CrossRef] [PubMed]

26. Bao, C.; Pu, Y.; Zhang, Y. Fractional-order deep backpropagation neural network. Comput. Intell. Neurosci. 2018, 2018, 7361628.
[CrossRef]

27. Zhang, H.; Pu, Y.F.; Xie, X.; Zhang, B.; Wang, J.; Huang, T. A global neural network learning machine: Coupled integer and
fractional calculus operator with an adaptive learning scheme. Neural Netw. 2021, 143, 386–399. [CrossRef]

28. Pu, Y.f.; Wang, J. Fractional-order global optimal backpropagation machine trained by an improved fractional-order steepest
descent method. Front. Inf. Technol. Electron. Eng. 2020, 21, 809–833. [CrossRef]

29. Caputo, M. Linear models of dissipation whose Q is almost frequency independent—II. Geophys. J. Int. 1967, 13, 529–539.
[CrossRef]

30. Alidousti, J.; Ghaziani, R.K. Spiking and bursting of a fractional order of the modified FitzHugh-Nagumo neuron model. Math.
Model. Comput. Simulations 2017, 9, 390–403. [CrossRef]

31. Kennedy, J.; Eberhart, R.C. Particle Swarm Optimization. In Proceedings of the IEEE International Conference on Neural
Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948.

32. Gyöngyössy, N.M.; Domonkos, M.; Botzheim, J.; Korondi, P. Supervised Learning with Small Training Set for Gesture Recognition
by Spiking Neural Networks. In Proceedings of the 2019 IEEE Symposium Series on Computational Intelligence (SSCI), Xiamen,
China, 6–9 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 2201–2206.

33. Kheradpisheh, S.R.; Ganjtabesh, M.; Thorpe, S.J.; Masquelier, T. STDP-based spiking deep convolutional neural networks for
object recognition. Neural Netw. 2018, 99, 56–67. [CrossRef]

34. Lynch, N.; Musco, C.; Parter, M. Winner-Take-All Computation in Spiking Neural Networks. arXiv 2019, arXiv:1904.12591.
35. LeCun, Y.; Cortes, C. MNIST Handwritten Digit Database. 2010. Available online: http://yann.lecun.com/exdb/mnist/

(accessed on 2 July 2022).
36. Rizwan, M.; Waseem, M.; Liaqat, R.; Sajjad, I.A.; Dampage, U.; Salmen, S.H.; Obaid, S.A.; Mohamed, M.A.; Annuk, A. SPSO

Based Optimal Integration of DGs in Local Distribution Systems under Extreme Load Growth for Smart Cities. Electronics 2021,
10, 2542. [CrossRef]

37. Park, S.; Suh, Y.; Lee, J. FedPSO: Federated Learning Using Particle Swarm Optimization to Reduce Communication Costs.
Sensors 2021, 21, 600. [CrossRef] [PubMed]

38. Guo, Y.; Li, J.Y.; Zhan, Z.H. Efficient Hyperparameter Optimization for Convolution Neural Networks in Deep Learning: A
Distributed Particle Swarm Optimization Approach. Cybern. Syst. 2021, 52, 36–57. [CrossRef]

39. Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith,
N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [CrossRef] [PubMed]

40. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.;
et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods 2020, 17, 261–272. [CrossRef]
[PubMed]

41. Dua, D.; Graff, C. UCI Machine Learning Repository. 2017. Available online: http://archive.ics.uci.edu/ml/ (accessed on 2 July
2022).

42. Yu, Q.; Tang, H.; Tan, K.C.; Yu, H. A brain-inspired spiking neural network model with temporal encoding and learning.
Neurocomputing 2014, 138, 3–13. [CrossRef]

43. Comsa, I.M.; Potempa, K.; Versari, L.; Fischbacher, T.; Gesmundo, A.; Alakuijala, J. Temporal Coding in Spiking Neural Networks
with Alpha Synaptic Function. In Proceedings of the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 8529–8533. [CrossRef]

44. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747.
45. Xiao, H.; Hu, Z. Feature-similarity network via soft-label training for infrared facial emotional classification in human-robot

interaction. Infrared Phys. Technol. 2021, 117, 103823. [CrossRef]
46. Ju, J.; Zheng, H.; Li, C.; Li, X.; Liu, H.; Liu, T. AGCNNs: Attention-guided convolutional neural networks for infrared head pose

estimation in assisted driving system. Infrared Phys. Technol. 2022, 123, 104146. [CrossRef]

http://dx.doi.org/10.1016/j.neucom.2021.03.122
http://dx.doi.org/10.1109/TII.2021.3128240
http://dx.doi.org/10.1016/j.neunet.2017.02.007
http://www.ncbi.nlm.nih.gov/pubmed/28278430
http://dx.doi.org/10.1155/2018/7361628
http://dx.doi.org/10.1016/j.neunet.2021.06.021
http://dx.doi.org/10.1631/FITEE.1900593
http://dx.doi.org/10.1111/j.1365-246X.1967.tb02303.x
http://dx.doi.org/10.1134/S2070048217030036
http://dx.doi.org/10.1016/j.neunet.2017.12.005
http://yann.lecun.com/exdb/mnist/
http://dx.doi.org/10.3390/electronics10202542
http://dx.doi.org/10.3390/s21020600
http://www.ncbi.nlm.nih.gov/pubmed/33467063
http://dx.doi.org/10.1080/01969722.2020.1827797
http://dx.doi.org/10.1038/s41586-020-2649-2
http://www.ncbi.nlm.nih.gov/pubmed/32939066
http://dx.doi.org/10.1038/s41592-019-0686-2
http://www.ncbi.nlm.nih.gov/pubmed/32015543
http://archive.ics.uci.edu/ml/
http://dx.doi.org/10.1016/j.neucom.2013.06.052
http://dx.doi.org/10.1109/ICASSP40776.2020.9053856
http://dx.doi.org/10.1016/j.infrared.2021.103823
http://dx.doi.org/10.1016/j.infrared.2022.104146

	Introduction
	Problem Statement
	Fractional Derivatives in Tempotron Learning
	Caputo Derivative

	Proposed Algorithm
	Proposed Spiking Neuron Model
	Leaky Integrate-and-Fire Layer
	Gaussian Receptive Field Layer
	Integrate-and-Fire Layer

	Caputron Learning
	Particle Swarm Optimization of Derivative Order

	Experimental Results
	UCI Dataset Results
	MNIST Results
	Inherent Adaptive Weight Normalization

	Conclusions
	References

