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Abstract: For the past few years, the IoT (Internet of Things)-based restricted WSN (Wireless sensor
network) has sparked a lot of attention and progress in order to attain improved resource utilisation
as well as service delivery. For data transfer between heterogeneous devices, IoT requires a stronger
communication network and an ideally placed energy-efficient WSN. This study uses deep learning
architectures to provide a unique resource allocation method for wireless sensor IoT networks with
energy efficiency as well as data optimization. EE (Energy efficiency) and SE (spectral efficiency) are
two competing optimization goals in this case. The network’s energy efficiency has been improved
because of a deep neural network based on whale optimization. The heuristic-based multi-objective
firefly algorithm was used to optimise the data. This proposed method is applied to optimal power
allocation and relay selection. The study is for a cooperative multi-hop network topology. The best
resource allocation is achieved by reducing overall transmit power, and the best relay selection is
accomplished by meeting Quality of Service (QoS) standards. As a result, an energy-efficient protocol
has been created. The simulation results demonstrate the suggested model’s competitive performance
when compared to traditional models in terms of throughput of 96%, energy efficiency of 95%, QoS
of 75%, spectrum efficiency of 85%, and network lifetime of 91 percent.

Keywords: wireless sensor network; Internet of Things; resource allocation; energy efficiency; data
optimization; deep learning

1. Introduction

One of the most important study topics in the cloud is resource allocation, which aims
at increasing service provider profitability and achieving customer satisfaction by meeting
promised SLA conditions [1]. SLA (Service Level Agreements) must be signed by Service
Providers and Cloud Users to assure Quality of Service (QoS) [2]. Resource allocation
has been considered one of the most significant topics to address when dealing with SLA
situations. Because the load on the physical server’s changes over time, resource alloca-
tions must be managed dynamically. Dynamic resource allocation is exceedingly difficult,
especially when QoS needs to change over time while considering processor availability
and minimising processor idle time. A WSN is a network of several sensor nodes that are
typically put in remote places to monitor environmental characteristics. Sensors such as
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acoustic, pressure, motion, image, chemical, weather, pressure, temperature, and optical
sensors are installed in the sensor nodes (SN). WSNs have a wide range of applications
due to the diversity of SN, ranging from healthcare to military, defense, agricultural, and
everyday life. Despite their large uses, WSNs have numerous common issues such as
restricted energy sources, processing speed, memory, and communication bandwidth,
causing SN performance to degrade as well as network lifetime to decrease [3]. Creating
distinct algorithms for various purposes is a difficult endeavor. WSN designers must pay
special attention to concerns such as data aggregation, clustering, routing, localization,
fault detection, task scheduling, and event tracking, among others.

Wireless sensor nodes are small devices that detect atmospheric conditions including
pressure, temperature, and humidity. They have a memory device to store the data and
a channel to transfer it to BSas well as other devices. They are frequently dispersed,
depending on the number of nodes used to collect data. Many studies have been previously
conducted [4] that address these problems by applying methodologies derived from signal
communication theory in telephony, with the primary goal of ensuring reliable data delivery
without noise. Because there is no way to provide continuous power to sensors using a
battery as a power source, researchers must focus on energy efficiency. Because of the
limited energy sources, the sensor node has a short lifespan, which reduces the system’s
network lifetime. Machine learning (ML) methods are known for their self-experiencing
nature as well as the fact that they do not require reprogramming [5]. ML is a useful
approach that allows for efficient, dependable, and cost-effective computing. Supervised
learning, unsupervised learning, and RL are the three main forms. It has been discovered
that machine learning technologies are effective in resolving key WSN difficulties. In the
realms of IoT, M2M and CPS, these approaches have proven to be beneficial. ML may learn
from a generalized structure and propose a generic solution to improve system performance.
It is used in numerous scientific domains of medical, engineering, and computing, such
as manual data entry, automatic spam detection, medical diagnosis, picture identification,
data purification, noise reduction, and so on, due to its diverse uses. Recent research shows
that machine learning has been used to overcome a variety of problems in WSNs. Using
ML in WSNs enhances system performance while also reducing complicated chores such
as reprogramming, manually accessing vast amounts of data, and extracting usable data
from data. As a result, ML methods are very beneficial for retrieving enormous amounts of
data as well as extracting meaningful data [6].

The contribution of this research is as follows:

1. To propose a novel technique in resource allocation (RA) for WSN_IoT with energy
efficiency and data optimization using deep learning architectures;

2. To improve the energy efficiency of the network using a whale-optimization-based
deep neural network;

3. To optimize the data transmission of the network using a heuristic-based multi-
objective firefly algorithm.

The organization of this article is as follows: Section 2 gives the related works, the
proposed technique is described in Section 3, Section 4 explains the performance analysis,
and the conclusion is given in Section 5.

2. Related Works

ML and DL methods for data processing could make edge devices smarter while also
improving privacy and bandwidth usage. The authors of [7] applied deep learning for IoT
to an edge computing environment and provided a method for improving network speed
while also protecting user privacy. The authors suggested adaptive sampling-based data
reduction methodologies in [8]. These methods function by analyzing the level of variance
between acquired data over time and dynamically altering the sampling frequency of the
sensors. In instances where the gathered time series are stationary, adaptive sampling
algorithms function well. These methods perform badly when dealing with rapidly chang-
ing data. The authors of [9] developed a dual prediction-based data reduction technique.
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The suggested technique works by developing and implementing a model that represents
the sensed phenomenon on both the edge node and IoT devices. Prediction techniques
have the advantage that the model at the edge predicts the detected measurement without
requiring a radio connection until the prediction error exceeds a predetermined threshold.
Work [10] demonstrated that man-made consciousness and machine learning can be used
to advance to unavoidable systems. AI-assisted ML systems will aid in merging human
intuition and ingenuity with AI capacity. AI-powered systems will assist in dynamically
analyzing processing scenarios and adapting appropriate scheduling and resource alloca-
tion strategies. Ref. [11] suggests a framework for cloud computing systems to increase
QoS while lowering the cost of providing services to end users. The system focuses on
condensing VMs based on current resource utilization, creating virtual networks between
VMs, and dynamically configuring virtual hubs. In WSN-aided IoT, ref. [12] proposed
a QoS-aware safe DL technique for dynamic cluster-based routing. In the WSN, the au-
thor [13] built a DL link dependability prediction. This research designed a resilient routing
algorithm for a better WSN routing mechanism. For lightweight subgraph extraction as
well as labelling, a DLmethod known as Weisfeiler–Lehman kernel and dual convolutional
neural network (WL-DCNN) technique is presented. A discussion of RA tactics is available
in [14]. They used a multi-target optimization strategy in this research to trade off speed,
cost, and availability in a cloud-based application, and their methodology might be up to
20% faster than existing optimization approaches. Their method has been confirmed. The
author of [15] proposed a thermal cognizant workload programming strategy to overcome
the excessive power consumption and hotness of data centers. They utilized an ANN to
predict the data center’s heat effect. In [14], a heterogeneous scheduling model is described.
Task resource utilization, as observed in the consolidation methods, was not taken into
account. Ref. [15] has a download issue with cloud or fog computing. User fairness and the
shortest possible delay are ensured by optimizing discharge results and allocating working
out resources. The goal of this optimization problem is to reduce the weighted delay
and energy consumption expenses. They devised low-complexity, suboptimal methods to
address this NP-hard issue. As a result, half-definite relaxation and randomization are used
to make discharge decisions, while fractional programming theory is used to manage re-
sources. The authors of [16] provide a heuristic approach to resource allocation, and a TSA
is presented. Modules such as divide and conquer TSA and resource allocation, modified
analytical processes, the longest projected length of processing, and divisible scheduling
with bandwidth knowledge are used in this technique. The tasks are processed before they
are assigned. With relation to the load and bandwidth of the cloud holdings, the allocation
is performed using BAR optimization and associated BATS algorithms [17] investigates
EE for combining BSas well as beamforming in multicell situations. Ref. [18] investigates
the energy and spectrum efficiency of 5G mobile MIMO networks. In [19], the authors
developed an energy-efficient non-cooperative game for distributed CRN over interference
channels. For CRNs and IoT, a noncooperative game based on power allocation is proposed
in [20], which investigates a mesh adaptive search technique for device to device-assisted
CRN; [21] proposes a gradient adaptation optimization for power allocation as well as EE
in CRNs. Although gradient techniques are reliable, they can fail to accomplish global opti-
mization. Heuristic algorithms are gaining popularity among researchers as a way to lower
the computational complexity of optimization approaches. For NP-complete problems,
heuristic techniques are simple to use and adapt. In [22], nonorthogonal multiple access
(NOMA) is employed for IoT resource management in smart cities, and mixed-integer
linear programming is presented for energy harvesting. To maximize EE and SE trade-off in
CR-IoT, a mixed-integer nonlinear programming (MINLP) technique is presented. Optimiz-
ing and increasing the efficiency of this communication is an important consideration, and
resource allocation is a critical bottleneck. Researchers are using innovative AI methods to
optimize resource allocation according to the data flow during network operation to solve
the challenge of resource allocation. These measures have moved the industry towards
automated resource management on a large and complex scale.
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3. System Model

This section discusses novel techniques in RA for WSN_IoT with energy efficiency and
data optimization using deep learning architectures. Here, EE and SE are considered con-
flicting optimization objectives. EE of the network is enhanced using a whale-optimization-
based deep neural network. Data optimization has been carried out using a heuristic-based
multi-objective firefly algorithm.

RA vector p(h) R m and a function ff: R·m × R·n → R·u are associated with each
fading channel realization. When the channel realization is h, the components of vector
valued function f·p(h), h relates performance indicators linked with resource allocation
p(h). The system allocates resources instantly in fast time changing fading channels, and
consumers. This supports examining vector ergodic average x = E·f·p(h), h ∈ R·u, which is
relaxed to the inequality for defining optimal wireless design issues by Equation (1).

x ≤ E[f(p(h), h)] (1)

At ideal operating points, we will obtain x = E·f·p(h), h, but this is not required a priori.
In optimally designed WCS, the goal is to identify instantaneous RA·p(h) that in some way
improves performance metric x.P has bounded functions, implying that resources being
allocated are finite. With these definitions, we can write a software to solve optimal RA
problems in WCN by Equation (2).

P∗ := maxp(h),xg0(x)

s.t. x ≤ E[f(p(h), h)]

g(x) ≥ 0, x ∈ X , p ∈ P (2)

Because (5) requires RA functions to follow parametrization p(h) = ϕ(h, θ), this results
in a loss of optimality. We focus our attention in this paper on a frequently utilized family
of parameterizations known as near universal, which may represent any function in P to a
specified precision.

Energy optimization using whale-optimization-based deep neural network:
There are two stages to the optimization process. The spiral position is updated in

the first step, and the prey is circled. The second stage involves a random search for prey.
Following is a mathematical representation of the stated step.

Encircling prey: Whales track down their prey and surround them. The position of
prey in the search space is unknown. According to the WOA, the leading factor is an ideal
prey. The surviving search agents aim to improve their performance by switching locations.
The following are examples of search agent behaviors by Equation (3):

→
Y(u + 1) =

→
Y∗(u)−

→
B ·
→
E

→
E =

∣∣∣∣→C·→Y2(u)−
→
Y(u)

∣∣∣∣ (3)

after iteration u,
→
Y2(u) defines the whale’s ideal location. The whale’s current location

is Y·u + 1, and a d distance vector represents the distance between whale and prey. The
absolute value is represented by ||. B and C coefficient vectors are calculated as follows by
Equation (4):

→
B = 2·

→
b ·→s +

→
b

→
C = 2·→s (4)
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The value of b is minimized in order to apply to shrink, and B’s oscillation range
is reduced to. The value of B is lowered from 2 to 0 iterations, while the value of b is
minimized from 2 to 0. The best agent’s position as well as an agent’s initial location are
decided by choosing a random value of B between (1, 1).

A. Spiral position updating
Calculating the distance between whale location Y, Z and prey location Y, Z defines

a helix shape for whale prey tracking. The movement toward prey is described as by
Equation (5)

→
E =

∣∣∣∣→Y2(u)−
→
Y(u)

∣∣∣∣ (5)

The constant b identifies the curvature of the logarithmic spiral, and random numbers
vary from 1 to 1. Whales can shift their location while undertaking reduction thanks to
their circular movement. Between spiral and diminishing encircling, there is a 50% chance
of selection by Equation (6)

→
Y(u + 1) =

→
Yrand −

→
B,
→
E (6)

B. Prey search
The exploration step, which is dependent on vector variations, is also known as the

prey hunting stage. The whale conducts a random search for the prey based on its position.
The search agent flees the seeking whale due to the whale’s location. WOA uses the
vector B, which has random values less than or equal to 1. The search agent is chosen at
random during the exploration phase. By lowering the local optimization problem, random
selection makes WOA a GSA. The following is definition of a global search by Equation (7):

→
Y(u + 1) =

→
Yrand −

→
B,
→
E

→
E =

∣∣∣∣→C· →Yrand −
→
Y
∣∣∣∣ (7)

where Yrand is a randomly chosen whale from the specified population. The whale pop-
ulation is given random outcomes by the WOA, which assumes the optimal solution of
function. Fitness function analyses selected features from this phase and found that a few
are still redundant, affecting accuracy of final classification. The fitness function is an ESD
classifier, and the error is evaluated for every iteration. As a result, we established a new
phase called “additional features approval” (EFA). The standard error of the mean is used
in this step (SEM). For the final recognition, the SEM value is put through a threshold
function. This function is described by Equation (8):

SEM(yi) =
σ

N
,σ =

√
σ2,σ2 = E

[
(yi − µ)

2
]

Selection = F(i) =
{

Fs
i for yi ≥ SEM(yi)

Remove Elsewhere
(8)

The final recognition is performed using an ensemble subspace classifier (Algorithm 1).
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Algorithm 1 The whale optimization algorithm

1. Initial population Yi where (i = 1, 2, 3, . . . . . . n)
2. Fitness evaluation for every solution
3. Y∗ = best search agent
4. For each solution
5. While (u < Max_iteration)
6. Updated b, B, C, M and p
7. If l (p < 0.5)
8. If 2(/B/ < 1)
9. Random search agent selection (Yrand)
10. Else if (/B/ > 1)
11. Current search agent location changes.
12. End if
13. Else if l (p ≥ 0.5)
14. End While
15. Change Y∗ if better solution is accessible u = u + 1
16. Return Y∗

17. Output: Fs
i ← Best Feature Vector

We used the whale optimization algorithm in our research to determine the ideal set
of parameters for DNN method training as well as hyperparameter selection. We establish
three things to specify our problem. To ensure the easy replication of our results, we kept
the initial divides into train and test subsets throughout our studies. The creators of the
dataset submitted an unmodified, fixed test set, which was used to evaluate the final results.
We used a simple DL architecture built from fully connected layers to handle these basic
tasks. We used the following layers to train the network for picture classification:

• Flatten layer to resize images;
• 512 neurons in a dense (fully linked) layer with ReLU activation function;
• To categorize 10 classes, use a dense layer with 10 neurons and the Softmax activation function.

The following layers make up the network utilised for Reuters dataset:

• Two dense layers, each with 64 neurons, with ReLU activation;
• Softmax activation function for 46 classes and one dense layer with 46 neurons. The

steps in a typical deep learning process are as follows: (1) data preprocessing, (2) DNN
method implementation and configuration, (3) learning as well as fitting method to
data. The cost function is used heavily in the final stage since its behavior is determined
by a set of training parameters. Only training parameters are optimized. Our search
area is an n-dimensional grid, with n equaling the number of specifications. The
algorithm was then tweaked to work in three dimensions, and three parameters were
optimized. The approach can possibly be extended to n dimensions, as stated in [8].
To do so, we refactored the solution vectors as well as the entire mathematical method
to operate in three dimensions. Our 3D-WOA method was based on original open
source one, but with the addition of 3D vectors. Finally, APIs for runtime as well as
benchmark functions are updated to support three-dimensional space.

To begin, a separate class with an optimization function is described to optimize
the cost function. It accepts training parameters as arguments and performs a fitting
operation on them. We decided to optimize solely on cross-validation accuracy metrics,
which function returns as well as serves as a cost function value. The specifications
that control the search space and constraints must be properly modified while utilising
the whale optimisation algorithm. The issue with the technique was that WOA only
operates in continuous space, whereas the specifications of NN have discrete values. As
a result, the WOA had to be modified to handle discrete optimization problems. To do
this, discretization was carried out within the algorithm class’s main body. At the time
as solution vector formation, all parameters were rounded to the nearest integer; fresh
solutions produced by WOA were instantly converted to nearest integer as well as returned
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to main body of method as discrete values. Furthermore, lookup table encoding has been
employed in some circumstances, such as for coding optimizer selections. Furthermore,
we move through a search space appropriate for a specific issue by adding appropriate
restrictions to the solutions. The first argument determines number of iterations to execute,
while second gives number of agents. Both specifications have a significant impact on
method output: the higher they are, the more swarm-based the method becomes. Each
successive generation or agent necessitates the training of a deep neural network from the
ground up. The default values for parameters a and b have been specified.

C. Heuristic based multi-objective firefly algorithm
One method for multiobjective optimization is to integrate all objectives into a single

goal, allowing single-objective optimization techniques to be employed without significant
change (Algorithm 2). FA are utilized to solve multiobjective issues directly in this way.
Another option is to expand the firefly technique to directly produce Pareto optimum fronts.
We may construct MOFA by extending core ideas of FA.

Algorithm 2 The multiobjective optimization algorithm

1. Describe objective functions f1(x), . . . , fK(x) where x = (x1, . . . , xd)
T

2. while (t < MaxGeneration)
3. Start a population of n fireflies xi(i = 1, 2, . . . , n)
4. for i, j = 1 : n (all n firefties)
5. Calculate their approximations PFi and PFj to Pareto front
6. if PFj dominates PFi,
7. if i 6= j and when all constraints are gratified
8. Move firefly i towards j using (2)
9. if no non-dominated solutions are found
10. Produce new ones if moves do not satisfy all constraints end if
11. Determine best solution gt

∗ to reduce ψ in (4)
12. Produce random weights wk(k = 1, . . . , K)
13. Random walk around gt

∗
14. end if
15. Sort and determine current best approximation to Pareto front
16. Update t← t + 1
17. end while

D. Postprocess results and visualization

The method starts with the correct specification of goal functions as well as nonlinear
constraints. After that, a random weight vector is constructed in order to obtain a combined
best solution g·t. Answers that are not dominated are then passed on to the next iteration.
In general, n non-dominated solution locations are obtained after a certain number of
repetitions to method genuine Pareto front. We can identify the current best g·t, which
reduces a combined objective to execute random walks more efficiently by Equation (9):

ψ(x) = ∑K
k=1 wkfk,∑K

k=1 wk = 1 (9)

wk = pk/K

where pk is a set of random numbers selected from a uniformly distributed Unif [0, 1].
After creating K uniformly distributed numbers, a rescaling procedure is undertaken to
ensure that Pk·wk = 1. It is worth noting that the weights wk should be picked at random
by Equation (10).

xt+1
i = gt

∗ + αt ∈t
i (10)

In iteration progress, randomness is minimized in a way similar to that of simulated
annealing and other random reduction methods [11].

αt = α00.9t (11)
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where α0 is the initial randomness factor.

u 4 v⇐⇒ u ≺ v∨ u = v (12)

It is worth noting that the dominance may be defined for maximization issues by
replacing ≺ with �. As a result, if no solution dominates a point x, it is called a non-
dominated solution [5]. The set of non-dominated solutions in a multiobjective Pareto front
P·F can be described as Equation (13):

PF =
{

s ∈ S | @s′ ∈ S : s′ ≺ s
}

(13)

where S is solution set. A variety of solutions should be created utilizing efficient strategies.
As we may see from later simulations, L’evy flights, for example, ensure a good diversity
of options.

When xi approaches, the discrete components of xi are more likely to convert from
binary to real numbers to convert a real number into a binary one by Equation (14):

sig
(

xi
l

)
=

1
1 + exp

(
−xi

l

) (14)

where xi
l is component l of position vector xi of firefly I, following migration in the context

of FA—recall (7) and (4). Equation (9) represents a solution’s floating-point components as
a set of probabilities. The proper binary values are then assigned using Equation (15).

bi
l =

{
1, if rand ≤ sig

(
xi

l
)

0, otherwise,
(15)

where sig(xi
l) is the likelihood that a component is 0 or 1, and rand U [0, 1] is the probability

that the component is 0 or 1. The firefly positions, x, were not permitted to shift beyond the
search space Ω during the iterative procedure.

Error function is a specific shape function that is mostly used in probability and
statistics. The mathematical function described by an integral is denoted by “erf” in
Equation (16)

erf(t) =
2√
π

exp
(
−t2

)
, dt (16)

which satisfies the following properties:

erf(0) − 0, erf(−x) = −erf(x) (17)

The erf function’s derivative follows directly from its definition by Equation (18):

d
dt

erf(t) =
2√
π

exp
(
−t2

)
, for t ∈ R. (18)

Thus, the erf function’s favorable features are utilized to describe a new sigmoid
function, sigmoid erf function by Equation (19):

sig
(

xi
l

)
= 0.5

(
1 + erf

(
xi

l

))
(19)

which is a bounded differentiable real function with a positive derivative at every point and
defined for any x ∈ R. Note that the sigmoid function in (14) has a slope of about 0.5641895
at the origin, whereas Equation (9) has a slope of 0.25, resulting in a faster rise from 0 to 1.
The simplest discretization process is for the floor function, which rounds to the integer
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part. For l = 1, . . . , n, each continuous value xil ∈ R is changed into a binary one, 0 bit or 1
bit, in the following way by Equation (20):

bi
l =

⌊∣∣∣xi
lmod2

∣∣∣⌋ (20)

where bzc is the z floor function and returns the greatest integer not exceeding z. The
absolute value of the remainder is floored after the floating-point value xi·l is divided by 2.

The movement of evert firefly is made on continuous space in this implementation of
previously mentioned heuristics, indicated by “movement on continuous space” (mCS),
using true location vector. Only after all motions toward brighter fireflies are completed
is the real position of firefly I discretized. The fitness evaluation of each firefly is always
dependent on the binary position for firefly ranking.

4. Performance Analysis

The performance of proposed DL routing protocol is calculated, utilizing the MATLAB
platform to simulate the suggested architecture. The number of nodes used in this exper-
iment might range from 200 to 1000. These nodes are spread out over a 1000 × 1000 m2

region. The proposed WODNN HMOFA is compared against five current algorithms,
including the GEEC protocol, TTDFP, and EADCR. Table 1 lists the simulated parameters
used in this study.

Table 1. Simulation Parameters.

Parameter Value(s)

Number of SNs 200 to 1000
Initial energy 0.25 nJ
Sensor field 10,001,000

Transmission energy 50 nJ/bit
Multipath (amplification) 0.0013 pJ/bit/m4

Free space 10 nJ/bit2m2

Data packet size 4000 bits
Effective data aggregation 5 nJ/bit/signal

Threshold distance 87 m
Absolute remaining energy 0.2

CH selection probability 0.1

The above Tables 2–6 shows comparative analysis of WSN based resource allocation
using deep learning in energy efficiency with data optimization. Here, parametric analysis
is carried out in terms of throughput, energy efficiency, QoS, throughput, and spectral
efficiency. The proposed technique obtained optimal results as throughput of 96%, energy
efficiency of 95%, QoS of 75%, spectral efficiency of 85%, and network lifetime of 91%, as
shown in Figures 1–5. From the above analysis, the energy efficiency and data optimization
have been optimized by the proposed technique.

Table 2. Parametric analysis of throughput.

Number of Nodes WL_DCNN NOMA RA_WSN_IoT

200 65 69 72
400 69 73 77
600 71 75 82
800 73 79 89

1000 75 83 96
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Table 3. Parametric analysis of energy efficiency.

Number of Nodes WL_DCNN NOMA RA_WSN_IoT

200 71 75 79
400 73 79 82
600 75 83 85
800 79 85 90

1000 82 86 95

Table 4. Parametric analysis of QoS.

Number of Nodes WL_DCNN NOMA RA_WSN_IoT

200 55 59 63
400 59 62 65
600 63 65 69
800 65 69 72

1000 69 73 75

Table 5. Parametric analysis of spectral efficiency.

Number of Nodes WL_DCNN NOMA RA_WSN_IoT

200 59 62 69
400 62 68 73
600 65 72 75
800 69 75 79

1000 73 79 85

Table 6. Parametric analysis of network lifetime.

Number of Nodes WL_DCNN NOMA RA_WSN_IoT

200 61 65 69
400 65 69 75
600 66 73 79
800 69 75 85

1000 72 79 91
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5. Conclusions

This study uses deep learning architectures to provide a unique resource allocation
strategy for WSN_IoT with EE and data optimization. EE and SE are two competing
optimization goals in this case. The network’s energy efficiency has been improved by a
DNN based on whale optimization. The heuristic-based multi-objective firefly algorithm
was used to optimize the data. This proposed method is applied to optimal power allo-
cation and relay selection. The study is for a cooperative multi-hop network topology.
The best resource allocation is achieved by reducing overall transmit power, and the best
relay selection is accomplished by meeting QoS standards. As a result, an energy-efficient
protocol has been achieved. The simulation results demonstrated the suggested model’s
competitive performance when compared to traditional models in terms of throughput
of 96%, energy efficiency of 95%, QoS of 75%, spectrum efficiency of 85%, and network
lifetime of 91 percent. The future scope of this research can be used for medical applica-
tion with enhanced security in real-time sensor-based techniques, which can enhance the
efficiency of the proposed technique using a machine learning technique integrated with
blockchain techniques.
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