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Abstract: When developing a complex system in an open platform setting, users need to compose
and maintain a systematic requirement specification. This paper proposes a solution to guarantee a
syntactically accurate requirement specification that minimizes the ambiguity caused by ungrammat-
ical sentences. Our system has a set of standard jargon and templates that are used as a guideline
to write grammatically correct sentences. Given a database of standard technical Korean (STK)
templates, the system that we have designed and implemented divides a new sentence into a specific
cluster. If the system finds an identical template in a cluster, it confirms the new sentence as a sound
one. Otherwise, the system uses unsupervised clustering algorithms to return the template that
most closely resembles the syntax of the inputted sentence. We tested our proposed system in the
field of open platform development for a railway train. In the experiment, our system learned to
partition templates into clusters while reducing null attributes of an instance using the autoencoding
procedure. Given a set of clusters, the system was able to successfully recommend templates that
were syntactically similar to the structure of the inputted sentence. Since the degree of similarity for
500 instances was 97.00% on average, we conclude that our robust system can provide an appropriate
template that users can use to modify their syntactically incorrect sentences.

Keywords: recommendation of syntactically correct sentence; unsupervised clustering algorithms;
autoencoding procedure; software requirement specifications

1. Introduction

When users wish to successfully develop a highly complex system in an open platform
setting, it is necessary for them to utilize a set of standard technical jargon [1–3] and
templates to write an accurate requirement specification. This paper describes a framework
in which a system can automatically recommend the template closest to a specific input
sentence. After users write a set of requirement specifications, they receive a confirmation
on whether or not the specifications are accurate. If the sentences are syntactically wrong,
a template that is most similar to the given sentence is provided as a guideline that users
can refer to in order to modify the original sentence.

Our approach to recommending the most similar template is motivated by the fact
that a set of sentences could be naturally classified into several groups according to their
sentence form. In this paper, thus, the unsupervised clustering models [4–6] are suitable for
partitioning the sentences into several groups. To search for a syntactically similar sentence,
each sentence is transformed into a sequence of morphemes by using a morphological
analyzer. A variety of templates represented as the sequence of morphemes is then fed
into the unsupervised clustering algorithms as training instances and are divided into a
set of natural groups. The system that we have proposed and implemented can ensure
that a new sentence belongs to one of the groups. If it finds an identical template in
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a specific cluster, it confirms that the syntax of the new sentence is valid. Otherwise,
based on the computation of the degree of similarity between the template and the new
sentence, our system automatically returns the template that is syntactically closest to the
new sentence. In this process, since having a fixed size of an instance is required for the
input of clustering algorithms, the empty attributes should be stuffed into the properties
of the instance. Including more meaningful attributes while removing meaningless null
attributes, the autoencoding model [7] is utilized for the encoded instance in a shorter
sequence of morphemes.

To validate the automated checker that we have developed, a set of experiments was
conducted with various requirement specifications in the large-scale project of an open
platform development for a railway train. First, we wish to show how the unsupervised
clustering algorithms can divide these sentences into clusters without specifying the exact
number of groups. Additionally, the autoencoding model reduces the size of an instance
and enables our system to maintain a smaller number of clusters. Thus, our system can
efficiently and rapidly find an appropriate template given an inputted sentence, while
minimizing the system overhead. Second, after identifying the number of clusters, the
degree of similarity between new sentences inputted by users and the templates recom-
mended by our system is defined by a Euclidean distance and also by a cosine similarity,
and measured in the experiment. As a result, regardless of whether or not a new sentence
exists in the database of templates, it is shown that our robust system confirms the syntactic
correctness of the new sentence, and further provides the most appropriate template as a
reference. In our project of an open platform development for a railway train, users can
practically improve the cohesiveness of requirement specifications by using the automated
checker. Ultimately, we hope that our system contributes to the setup of a well-established
development environment and to the reduction of system development costs.

The following section describes our work in the context of related research. Section 3
explains how to design and implement an automated checker that reviews the syntax of
sentences by describing its event flow and architecture. The automated checker consists of
a database server, including standard technical Korean (STK) and templates, and the graph-
ical user interface (GUI) of our application program running on a Web server. Using our
system, in Section 4, we empirically validate our framework and present the experimental
results; we show how to maintain the clusters of templates and recommend the template
that is most syntactically similar to the input sentence. The final section summarizes our
results and discusses further research topics.

2. Related Work

In the field of computational linguistics, a controlled, simplified, and technical lan-
guage [1] is particularly useful for certain text types, e.g., software and system specifications,
technical reports and documentation, and help systems, to clarify their representation, to for-
mulate standard terminology, and to improve communication among users. A great deal
of organizations use a controlled natural language (CNL) [2,3]. For example, some of them
are listed as follows: Avaya—Avaya Controlled English, The Boeing Company—Simplified
Technical English, General Motors Company—Controlled Automotive Service Language,
IBM—Easy English, and Sun Microsystems, Inc.—Sun Controlled English. When users
specify software and system requirements, our framework utilizes CNL in Korean.

Furthermore, this paper focuses on templates that help to preserve a syntactically
correct sentence in these specifications. After correctly written templates composed of
CNL are given as a reference, users are able to write accurate requirement specifications
based on these templates while reducing ambiguity. The style guides, in general, provide
instructions on how to write a clear document, and these instructions are frequently
accessed in various publications [8,9]. With our approach, rather than using style guides,
we use templates that provide syntactic suggestions to improve the cohesiveness of the
requirement specification. To guide users when revising incorrect statements, our approach
provides templates that are syntactically closest to the input sentences.
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This paper deals with an object in a data set, which is the sequence of morphemes
representing a well-written template. The templates are possibly grouped into classes,
according to their similarities. In other words, a group of templates is considered as a
cluster [5]. Clustering models have been broadly used in many applications, e.g., web min-
ing [10], biomedical research [11,12], image segmentation [13,14], anomaly detection [15],
and marketing and finance [16,17]. Our approach proposed in this paper is based on an un-
supervised clustering scheme [18]. The appropriate number of clusters in a data set should
be identified to distinguish a finite set of categories among objects. As a solution to find
this number, the most popular approach is to adopt a specific clustering algorithm using
different numbers of clusters, and then determine whether or not the generated clusters are
suitably partitioned [6]. In our application domain, since all applicable numbers of clusters
with a dynamic group of templates could not be considered and automatically analyzed,
applying the popular cluster validation to our domain is not feasible.

For the approach presented in this paper, the number of clusters k is determined as the
average of the number of natural clusters generated by unsupervised clustering algorithms,
i.e., the Expectation-Maximization (EM) algorithm [19,20] and the Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) algorithm [21]. First, the EM algorithm
sets the initial parameters by assigning random values to the classes of instances. Then,
the EM algorithm repeats between the steps of computing the cluster probabilities known as
the ‘expectation’ step (E step) and maximizing the likelihood of the distribution parameters
given the data available, which is known as the ‘maximization’ step (M step). After
iterating the E step and the M step multiple times, the EM algorithm converges. In this
paper, the EM algorithm alternates between calculating probabilities for the assignment of
each sentence to each cluster (E step) and updating the cluster means and covariances based
on the set of sentences belonging to that cluster (M step). As a result, the EM algorithm
generates distinct clusters, where each cluster consists of related sentences. For each point
(or instance), the DBSCAN algorithm first scans all of the points within the epsilon (ε)
radius. If a point has more neighboring points than the minimum number of samples
(minPts), it can be identified as a core point. In the next step, the DBSCAN connects all of
the core points while ignoring all non-core points. Furthermore, it assigns each non-core
point to a reachable cluster in case any core point is located within the ε radius; otherwise,
it labels the non-core point as noise. If there is a core point, core and non-core points that
are within the ε radius come together to form a single cluster, while excluding noise points.
Thus, without setting the exact number of clusters a priori, the DBSCAN algorithm can
find an arbitrary number of non-linearly separable clusters from a set of points.

When the number of clusters k is chosen, the iterative distance-based k-means clus-
tering algorithm [22–25] minimizes the total squared distance (D) from all points to their
cluster centers:

D =
k

∑
i=1

∑
xj∈Si

|xj − ui|2 (1)

where k is the number of clusters, Si is the clusters for i = 1, 2, · · · , k, and ui is the mean
point of the points xj ∈ Si. The k-means clustering algorithm repeats the whole procedure
several times with different initial centers and chooses the best final result, which is the
smallest D value. After estimating the possible number of clusters k from the average of the
number of clusters generated by the EM and the DBSCAN, the k-means clustering algorithm
recommends the most similar template for a given sentence. Out of various clustering
algorithms, the k-means clustering algorithm uniquely provides not only the distance
but also the angle between a pair of instances within a cluster, where both values can be
utilized to calculate the degree of similarity for the recommendation. In the following
sections, we focus on how to cluster the templates, how to determine the number of
clusters, and how to recommend a template that is similar to an inputted sentence, among
a collection of templates generated.
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3. Automated Checker for the Statements of Requirement Specifications

This section presents the design and implementation of the automated checker used
to review requirement specifications. Our system consists of a database server and a Web
server, which are connected through the RESTful API (REpresentational State Transfer
Application Programming Interface).

3.1. Design of Automated Checker Using Unsupervised Clustering Techniques

The overall validation process used to prove the correctness of a requirement spec-
ification is depicted in Figure 1. When offline, the unsupervised clustering techniques
are utilized as a tool to classify a tapestry of sentences into groups (called “clusters”).
When online, in the event that a specific input sentence does not belong to one of the
templates, the k-means clustering algorithm [22–25] should recommend a template that
closely resembles the syntax of the input sentence.

Generating 
Segments 

using 
Unsupervised 

Learning

Searching for the 
Type of Template

Korean Morphological 
Analyzer (Hannanum)

Recommending the 
Similar Type of Template 

for the Sentence

Correct Statements
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Clustering 
Algorithm  

Template Similarity 
Measure

presence

absence

offline

A Sentence 
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Analysis & 
Verification
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Specification

feedback

Figure 1. The overall validation process used to prove the correctness of a requirement specification.

The validation process in our framework focuses on the syntactic correctness of the
statements, which relates to the order of morphemes. In other words, the process will test
whether or not the sequence of morphemes is in an accurate order, while comparing them
with standard templates that consist of jargon in a particular domain. The sentences used to
describe a requirement specification are streamed into the Korean Morphological Analyzer,
i.e., Hannanum [26], which outputs a sequence of morphemes. By using unsupervised
clustering algorithms, when offline, the sound requirement specifications are categorized
into a set of partitions as standard templates. In this paper, the Expectation-Maximization
(EM) algorithm [19,20] and Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) algorithm [21] are utilized as the unsupervised clustering techniques. The EM
and DBSCAN algorithms divide the templates into a set of natural clusters in their own
algorithmic way. Then, the k-means clustering algorithm classifies the templates into the k
clusters, where the k takes the average of two numbers of natural clusters generated by the
EM and DBSCAN algorithms.

After the templates have been compiled and segmented, a new sentence will be
inputted to describe the requirement specification. When the sentence is identified with
one of the templates, the sentence is confirmed to be a sound and correct specification, as
shown in the left-hand part of Figure 1. If the input sentence does not exist in the templates,
the k-means clustering algorithm recommends the most similar type of template among the
objects that belong to the same cluster, based on the degree of similarity between the input
sentence and the template, as shown in the right-hand part of Figure 1. The user could also
update a specific requirement specification as syntactically incorrect, while referring to the
recommended template.
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3.2. Implementation of Automated Checker

The automated checker has been implemented by using Python 3.9.1, the Django 3.1.3
Web development tool, and the MongoDB 4.4.5 database management system. The archi-
tecture of our system is illustrated in Figure 2.

Automated 
Checker for the 

Statements

Standard Technical 
Korean (STK)

RESTful
API

feedback

Requirement
Specification Template

Database server
MongoDBTM 4.4.5

Web server
PythonTM 3.9.1 with DjangoTM 3.1.3

Processing
Results

Requirement
Specification
Updated 
by Users

Graphic User Interface 

Requirement 
Specification

HTTP 
Request JSON 

Figure 2. The architecture of the automated checker for the correctness of requirement specifications.

The system consists of a database server and a Web server. The database server
includes a set of standard technical Korean (STK), which represents jargon in a specific
domain, and a group of requirement specification templates as a reference document. The
Web server and graphical user interface (GUI) of our system allow users to remotely access
our system at any time. From the GUI, a sentence or a file of a requirement specification is
fed into the automated checker using the HTTP request. The processing results that prove
the soundness of the requirement specification are displayed on the output panel in the
open standard format of JSON (JavaScript Object Notation).

An actual screen capture of our system is depicted in Figure 3. As shown in the upper-
left part of our system, a set of STK is saved into a database and is loaded from a database
that is connected to the GUI on the Web server with the RESTful API. The database of
domain-specific templates, which is also connected to the GUI, is displayed in the lower-left
part of Figure 3. After the STK and templates are loaded, the k-means algorithm divides
the templates of requirement specifications into clusters. The k value should be determined
by unsupervised clustering algorithms, i.e., EM and DBSCAN, as mentioned in Section 3.1.
The distribution of instances in clusters and their centroids is depicted in the upper-right
part of Figure 3. To check the soundness of a requirement specification, users can key in
a single sentence in Korean; then, our system returns an identical template if the input
sentence exists in the template database. Otherwise, it returns the most similar template
that can be used to correct the input sentence. Users could also process the file of sentences
with a period in each line, as shown in the lower-right part of Figure 3.
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Figure 3. Automated checker for the correctness of requirement specifications.

4. Experimental Results

To verify the automated checker that we have developed, as depicted in Figure 3, a
set of experiments was conducted with various requirement specifications in the domain
of an open platform development for a railway train. The first experiment focused on the
method by which our system classifies a tapestry of templates into several clusters. In
the second experiment, we measured and analyzed the degree of similarity between new
sentences inputted by users and the templates recommended by our system.

4.1. The Number of Natural Clusters Using Unsupervised Clustering Techniques

To find the appropriate number of clusters for the sentences, the EM and DBSCAN
algorithms, as unsupervised clustering techniques, are utilized. The EM algorithm is pro-
vided by weka.clusterers.EM of Weka Workbench [27] 3.9.5 and python-weka-wrapper3 0.2.2.
The DBSCAN algorithm is provided by sklearn.cluster.DBSCAN of scikit-learn [28] 0.24.2,
whose critical parameters are as follows: the epsilon (ε) is 1.75 and the minimum number
of samples (minPts) is 3. An instance of these algorithms is given by the sequence of mor-
phemes, which is the output of the Korean Morphological Analyzer, Hannanum, whose
maximum length is set to 100 tokens. A total of 150 sentences as templates were tested in
this experiment.

As shown in Figure 4, the average number of clusters generated by the EM and
DBSCAN algorithms was measured with 30 to 150 randomly sampled instances, after 10
runs were executed for each set of instances. Here, the average number of clusters generated
by EM is denoted as A and the average number of clusters generated by DBSCAN is
denoted as B. The average of A and B ranges from 2.21 to 6.14, which is denoted by a bar in
Figure 4. As the number of instances increases up to 150, the average of B also increases. In
this clustering process of DBSCAN, more clusters could be generated in the event that the
number of instances increases, while comparing this value with that of EM. However, when
the number of instances ranges from 80 to 150, the average of A is almost the same. When
the number of instances is greater than 100, the difference between A and B becomes larger,
as depicted in Figure 4. Given a set of templates, the appropriate number of clusters can
thus be determined by the average of A and B. In this experiment, the 6.14 clusters as the
average of A and B were generated, while 150 instances were given. Because the number
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of produced clusters was relatively large as compared to the number of input instances, we
attempted to lessen the overhead of maintaining the large number of clusters.

0

5

10

30 40 50 60 70 80 90 100 110 120 130 140 150

The Number 

of Clusters

The Number of Sentences

 AVG EM DBSCAN

Figure 4. The average number of clusters after 10 runs using the EM and DBSCAN algorithms.

To properly maintain the number of attributes, a property of an instance, the maximum
number of attributes, was set to 100. In other words, the number of morphemes for any
sentence should be less than or equal to 100. In the domain of open platform development
for a railway train, all of the statements for requirement specifications can be transformed
into a sequence of morphemes with the same length of 100. When a sentence has a relatively
short sequence of morphemes, most attributes are filled with an empty attribute, i.e., a null
value. Regardless of the length of sentences, some parts of the sequence should also be
stuffed with meaningless, null values to preserve the same length.

The approach presented in this paper proposes an efficient method to deal with
sparsity caused by null attributes. Figure 5 shows an encoding and decoding procedure [7],
which uses the AutoEncoder model within TensorFlow 2.5.0 on Python. It also presents
an unsupervised clustering process, which uses the EM and DBSCAN algorithms. The
encoder, as shown in Figure 5, transforms a 100-token sentence into a 10-token sentence.
When an instance of a 10-token sentence is fed into learning techniques in a dimensional
reduction format, each clustering algorithm is trained to divide a set of 10-token templates
into separate clusters.

X Encoder Decoder X’Y

100-Token Sentences

Input

10-Token Sentences

OUTPUT
(Clusters)

EM

DBSCAN

100-Token Sentences

10-Token Sentences

Figure 5. The architecture of the unsupervised clustering techniques used to identify the number of
natural clusters.
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Specifically, we apply the autoencoder model to our domain, which maps the input
sentences into the coded one. Our model of the autoencoder uses the ADAM optimizer with
40 epochs, when the number of nodes on a hidden layer is clearly smaller than the number
of nodes on an input layer. As the number of iterations over the entire training set increased,
the mean squared error (MSE) did not start to increase. In other words, we did not observe
any overfitting while increasing the number of epochs in the experiment. Figure 6 presents
a graphical representation of 100-token original sentences, 10-token encoded sentences,
and 100-token decoded sentences, which were visualized in Python with Matplotlib 3.4.2.

7

8

64

34

3.7  5.9   5.1   1.3   2.2   0   3.7   4.7   5.7   2.3
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10-Token Sentences
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Figure 6. The retaining process of input sentences through the encoding and decoding procedure.

In Figure 6, the 100-token sentences and their decoded sentences are plotted in a
black box with white dots, which correspond to morphemes in a 100-token sentence. In
these patterns, fewer white dots in a black array represent a shorter sentence, such as the
uppermost sentence among the four instances in Figure 6. The encoder compresses a 100-
token sentence into a low-dimensional 10-token sentence while removing null attributes.
Since the encoder attempts to reduce noise, i.e., null values, in our domain, the low-
dimensional 10-token sentence contains the core properties of the morphemes. An instance
of a 10-token sentence composed of meaningful attributes is fitted into a 10-cell array, whose
cell denotes the degree of sparsity. For example, in the uppermost sentence in Figure 6, the
10-token sentence consists of cells with small values, which is a relatively short sentence.
On the other hand, when observing the lower sentence, the array is composed of cells with
large values, which is a long sentence. In the encoding and decoding procedure, the decoder
maps the 10-token encoded sentences into the sentences reconstructed by 100 tokens. By
using our model of autoencoder, we have tested the reliability of the encoding and decoding
procedure on 150 sentences. Given the fact that the 100-token original sentences on the left
of Figure 6 were very similarly transformed into the 100-token decoded sentences on the
right, we can conclude that the application of the autoencoder model to our domain was
successful and the method is dependable.

The encoder in Figure 5 transformed a 100-token sentence into a 10-token sentence.
When an instance of a 10-token sentence was finally fed into two clustering techniques
in a dimensional reduction format, each of them was trained to divide a set of 10-token
templates into separate clusters. When 10-token encoded sentences were given as input
instances, the number of clusters using EM and DBSCAN was measured and averaged
over ten runs for each set of instances. As declared above, the average number of clusters
generated by EM is denoted as A and the average number of clusters generated by DBSCAN
is denoted as B. The average of A and B increased from 1.42 to 3.26, which is denoted by
a bar in Figure 7. While referring to the results shown in Figure 4, i.e., the average of A
and B without autoencoding ranges from 2.21 to 6.14, the average number of clusters with
autoencoding was maximally reduced by 2.88 (=6.14−3.26). As the number of instances
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increased up to 150, the average of number of clusters slightly increased. In comparison to
the experimental result shown in Figure 4, the result of A is highly similar to the result of B,
as shown in Figure 7. When an instance of a 10-token sentence is fed into two clustering
techniques, i.e., EM and DBSCAN, the average of A and B is drastically reduced from 6.14
to 3.26 clusters, in the case of 150 instances. Our efforts to maintain a reduced number
of clusters led the automated checker with autoencoding to provide similar templates
as quickly as possible.
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Figure 7. The average number of clusters after 10 runs using EM and DBSCAN algorithms
with autoencoding.

4.2. Recommending Similar Templates Using k-Means Clustering Algorithm

The k-means clustering algorithm is used to separate a set of templates into clusters.
Then, it recommends a specific template that is syntactically similar to the structure of the
input sentence. Using the Euclidean distance metric and the cosine similarity metric [29],
the k-means clustering algorithm produces a recommendation of a template that is closest
to the input sentence, which is shown in Figure 8.

Figure 8 shows the distribution of similarity between the input sentence and its closest
template, which both belong to the same cluster that has been classified through the
k-means clustering algorithm. Based on the result of Figure 7, the k-means clustering
algorithm partitions 500 instances into three clusters, which is indicated as the k value in
this experiment. Then, using the Euclidean distance and cosine similarity metric, the degree
of similarity is measured across 500 instances that do not currently exist in the template
database. For inputted instances, a single morpheme from a sequence of morphemes in a
specific template is randomly selected; a single unit in a template has been replaced with a
different morpheme and the other units remained intact. After generating 500 instances
in this manner, we compared them with the recommended templates to test the degree of
similarity between the two.

Since the k-means clustering algorithm using the Euclidean distance provides the
distance between an instance and the center of a cluster, it can be used to quantify the level
of similarity between two instances. Here, within a cluster, the Euclidean distance from the
input sentence to the center of the cluster is S, the Euclidean distance from the recommended
template to the center of the cluster is T, and the difference between S and T is U. The
Euclidean distance of the farthest instance from the center of the cluster is P, the Euclidean
distance of the closest instance to the center of the cluster is Q, and the difference between
P and Q is R. Using these values, the normalized similarity is calculated as 1− (U/R)
and indicated on the y axis of Figure 8a. When the formula of the normalized similarity is
applied to the 500 instances, the minimum value of similarity is 0.6632, the maximum is
0.9999, and the average is 0.9693± 0.0410.



Electronics 2022, 11, 2113 10 of 12

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250 300 350 400 450 500

Similarity

Instances

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250 300 350 400 450 500

Similarity

Instances

(a)

(b)

Figure 8. Comparing the performance of similarity (a) using a Euclidean distance metric, and (b)
using a cosine similarity metric.

The resulting performance of the k-means clustering algorithm using the cosine sim-
ilarity metric was also measured for 500 instances, as shown in Figure 8b. The cosine
similarity metric measures the similarity between the newly created input instance and a
specific template; when the value is closer to 1, the inputs are more similar to the templates.
The distribution of similarities using the cosine similarity metric is summarized as follows:
the minimum is 0.9466, the maximum is 0.9998, and the average is 0.9927± 0.0094. In
comparison to the experiment that used the Euclidean distance metric, the experiment
using the cosine similarity metric showed better performance, where the results ranged
from 0.9466 to 0.9998, as depicted in Figure 8b. Since the average similarity achieved
using these two metrics was over 97.00%, we demonstrate that our framework successfully
recommends templates that are highly similar to the syntax of the input sentence.

5. Conclusions and Future Research

In this paper, we propose a method to review the syntactic correctness of requirement
specifications and implement an automated checker to assess the recommendation process
of appropriate templates in the domain of an open platform development for a railway
train. After confirming the accuracy of the recommendations, we plugged the entire process
into an automated checker that displays a database of STK, a set of templates, the formation
of clusters, inputted sentences, the result of syntactic correctness, and the recommended
templates. Our system enables users to verify whether or not their requirement specifi-
cations are syntactically valid and to modify incorrect ones while referring to the most
similar templates.

When users are developing a large-scale system, they wish to compose a cohesive
and accurate requirement specification for clear communication. For this purpose, we
built a system that can automatically verify the syntactic soundness of sentences and
continuously process the recommendation of a relevant template. Using our system, we
evaluated the performance of cluster generation without specifying the number of clusters.
Based on the clusters, we calculated the level of similarity between an input sentence and a
template. We found that our system was able to successfully recommend templates that
were syntactically close to the input sentence, because the degree of similarity was over
97.00% on average.

The development of this automated checker contributes to the setup of a well-established
development environment and to the reduction in the system development costs. For
future research, the proposed framework in our system could be applied to various system
development settings where accurate and concise requirement specifications are required.
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The databases of technical jargon and templates could be continuously expanded, even
if sentences are written in other languages—for example, in English. In parallel, the per-
formance of our system will be tested in the event that the size of the STK and number of
templates incrementally increase, while maintaining the dynamic number of clusters in a
data set. Currently, our system can provide users with recommendations that improve the
cohesiveness of requirement specifications. We aim to ultimately develop a system that can
adaptively deal with additional specifications that occur in a system development life cycle.
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