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Abstract: Traditional GAN-based image generation networks cannot accurately and naturally fuse
surrounding features in local image generation tasks, especially in hairstyle generation tasks. To
this end, we propose a novel transformer-based GAN for new hairstyle generation networks. The
network framework comprises two modules: Face segmentation (F) and Transformer Generative
Hairstyle (TGH) modules. The F module is used for the detection of facial and hairstyle features
and the extraction of global feature masks and facial feature maps. In the TGH module, we design
a transformer-based GAN to generate hairstyles and fix the details of the fusion part of faces and
hairstyles in the new hairstyle generation process. To verify the effectiveness of our model, CelebA-
HQ (Large-scale CelebFaces Attribute) and FFHQ (Flickr-Faces-HQ) are adopted to train and test
our proposed model. In the image evaluation test used, FID, PSNR, and SSIM image evaluation
methods are used to test our model and compare it with other excellent image generation networks.
Our proposed model is more robust in terms of test scores and real image generation.

Keywords: face detection; convolutional neural network; generative adversarial networks; transformer;
image fusion

1. Introduction

Good appearance, especially with regard to hairstyle, holds considerable importance
for both women and men. A proper hairstyle can greatly improve a person’s appearance.
Once it becomes symbolic, an inappropriate hairstyle can also ruin one’s confidence. In the
event of a bad haircut, a person may require considerable time to grow sufficiently long hair
to try a new hairstyle. Therefore, switching to a new hairstyle is a crucial decision. Moreover,
before getting the actual haircut done, determining which new hairstyle would suit the
person is very challenging. In this context, we studied the use of artificial intelligence to
automatically and naturally fuse and generate new and suitable hairstyles. To naturally
perform fusion to generate new hairstyle features, the face part is first detected [1], and the
new hairstyle is subsequently matched. The traditional method [2] forcibly superimposes
other people’s hairstyles on one’s avatar image by cutting images [3]. The hairstyles of
different people do not match; therefore, they cannot be accurately integrated with the
faces. Failure to consider the global consistency of an image results in significant synthesis
artifacts; even though each part is composited in a highly realistic manner, different areas of
the image can appear disjointed. For the generated image to appear reasonable and natural,
we need to calculate the image details. While retaining the features of the original face
image, carefully integrating the transition area between the new hair and the face reduces
unnecessary artifacts and finally achieves our goal of generating realistic and natural face
images with new hair.
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Recently, with the rapid development of deep learning technology in several fields,
outstanding achievements have been made in scientific research and practical applications.
Among them, a Convolutional Neural Network (CNN), as a type of feedforward deep
network, has demonstrated a strong ability in image feature learning and expression and
has provided excellent performance in large-scale image processing [4,5]. Furthermore,
Generative Adversarial Networks (GANs) proposed by Goodfellow et al. [6] have been
widely used in the field of computer vision owing to their ingenious game adversarial
learning mechanism and great potential for fitting data distribution. These research results
greatly complement the image vision. Deep learning networks have overcome the short-
comings of traditional methods in understanding image semantics and have solved the
semantic gap between low-level image features and high-level semantics to a certain extent.
Simultaneously, researchers have introduced the attention mechanism [7] of the Natural
Language Processing (NLP) field into computer vision tasks, which enhances the ability of
image feature extraction. These excellent methods have gradually placed the deep learning
technology on the forefront of the computer vision field.

Traditional GANs hairstyle generation tasks are trained on large amounts of data, and
image features are mixed together to form a single synthetic image [8,9]. Although these
methods can generate visually plausible image structures and textures, they often produce
distorted structures or blurred textures that are inconsistent with the surrounding regions,
making this task extremely challenging, especially the image generation task for a human
face [10]. The main reason behind this can be explained as follows; the visual properties
of the different parts of the image are not independent of each other. These problems
can be solved by using (i) light, geometry, and other patches [11,12] for optimization;
(ii) global and local discriminative optimization [13]; (iii) context attention [14–16] for
optimizing the generation of image details and suppressing blur; (iv) transformers [17]
for reconstructing the appearance priors by supplementing details such as textures. In the
hairstyle generation task, the appearance of hair is largely influenced by ambient light and
the colors transmitted from the underlying face, clothing, and background. Additionally,
the geometry of a person’s head and shoulders affects the shading and hair structure. Other
challenges include blurring the background and detachment of facial areas exposing new
parts of the face, such as the ears, forehead, or jawline. Although recent studies on GANs
have been able to synthesize realistic hair or faces, combining them into a single, coherent,
and plausible image remains difficult.

In this study, we propose a novel transformer-based GAN for facial hairstyle image
fusion by introducing a GAN-based semantic alignment step where occluded regions in an
image are filled with semantically correct image content. Artifacts caused by transparency,
reflections, or interactions of hair with faces are less noticeable when aligned with task-
relevant semantic regions, such as hair. Our proposed method is superior at preserving
details and encoded spatial information for the accurate and natural fusion of faces and
hairstyles. In addition to our method’s ability to transfer visual attributes, including specific
details such as wrinkles, from multiple reference images, we perform image blending in the
latent space. This enables us to synthesize coherent images. Our method avoids blending
artifacts present in other methods and finds images that are globally consistent.

Following is a brief summary of the contributions of this work.

1. We propose a novel hairstyle generation composite network, Face Transformer Gener-
ative Hairstyle networks (FTGH), to overcome the single generation network and the
abnormal situation of generating new hairstyle images of people by adding modules
for extracting face masks and segmenting face regions to enhance the realistic effects
of GAN image generation.

2. We designed a GAN image generation network incorporating transformers. To avoid
the problem of insufficient accuracy of images generated by Vision Transformer (ViT),
ResNet was used for image generation in the generator part and the transformer
method was used to discriminate the generated images in the discriminator part.
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3. We used the open-source datasets CelebA-HQ and FFHQ to train and validate our
proposed model. Verification with various image evaluation standards revealed that
our method is more robust than the other existing methods.

2. Related Work

Generative adversarial networks. GANs were proposed by Goodfellow et al. Owing
to their emergence in the field of image generation and their realistic output, GANs have
attracted increasing attention for use in image inpainting and image generation tasks,
especially in the editing of face images. However, the original formulation of GAN suffers
from training instability and mode collapse. Considerable research has been conducted
to address these issues using various methods; for example, Zhu et al. proposed Cycle-
GAN [18] to use cycle consistency loss to overcome the lack of paired training data. Choi
et al. [19] proposed StarGAN, a unified model architecture that allows simultaneous train-
ing of multiple datasets with different domains in a single network, thereby improving
image generation quality. Gu et al. [20] proposed mGANprior to generate multiple feature
maps using multiple latent codes at an intermediate layer of the generator and combine
them with adaptive channel importance to recover the input image. This overparameteri-
zation of the latent space significantly improves the image reconstruction quality. NVIDIA
researchers proposed styleGAN [21,22], which is a series network model. This style-based
generator method provides good performance in face static image restoration and hairstyle
fusion and excellent performance in the field of video image restoration. Lin et al. [23] used
a GAN approach combining ResNet and attention mechanism to generate high-quality
face images for visual face information protection. Adela et al. [24] proposed, based on
styleGAN face embedding method to generate new hairstyles, avoiding shadows at the
intersection of facial contours and hair. As a result of these developments, GANs have
achieved remarkable results in various tasks.

Visual Transformer. The transformer abandons the traditional CNN and RNN, and
the entire network structure uses only the attention mechanism. NLP has led to rapid
progress in a variety of natural language tasks; recently, NLP is being widely used in the
field of computer vision with its appearance on some tasks previously dominated by CNNs.
Among them, the seminal work, ViT [25], proposed a pure transformer architecture for
image classification and presentation, with great potential in vision tasks. Carion et al. [26],
an ensemble-based global loss, designed a DETR network for global segmentation, and the
network performance significantly outperformed competing baselines. Srinivas et al. [27]
proposed BoTNet, a transformer model incorporating the backbone architecture of self-
attention and applied it to multiple computer vision tasks including image classification,
object detection, and instance segmentation. Wu et al. [28] proposed Pale Transformer
with pale self-attention (PS-Attention) that performs self-attention within pale regions.
Compared with global self-attention, PS-Attention can significantly reduce computational
and memory costs while capturing richer contextual information.

Transformer-based GANs. Recently, the research community has begun exploring the
use of transformers for image-generation tasks with the hope that the increased expressive-
ness can benefit the generation of complex images. For example, Jiang et al. [29] proposed
a TransGAN comprising a memory-and-transformer-based generator and a transformer-
based patch-level discriminator that progressively increases the feature resolution while
reducing the embedding size. Lee et al. [30] proposed ViTGAN, which integrated the
ViT architecture into a GAN and improved spectral normalization to enhance Lipschitz
continuity, achieving fairly-high performance. Wang et al. [31] proposed a convolution-free
pyramid vision transformer (PVT) that overcomes the difficulty of porting the transformer
to various dense prediction tasks, thereby reaching or even surpassing the performance of
traditional CNNs. In this study, we propose a novel realistic hairstyle generation network
for facial hairstyle synthesis image-editing tasks. In the proposed network, an efficient
segmentation module is used to detect the face image in advance and extract the mask. For
hairstyle generation, we use the transformer-based GAN. Because transformer efficiency is
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limited in image generation, ResNet is used in the generator to generate a new hairstyle
and the transformer is used as a discriminator to focus on the generated area and assess
the quality of the generated images. Finally, a realistic facial image with a new hairstyle is
generated.

3. Methods

In this section, we provide a systematic description of the network structure of our
model. The framework of the proposed FTGH network model is shown in Figure 1. This
framework comprises two modules: Face segmentation (F) and Transformer Generative
Hairstyle (TGH) modules.

The most important thing in the hairstyle generation task is that the generated hairstyle
and the original face have overall consistency to avoid the appearance of artifacts, which
requires accurate detection and segmentation of the face area and the hairstyle area. There-
fore, we add the face segmentation module before generating the hairstyle to enhance the
feature extraction ability and provide more accurate feature information for the generation
network. The face segmentation module is responsible for detecting face features and
extracting face area maps and face mask feature maps. Furthermore, in the TGH module,
the transformer-based GAN calculates the hairstyles and people multiple times. After the
facial features are fused, a new face image with a suitable and natural hairstyle is generated.
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Figure 1. TGH Framework: Our proposed network comprises face segmentation (F) and transformer
generative hairstyle (TGH) modules. The input image is extracted from the F module to extract the
mask and detail features of the hairstyle and face. In the TGH module, the hairstyle image is referred
to, and the face image with the new hairstyle is generated with the assistance of the mask image.

3.1. Face Segmentation (F) Module

The face segmentation (F) module is similar to the Mask R-CNN [32], as shown in
Figure 2. Mask R-CNN is a composite network framework comprising RESNET-FPN,
region proposal network, and fully convolutional network (FCN). However, in our task,
multi-tasking and multi-target detection is not involved; only mask and facial features are
required to be extracted. Therefore, we redesigned and optimized the network to make
the face segmentation module more concise and efficient. ResNet-50 is more concise and
has the same excellent performance. Additionally, it removes unnecessary fully connected
networks and draws on the RoI (RoI Align) extraction method; therefore, it is used as the
basic network for feature extraction.
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Figure 2. Face segmentation (F) module.

The precise pooling layer of the RoI alignment is used to segment and extract facial
features at the pixel level. In the traditional RoI pooling layer, the quantization operation
leads to a deviation between the obtained features and the RoI. As shown in Figure 3,
the multiple quantization operation deviations become larger, and this difference can
have a negative impact on the predicted pixel mask. However, the RoI alignment retains
the original feature data without quantification, and the obtained RoI features are more
authentic. It is conducive to semantic recognition and detailed mask segmentation of face
and hairstyle regions and provides help for the uniformity and naturalness of the generated
images.
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3.2. Transformer Generative Hairstyle (TGH) Module

The internal structure of a GAN generator usually uses a deconvolution network
(DCNN), which can be considered to be a stack of deconvolution layers. However, in the
process of image generation, the input condition variables must pass through several layers
to affect the final generated output. Simple convolutional networks are unable to generate
realistic images. Designing generators based on the ViT architecture is not trivial, and the
generated images are worse than those of CNN-based generators. Therefore, as shown in
Figure 4, we adopted a ResNet-based CNN as the generator.

In the generator, we used ResNet-50 for image generation. We additionally tested
ResNet-32, ResNet-101, and other networks with different layers; however, they did not
provide significant performance gains. The ResNet in the generator has downsampling,
residual blocks, and upsampling. The down-sampling layer adopts a strided convolution
calculation without a pooling layer. The residual blocks do not change the width or height
of the activation map. There are equal number of downsampling and upsampling layers.
The downsampling computation uses a dilated convolution operation [33] to increase the
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receptive field size without applying subsampling or adding several convolutional layers.
The generation process can be denoted as:

G(x) = f (g(hx) + hx) (1)

where hx is the input image, G(x) is the final output, and g(hx) is the residual image to be
learned by the generator.
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Figure 4. Transformer generative hairstyle (TGH) module. The module consists of a generator
(G) and a discriminator (D). The generator uses the ResNet network, and the discriminator uses a
transformer for image patch attention.

In the discriminator, unlike the generator used to generate pixel-exact images, the task
of the discriminator is to distinguish between real and fake images. We divide the image
generated by the generator into multiple patches, where each patch can be considered to be
a “word”. Unlike classifier image recognition tasks that focus on semantic differences, the
discriminator is used to distinguish synthetic images from real ones by computationally
simple tasks that focus on image details. Therefore, local visual cues have a greater influence
on the discriminators. For the internal design of the transformer of the discriminator,
we adopted the original transformer scheme, combining multi-head self-attention and
Multilayer Perceptron (MLP) to determine whether the images generated by the generator
are accurate. Transformers are more advantageous in image detail detection, which is
of great help in the artifact suppression of hair regions and facial gaps in the hairstyle
generation network. We employed a balanced learning rate [34] in the attention module
and MLP to address the slow convergence of the transformer block in the discriminator.

Multi-Head Attention denoted as:

Multihead(Q, K, V) = Concat(head1, . . . , headh)WO

where headi = Attention
(

QWQ
i , KWK

i , VWV
i

) (2)

where Q, K and V denoting matrices packing together sets of queries, keys and values,
respectively. WQ, WK and WV denoting projection matrices that are used in generating
different subspace representations of the query, key and value matrices. WO denoting a
projection matrix for the multi-head output.
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The TGH image generation process is a game between the discriminator D and the
generator G, and the final equation can be denoted as:

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(x)] +Ez∼pz(z)[log(1− D(G(z)))] (3)

where G is the generator, D is the discriminator, and z is the corrupted image.

4. Experiments
4.1. Datasets

We used the open-source datasets, CelebA-HQ [35] and FFHQ [36], to train and
validate the proposed FTGH hair fusion generative network model and randomly selected
80% data for training and 20% for testing. CelebA-HQ is a high-definition image version
dataset of CelebA, which contains 30,000 face images with a 1024 × 1024 resolution. FFHQ
is a commonly used dataset for generating high-resolution images. It contains 70,000
high-quality PNG images at a resolution of 1024 × 1024 with considerable variation in age,
ethnicity, and image background. Additionally, it has a good coverage of accessories, such
as eyeglasses, sunglasses, and hats.

4.2. Implementation Details

During training, the algorithm flow is presented in Algorithm 1, we used the Adam
solver [37] with reference to TTUR. Since our proposed hairstyle generation model uses G
and D with different internal structures, the same learning rate cannot meet the training re-
quirements. The important parameters of training are shown in Table 1. After experimental
verification, a higher learning rate will lead to a decrease in the quality of generated images,
finally selected unbalanced learning rates in the generator and discriminator: lg = 5 × 10−5

and ld = 2× 10−4, with standard GAN losses and R1 gradient penalty to train our networks.
In addition, the same number of training steps will also affect the training results. In model
training, we found that increasing the number of training steps sg of the generator will
produce a more accurate image, and too large a difference between sg and discriminator sd
will also reduce the accuracy of the generated image. Figure 5 shows the loss curves of the
generator and discriminator trained for 200 epochs.

Table 1. Training parameters.

lg Generator learning rate

ld Discriminator learning rate

sg Generator training steps

sd Discriminator training steps

Figure 5. Training loss.
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In network performance evaluation, a single test evaluation scheme cannot accurately
evaluate the performance of the model; therefore, we use a variety of image generation
quality evaluation methods: the Fréchet inception distance (FID), peak signal-to-noise ratio
(PSNR), and SSIM (structural similarity index map) to measure the difference between the
image generated by our proposed model and the real image.

FID: To calculate the real samples and generate the distance between them in the
feature space, we first use the inception network to extract features and then use the
Gaussian model to model the feature space. Finally, we solve the distance between the
two features. A lower FID indicates a higher image quality and diversity. The following
equation is used to calculate the FID.

FID(x, g) =
∣∣∣∣µx − µg

∣∣∣∣2
2
+ Tr

(
Σx + Σg − 2

(
ΣxΣg

) 1
2

)
(4)

PSNR: This is the ratio between the maximum value signal of the image and back-
ground noise. The larger the ratio, the higher the quality of the generated image. It is
widely used as an image quality evaluation index in several image fields such as image
super-resolution, compression, and denoising. It is calculated using the following equation.

PSNR = 10 log10

(
R2

MSE

)
(5)

SSIM: This is an index used to measure the similarity between two images, based
on the following three aspects: brightness, contrast, and structure. The value range of the
SSIM is [0,1]. The larger the value, the smaller the image distortion. It can be calculated
using the following equation.

SSIM(x, y) = [l(x, y)]α·[ c(x, y)]β · [s(x, y)]γ (6)

Algorithm 1 FTGH, using standard GAN losses and R1 gradient penalty to train our networks.
The number of steps to apply to the discriminator, k, is a hyperparameter, initialized k = 1.

for number of training iterations do
for k steps do

• Sample batch of m noise samples {z (1), . . . , z(m)} from noise prior pg(z).
• Sample batch of m noise examples {x (1), . . . , x(m)} from data generating distribution pdata(x).
• Update the discriminator by ascending its standard GAN losses and R1 gradient penalty:

∇θd

1
m

m

∑
i=1

[
logD

(
x(i)
)
+ log

(
1−D

(
G
(

z(i)
)))]

.

end for

• Sample batch of m noise samples {z (1), . . . , z(m)} from noise prior pg(z).
• Update the generator by ascending its standard GAN losses and R1 gradient penalty:

∇θg

1
m

m

∑
i=1

log
(

1−D
(

G
(

z(i)
)))

.

4.3. Main Results

We used the FID image quality assessment metric to compare our method with other
state-of-the-art convolution-based GAN methods. The proposed FTGH network achieved
state-of-the-art FID scores, as presented in Table 2.
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Table 2. Comparison of FID of different models.

Method. FID (↓)

STGAN [38] 47.54

U-NetGAN [39] 43.99

MagGAN [40] 41.32

MASKGAN 37.55

LOHO [41] 35.50

FTGH (ours) 21.72

At the same time, we test different GAN internal generator and discriminator combi-
nations, as presented in Table 3. In the GAN framework using the ResNet or Transformer
network structure of the same generator and discriminator network combination, there is a
certain gap between the performance and our proposed TGH model

Table 3. Comparison of FID of Different GAN.

Method FID (↓)

G&D (ResNet) 29.2

G&D (Transformer) 44.7

TGH (G: ResNet/D: Transformer) 21.5

The image quality assessment method singly cannot accurately determine the perfor-
mance of the image generation network. Therefore, we additionally adopt the PSNR and
SSIM methods to test the performance of our proposed network. As presented in Table 4,
our proposed network exhibits excellent performance.

Table 4. Comparison of PSNR and SSIM of different models.

Method PSNR (dB) (↑) SSIM (↑)

STGAN 17.92 0.72

U-NetGAN 18.55 0.75

MagGAN 20.43 0.78

MASKGAN 20.75 0.80

LOHO 22.28 0.83

FTGH (ours) 30.10 0.92

In previous studies on facial hairstyle generation, hard transitions such as copy and
paste areas were usually used. Owing to the misalignment of images, several artifacts
would be created between the fusion of hair and face, resulting in unnatural images. Our
proposed FTGH network provides pixel-level face-mask information and facial features.
In the image generation task shown in Figure 6, this spatial information can be used to
find the hair and facial boundaries, perform new hairstyle fusion, and generate a clear and
artifact-free natural image.
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Figure 6. Examples of new hairstyles generated by the FTGH network.

A comparison between the results generated by our method and those by other image
generation networks is presented in Figure 7. It can be observed that, although some
methods can generate relatively clear face images with new hairstyles, the performance
of these networks is limited regarding the generated hair and face details, with unnatural
hairstyles, blurred edges, and facial feature changes. In summary, our proposed method
generated new hairstyles that are clearer and more natural on the premise of preserving
the original facial features.

Figure 7. Comparison of the results of our proposed hair generation network model and those of
other excellent network models.
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We tested different hairstyles of female and male avatars. In female hairstyle gen-
eration tasks, hairstyles are more diverse, such as long, short, curly, and braided hair;
hair covering the face and/or cheeks; and the wearing of earrings. This is a challenge for
hairstyle-generation networks.

Figure 8 shows the proposed FTGH network which generates different hairstyles on
different faces. Concurrently, in the male hairstyle generation task, there are fewer cases
of facial occlusion because men prefer short hair. This is advantageous for the generation
network and more conducive for generating clear and natural face images. As shown in
Figure 9, our proposed network exhibits excellent image generation performance.

Figure 8. Comparison of different new hairstyles for women.

Figure 9. Comparison of different new hairstyles for men.

5. Discussion

Our proposed FTGH network for new hairstyle generation can generate new, clear,
artifact-free, and natural hairstyles for both females and males and has excellent perfor-
mance. The FTGH network uses the open-source datasets, CelebA-HQ and FFHQ, for
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training. Most of the images in the datasets use frontal unobstructed face images; therefore,
during image testing, we observed that, in some specific face images, such as those wearing
glasses, when face occlusion (hand, hand joints, etc.) is used for new hairstyle generation,
our network provides limited performance, as shown in Figure 10. Specifically, for images
showing faces wearing glasses, the generated face image of a new hairstyle and face parts
is accurate; however, the restoration of the leg part of the glasses is limited when the
face is occluded by the hand, and the restoration of hand details in the generated image
is not sufficiently natural. In future research, we will continue to modify and improve
our network to achieve more accurate and natural generation of face images with new
hairstyles in various scenarios.

Figure 10. Face image with face occlusion.

6. Conclusions

We proposed a novel hairstyle generation network called the FTGH. The network
model comprises two modules: the F and TGH modules. The F module is responsible
for the accurate extraction of face and hairstyle area masks from the original image. The
TGH module uses a combination of transformers and GANs to generate high-quality, high-
resolution new hairstyles. The traditional GAN model offers limited performance in image
generation, particularly in the image fusion generation of specific areas of an image. The
proposed method uses a combination of multiple modules. First, the specific area of the
image to be generated is confirmed, and subsequently, image generation is performed. For
image generation, ResNet was used as the generator for the fusion generation of specific
images, and transformers were used as the discriminator for focusing on specific regions
generated and for discriminating the quality of the entire image generation. Our model is
more robust than other excellent models in high-quality 1024 × 1024 resolution image tests
provided by the CelebA-HQ and FFHQ open-source datasets.
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