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Abstract: A method is proposed which aims to reduce the hardware in FPGA-based circuits of Mealy
finite state machines (FSMs). The proposed method is a type of structural decomposition method. Its
main goal is the reducing the number of look-up table (LUT) elements in FSM circuits compared to
the three-block FSM circuit. The main idea of the proposed method is the using codes of collections of
FSM outputs for replacing the FSM inputs and state variables. The interstate transitions are defined
using collections of outputs generated in two adjacent cycles of synchronization. One, of output
collection codes, is kept into a register. To optimize block-generating FSM outputs, a new type of
state codes is proposed. A state is encoded as an element of some class of states. This approach
allows both the number of logic levels and inter-level interconnections in LUT-based FSM circuit to
be diminished. An example of an LUT-based Mealy FSM circuit with the proposed method applied
is shown. Moreover, the results of our research are represented. The research was conducted using
the CAD tool Vivado by Xilinx. The experiments prove that the proposed approach allows the
reduction of hardware compared with such known methods as Auto and One-hot of Vivado, and
JEDI. Moreover, the proposed approach gives better results than a method based on the simultaneous
replacement of inputs and encoding collections of outputs. Compared to circuits of the three-block
FSMs, the LUT counts are reduced by an average of 10.07% without significant reduction in the value
of operating frequency. The gain in LUT counts increases with the increasing the numbers of FSM
states and inputs.

Keywords: Mealy FSM; FPGA; LUT count; synthesis; collection of outputs

1. Introduction

Since the 1950s, the model of Mealy finite state machine (FSM) [1] has been widely
used in the design of sequential circuits [2–4]. Now, this model is used, for example, to
set the behaviour of such sequential blocks as: (1) control devices of digital systems [5,6];
(2) serial communication and display protocols [7]; (3) various software tools of embed-
ded systems [8]; (4) control-dominated systems [9]; (5) different systems in robotics [10]
(6) hardware–software interfaces of embedded systems [3]; (7) the activation functions for
deep neutral networks [11,12] and so on. Currently, research related to finite state machines
is actively developing [9,13,14]. This justifies the choice of this model as an object of our
current research.

To improve the quality of FSM-based blocks, it is necessary to improve such character-
istics of corresponding FSM circuits as chip areas occupied by them, operating frequency
and power dissipation. Due to this, there is a continuous interest in developing synthesis
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methods leading to optimization of these characteristics. As a rule, the less chip area is
occupied by an FSM circuit, the less power it consumes [15,16]. Thus, it is very important
to reduce the chip area occupied by an FSM circuit.

Today, a lot of digital systems are implemented using field programmable gate arrays
(FPGAs) [17]. For example, FPGAs are widely used for implementing hardware accel-
erators [18]. In [19], around 1700 examples of various applications of FPGAs in a wide
variety of digital systems are listed. Taking into account such popularity of FPGAs, we
chose these chips as a platform for implementing Mealy FSMs circuits. Practically from
the beginning of the FPGA era, the largest manufacturer of FPGA chips is Xilinx [20].
This explains why we focus our current research on solutions of Xilinx. We discuss FSM
circuits implemented using such internal resources of an FPGA chip as look-up table (LUT)
elements, programmable flip-flops, programmable interconnects, synchronization tree, and
programmable input–outputs.

To optimize the basic characteristics of FSM circuits, the methods of structural de-
composition (SD) can be used [21]. These methods allow structuring an LUT-based FSM
circuit and presenting it as a composition of several large logical blocks. Each block is
represented by a system of Boolean functions (SBF) having unique arguments [22]. In [23],
we propose an FSM design method based on simultaneously applying two methods of
SD. These methods are: (1) the replacement of FSM inputs [5] and (2) the encoding of
collections of FSM outputs [5]. To apply these methods, it is necessary to generate two SBFs
having two sets of additional variables. To implement circuits for these SBFs, it is neces-
sary to use some chip resources. There are three logic levels in FSM circuits based on [23].
In this article, we propose a method which allows the exclusion of a block generating the
additional variables replacing the FSM inputs. We propose to replace FSM inputs by the
same variables which encode the collections of FSM outputs.

The main contribution of this paper is a novel design method aimed at reducing the
LUT count in circuits of the three-block FPGA-based Mealy FSMs [23]. The proposed
method is based on: (1) using the same additional variables for producing both input
memory functions (IMFs) and FSM outputs and (2) encoding of the FSM state using class-
state codes (CSCs) proposed in this paper. Saving on the number of elements is achieved
by reducing both the number of additional arguments and state variables compared to [23].

The further text of the paper includes five sections. Section 2 is devoted to the back-
ground of FPGA-based Mealy FSMs. Section 3 includes the discussion of the state-of-the-art.
The main idea of the proposed method is shown in Section 4. Section 5 shows an example
of FSM circuit synthesis. The results of experiments and their analysis can be found in
Section 6. A short conclusion is given in Section 7.

2. Background of Designing LUT-Based Mealy FSMs

The design process starts from formal representation of interstate transitions. This
can be done using various tools [24]. Very often, the behaviour is defined using either
state transitions graphs (STGs) or state transitions tables (STTs) [4]. We also use these
tools in our paper. There are various formal methods using which it is possible to obtain
SBFs representing an FSM logic circuit [4]. These SBFs define dependencies between FSM
outputs and IMFs on the one hand, and FSM inputs and state variables on the other hand.

The FSM inputs form a set X = {x1, . . . , xL}, the FSM outputs form a set Y =
{y1, . . . , yN}, and the FSM states form a set A = {a1, . . . , aM}. The inputs cause inter-
state transitions. To synthesise an FSM circuit, the states am ∈ A are encoded by binary
codes K(am) having R bits. The r-th bit of K(am) corresponds to a state variable Tr ∈ T,
where T = {T1, . . . , TR} is a set of state variables. The minimum number of state variables
is determined as

R = dlog2Me. (1)

State codes based on (1) are called maximal state codes [25]. State codes are kept into
a state code register (SCR) [5]. As a rule, in the case of FPGA-based FSMs, the SCR has
informational inputs of D type [25,26]. The content of SCR is determined by the IMFs
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forming a set Φ = {D1, . . . , DR}. A synchronization pulse Clock allows the entry of a state
code into SCR. A single pulse Start allows the entry of an initial state code into SCR.

To construct SBFs determining an FSM circuit, the initial STT (or STG) should be
transformed into a direct structure table (DST) [5]. An STT includes five columns [4].
These columns are: a current state am; a state of transition aS; a conjunction of inputs (or
their complements) Xh determining the transition from am into aS; a collection of outputs
(CO) Yh generated during the h-th transition; h is a column with numbers of transitions
(h ∈ {1, . . . , H}). Compared to an STT, a DST includes three additional columns [5].

These columns are: the code of the current state K(am); the code of the next state K(aS);
a collection of IMFs Φh ⊆ Φ necessary to load the next state code into SCR.

A DST is a base for deriving the SBFs

Φ = Φ(T, X); (2)

Y = Y(T, X). (3)

These SBFs determine a logic circuit of P Mealy FSM Figure 1.

LUTerF

T

X

Start

Clock SCR

Block of

functions

ΦY

Figure 1. Structural diagram of P Mealy FSM.

In Figure 1, a block of functions implements the SBFs (2) and (3). The SCR includes
R flip-flops each of which corresponds to one bit of a current state code. The meaning of
pulses Start and Clock is clear.

A fragment of the STG is shown in Figure 2. It shows transitions between the current
state a6 and states of transition a4 (the transition number h = 12) and a7 (the transition
number h = 13) of some Mealy FSM. This STG can be replaced by equivalent fragments of
the STT Figure 2b and DST Figure 2c.

(a)

a6

a7

a4

x /y y3 1 2

x3 5/y

(b)
am aS Xh Yh h

a6
a7 x3 y1y2 12
a4 x̄3 y5 13

(c)
am K(am) sS K(aS) Xh Yh Φh h

a6 101 a7 110 x3 y1y2 D1D2 12
a4 011 x̄3 y5 D2D3 13

Figure 2. Equivalent fragments of STG (a), STT (b) and DST (c).



Electronics 2022, 11, 2050 4 of 26

As follows from Figure 2b, the transition 〈a6, a7〉 is caused by the input signal X12 = x3.
The transition is accompanied by the producing outputs y1, y2 ∈ Y. Row 12 of the STT
Figure 2b reflects this transition. In the same manner, row 13 of the STT is filled Figure 2b.
If, for example, there is M = 7, then using (1) gives R = 3 and two sets: T = {T1, T2, T3}
and Φ = {D1, D2, D3}. Let the states from Figure 2a have the following codes: K(a4) = 011,
K(a6) = 101 and K(a7) = 110. These codes and corresponding IMFs are written in the rows
12 and 13 of DST Figure 2c. The row 12 determines a product term F12 = T1T̄2T3x3, the
row 13 determines a term F13 = T1T̄2T3 x̄3. These terms enter sum-of-products (SOPs) of
Boolean functions D1, D2, y1, y2 (the term F12) and D2, D3, y5 (the term F13). All other parts
of SOPs for (2) and (3) are constructed using the similar approach [27].

In this paper, we consider a case when SBFs (2) and (3) are implemented using such
resources of FPGA chips as configurable logic blocks (CLBs) including LUTs, flip-flops
and dedicated multiplexors [28], the programmable routing matrix, programmable input–
output blocks and the synchronization tree [25,29]. Using the notation [30], we denote a
LUT having IL inputs and a single output as IL-LUT. An IL-LUT can implement a circuit of
an arbitrary Boolean function having up to IL arguments.

If the number of arguments exceeds the value of IL, then it is necessary to apply various
methods of functional decomposition (FD) of this Boolean function [31–34]. In this case, a
resulting circuit is multi-level. As a rule, it has a complicated system of “spaghetti-type”
interconnections [21].

If all LUTs have the same number of inputs, then such a logic basis is rigid. It means
that in some cases, only a part of the available inputs will be used. However, in other cases,
the LUTs should be combined to increase the number of inputs. To reduce the impact of
interconnects on such a join, it is important to have internal fast interconnects between
some LUTs. In Xilinx solutions, these CLBs are combined into slices [29,35]. For example,
the SLICEL of Virtex-7 includes four 6-LUTs, eight flip-flops and 27 multiplexers [28].

In LUT-based FSMs, the SCR is hidden and distributed among LUTs implementing
SOPs of functions (2). Due to it, there are only two blocks in LUT-based P Mealy FSM
Figure 3.

LUTerT

Clock

Start LUTerY

T

X

Y

Figure 3. Structural diagram of LUT-based P Mealy FSM.

In this paper, a CLB-based block is denoted by a symbol LUTer. In P Mealy FSM, the
LUTerT consists of CLBs generating IMFs Dr ∈ Φ. The state variables Tr ∈ T are kept into
the distributed SCR. Due to this, the pulses Clock and Start enter the LUTerT. The outputs
yn ∈ Y are generated by the LUTerY.

3. Related Work

If each function φk ∈ Φ ∪ Y depends on not more than IL Boolean arguments, then
there are exactly N + R LUTs in the circuit of P Mealy FSM. This is the best possible
outcome of synthesis. However, the modern LUTs have around 6 inputs [35–37]. In a CLB
of Virtex-7 [36], it is possible to form either two 7-LUTs or a single 8-LUT using dedicated
multiplexors. However, the total number of inputs and state variables of an FSM can
significantly exceed 8 [17]. This leads to an imbalance between the characteristics of LUTs
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and SBFs (2) and (3). This imbalance is a source of the necessity of improving FPGA-based
design methods.

To improve area-time characteristics of CLB-based FSM circuits, it is necessary to
optimize their systems of inter-slice interconnections. It is known that only 30% of power
dissipation is connected with LUTs [38]. It means that around 70% of the power is dissipated
on the interconnections. As shown in [38], interconnection delays are starting to play a major
role in comparison with logic delays. As shown in [23], the optimization of interconnections
allows the reduction of both the time of cycle and power consumption of LUT-based FSM
circuits. Using either two-fold state assignment [39,40] or the extended state codes can help
in the optimization of interconnections.

Each function φk ∈ Φ ∪Y depends on NA(φk) arguments. If the condition

NA(φk) ≤ IL (4)

is violated, then there are several levels of LUTs in an FSM circuit. Various methods have
been developed for improving characteristics of FSM circuits [21,25,26,30,34,41–44].

As a rule, the known optimization methods can improve either the number of LUTs
or the cycle time or the power consumption [42]. Moreover, there are methods that try to
optimize two or even three of these parameters. In our current research, there is proposed
a method for reducing the number of LUTs of three-block circuits of Mealy FSMs [23].

The SOPs of functions φk ∈ Φ ∪Y depend on product terms

Fh = AmXh (h ∈ {1, . . . , H}. (5)

These terms correspond to rows of DST. In (5), the symbol Am stands for a conjunction
of state variables corresponding to the code K(am) of a current state written in the h-th row
of DST. These conjunctions add R literals in the SOPs of functions φk ∈ Φ ∪Y.

To diminish the number of literals, various methods of state assignment are used [45–50].
These methods can be found in many academic and industrial CAD tools. The well-known
academic systems are, for example, SIS [51] and ABC by Berkeley [52,53] or Sinthagate [54].
The manufactures of FPGA chips have their own CAD packages. For example, AMD (Xilinx)
has the CADs Vivado [55] and Vitis [56], whereas Intel (Altera) has the package Quartus [57].

There is no a universal state assignment approach which allows achieving an optimal
solution for any FSM. In [34], there are compared FSM circuits based on maximum binary
codes with R = dlog2Me and one-hot state codes with R = M. As follows from the
comparison, for FSMs with M > 16 the using one-hot codes allows FSM characteristics
to be improved. However, the circuit characteristics depend strongly on the number
of FSM inputs. This is due to the limited number of LUT inputs [21]. For example, the
experiments [58] definitely show the following: if there is L > 10, then using maximum
binary codes leads to FSM circuits with better characteristics than the circuits based on
one-hot codes.

So, in one case, the circuits with better characteristics could be produced due to using
the one-hot state codes. However, in the other case it is better to use the maximum binary
codes. Therefore, it is necessary to apply several state assignment methods and to choose a
method producing the best results (for a particular FSM). Taking this fact into account, we
have compared the results based on our proposed approach with characteristics of FSM
circuits produced using the methods JEDI [51], binary state assignment Auto and One-hot
state assignment of Vivado [55] by Xilinx [35]. We chose JEDI because it is considered one
of the best state-assignment approaches [51].

If condition (4) is violated, then to implement a LUT-based FSM circuit, various
methods of functional decomposition should be applied [31,42,43]. To implement a circuit,
an original function φk ∈ Φ ∪ Y is broken down by sub-functions for which the number
of arguments does not exceed IL. Each sub-function differs from the initial function
φk ∈ Φ ∪Y [42]. The decomposition should be executed in a way increasing the number of
LUT levels of the final FSM circuit as little as possible [31]. The methods of FD are used by
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both academic and industrial CAD tools dealing with FPGA-based design. Unfortunately,
this approach has a serious drawback: FD-based FSM circuits have complicated systems of
“spaghetti-type” interconnections [21]. This drawback is manifested in the increasing for
both cycle time and power consumption of a resulting FSM circuit [59].

The methods of SD [21] can be viewed as an alternative to methods of FD. The main
goal of SD-based methods is the elimination of direct connection between the variables
xl ∈ X and Tr ∈ T, on the one hand, and functions yn ∈ Y and Dr ∈ Φ, on the other hand.
To achieve this goal, the block of functions (Figure 1) is represented as a composition of
several logic blocks. As a rule, there are from two to four logic blocks [21]. This approach
leads to the increasing the number of implemented functions. However, these new functions
depend on significantly fewer arguments than functions φk ∈ Φ ∪Y.

The first known methods of SD were proposed in the mid-20th century by Prof. M.
Wilkes [60]. These methods are the replacement of inputs and encoding of COs. In [23], we
propose the joint use of these methods for optimization of LUT-based Mealy FSMs’ circuits.
The main ideas of these methods are shown below.

The first method is reduced to the replacement of the set X = {x1, . . . , xL} by a set of
additional variables B = {b1, . . . , bJ}. This makes sense if the following condition holds:
J � L. The replacement is based on the creating a system of additional functions

B = B(T, X). (6)

In the case of LUT-based FSMs, these functions can be implemented with such re-
sources of CLBs as LUTs and dedicated multiplexors [28].

The second method assumes the representing Q different COs Yq ⊆ Y by binary codes
K(Yq). To do it, elements of an additional set Z = {z1, . . . , zRQ} are used. The minimum
number of bits in the codes K(Yq) can be found as

RQ = dlog2Qe. (7)

The following SBFs should be obtained to encode COs:

Z = Z(T, X); (8)

Y = Y(Z). (9)

The SBFs (8) and (9) are implemented using LUTs. To implement the system (9), it is
necessary to organize LUTs as decoders.

As shown in [23], combining these two methods is connected with introducing the
following additional SBFs:

Φ = Φ(T, B); (10)

Z = Z(T, B). (11)

The SBFs (6) and (9)–(11) determine a structural diagram of LUT-based MPY Mealy
FSM (Figure 4).

In MPY Mealy FSM, LUTerIR executes the replacement of FSM inputs. Therefore, it
implements SBF (6). The additional variables bj ∈ B enter LUTerZT which implements
SBFs (9) and (10). The IMFs Dr ∈ Φ enter the state code register SCR hidden inside of
LUTerZT. At last, LUTerY transforms the additional variables zr ∈ Z into the functions
yn ∈ Y.

We discuss a case when the logic blocks of MPY FSMs are implemented using internal
resources of CLBs, inter-slice interconnections, programmable chip input–outputs and syn-
chronization tree buffers [28]. The basic characteristics of equivalent P and MPY FSMs are
compared in [23]. The research results obtained in [23] show that the joint use of discussed
methods of SD leads to improving the characteristics of LUT-based Mealy FSM circuits.
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In this paper, we propose to transform the CO codes into both the output functions
yn ∈ Y and state variables Tr ∈ T. Moreover, we propose a new type of state code which
allows the optimization of a circuit generating functions zr ∈ Z.

BlockP

X

Y

Blockδ

T

Start

Clock

Z

LUTerY

BlockPBlockP

T

LUTerZT

P

LUTerIR

Figure 4. Structural diagram of LUT-based MPY Mealy FSM.

4. Main Idea of the Proposed Method

Our main idea is illustrated by Figure 5.

(a)

a2 a3 a6

a7

x /
4 2
Y x /

1 5
Y

x
1 7
/Y

〈a3, a6〉 ≡ 〈Y2, Y5〉
〈a3, a7〉 ≡ 〈Y2, Y7〉

(b) a4 a6

x /
4 6
Y

x /
1 3
Y

x /
3 5
Y 〈a4, a6〉 ≡

{
〈Y3, Y5〉
〈Y6, Y5〉

Figure 5. Replacement of transition pairs 〈am, as〉 by pairs 〈Ym, Ys〉.

The transition 〈a2, a3〉 (Figure 5a) is caused by the input x4. This transition is accom-
panied by the producing a CO Y2. For the next instant of FSM time, this CO (we denote it
as Ym) indicates the relation am = a3. If there is Xh = x1, then there is as = a6 and Ys = Y5.
So, the transition 〈a3, a6〉 can be indicated by the pair 〈Y2, Y5〉. Using similar reasoning, it is
possible to show that the transition 〈a3, a7〉 can be indicated by the pair 〈Y2, Y7〉. To show
how many COs are generated during transitions to a state am ∈ A, we use the symbol Qm.
There is Qm = 1 for the case represented by Figure 5a. The case with Qm > 1 is illustrated
by Figure 5b. Two COs (Y3 and Y6) are generated during transitions into the state a4. So,
there is Q4 = 2. Now, the same transition 〈a4, a6〉 is represented by two pairs, namely,
〈Y3, Y5〉 and 〈Y6, Y5〉.

This analysis shows that transitions 〈am, as〉 can be represented by pairs 〈Ym, Ys〉.
Using this result of analysis, we propose a PZ Mealy FSM, the structural diagram of which
is shown in Figure 6.
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X

Ψ

Z

V Y

T

Start

Clock RZ

Start

Clock RV

BlockΨ

BlockY

BlockT

Figure 6. Structural diagram of PZ Mealy FSM.

There are two registers in PZ Mealy FSM. The register RZ keeps a code of CO Ys ⊆ Y
represented by variables zr ∈ Z = {z1, . . . , zRQ}. The register RV keeps a code of CO
Ym ⊆ Y represented by variables vr ∈ V = {v1, . . . , vRQ}. Obviously, these registers
have RQ D flip-flops each, where the value of RQ is determined by (7). The registers are
controlled by the same pulses Clock and Start. So, they can be viewed as RQ single-bit shift
registers. A BlockΨ generates additional variables Dr ∈ Ψ = {D1, . . . , DRQ} used to load
the code K(Ys) into RZ. The system Ψ is represented as

Ψ = Ψ(T, X). (12)

In each cycle, current codes of COs Ym and Ys are kept in the registers. A BlockZ
generates FSM outputs represented by SBF (9). The contents of these registers are converted
into a transition state code by a BlockT. To do it, the SBF

T = T(Z, V) (13)

is implemented by the BlockT.
Such an approach allows the exclusion of FSM input variables xl ∈ X from both FSM

output functions and IMFs. Moreover, the outputs yn ∈ Y are registered. So, they do not
depend on possible fluctuations of inputs [21] during any cycle of FSM operation. As a
rule, this stability is achieved by using additional register having N flip-flops controlled by
an additional synchronization pulse.

We discuss a case when an FSM circuit is implemented using slices similar to ones
present in Virtex-7 of Xilinx [35,36]. In this case, the number of flip-flops is twice the number
of LUTs per a slice. Each pair of flip-flops can be connected to form a shift register discussed
before. So, in the same SLICEL, there are resources to produce both functions (12), as well
as the additional variables zr ∈ Z and vr ∈ V.

If the condition (4) is violated for functions zr ∈ Z, then there is a multi-level circuit
of BlockΨ. To implement it, the methods of FD should be applied. To avoid the applying
of SD, we propose a model of PCZ Mealy FSM. The method is based on using class-state
codes proposed in this paper.

If the condition (4) is violated for functions zr ∈ Z, then we propose to create a
partition ΠA = {A1, . . . , AK} of the set A. Each class Ak ∈ ΠA determines two sets. A set
Xk ⊆ X includes Lk FSM inputs causing transitions from states am ∈ Ak. A set Zk ⊆ Z
consists of additional variables zr ∈ Z generated during these transitions. There are Mk
elements in the class Ak ∈ ΠA.
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Using ideas from the articles [39,40], we propose to encode states am ∈ Ak by codes
SC(am) having Rs bits. The following formula determines the value of Rs:

Rs = max(dlog2M1e, . . . , dlog2MKe). (14)

The partition ΠA should be created in a way that the following condition holds for
each class Ak ∈ ΠA:

Rs + Lk ≤ IL. (15)

To create a CSC, it is necessary to encode classes Ak ∈ ΠA by class codes CC(Ak)
having RC bits:

RC = dlog2Ke. (16)

Now, a state am ∈ Ak is represented by its class-state code

CSC(am) = CC(Ak) ∗ SC(am). (17)

In (17), the symbol “*” stands for the concatenation of codes.
To encode the classes, we use class variables Tr ∈ TB where RC = |TB|. To encode the

states as class elements, we use state variables Tr ∈ TA where RS = |TA|. These sets create
a set T = TB ∪ TA having RT = RC + RS elements. The first RC elements of T create codes
of classes; the next RS variables create state codes SC(am).

Using this encoding style, we propose a structural diagram of LUT-based PCZ Mealy
FSM (Figure 7).
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Figure 7. Structural diagram of LUT-based PCZ Mealy FSM.

In PCZ Mealy FSM, a block LUTerk corresponds to the class Ak ∈ ΠA. It implements
an SBF

Zk = Zk(TA, Xk) (k ∈ {1, . . . , K}). (18)

A block LUTerZV includes CLBs and hidden distributed registers RZ and RV. It
implements SBF

Z = (TB, Z1, . . . , ZK). (19)

The variables vr ∈ V repeat the values of variables zr ∈ Z produced in the previous
FSM operation cycle. A block LUTerY implements SBF (9). At last, a block LUTerT generates
CSCs. To do it, the block implements SBF

T = T(Z, V). (20)

In this paper, we propose a synthesis method for PCZ-based Mealy FSMs. The synthe-
sis process starts from an STG. The proposed method includes the following steps:
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1. Constructing an STT corresponding to an initial STG.
2. Encoding of FSM states by maximum binary codes K(am).
3. Encoding of collections of outputs Yq ⊆ Y by binary codes K(Yq).
4. Creating the SBF Y = Y(Z).
5. Creating the modified direct structure table of PZ Mealy FSM.
6. Creating a table of pairs Pg = 〈Yi, Yj〉 corresponding to pairs 〈am, Xh〉.
7. Creating the partition ΠA with minimum amount of classes, K.
8. Encoding of classes and states to obtain class-state codes.
9. Creating tables representing blocks LUTer1-LUTerK and SBFs (18).
10. Creating table of LUTerZV and SBF (19).
11. Creating table of LUTerT and SBF (20).
12. Implementing the CLB-based circuit of PCZ Mealy FSM.

5. Example of Synthesis

We use the symbol PCZ(Sa) to show that the model of PCZ Mealy FSM is used to
obtain a logic circuit of an FSM Sa. This Section is devoted to the synthesis of Mealy FSM
PCZ(S1). To implement the circuit, 5-LUTs are used. We start the synthesis process from an
STG (Figure 8).

a2
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Figure 8. State transition graph of Mealy FSM S1.

The following sets can be found from the STG (Figure 8): A = {a1, . . . , a8}, X =
{x1, . . . , x6} and Y = {y1, . . . , y8}. So, the following characteristics characterize the FSM S1:
M = 8, L = 6, and N = 8. There are H = 17 arcs connecting the nodes of the STG (Figure 8).
So, there are 17 rows in the STT (and DST) of FSM S1.

Step 1. The transformation of an STG into an equivalent STT is executed in the trivial
way [27]. As follows from Figure 3, the h-th arc of STG determines the h-th row of the
corresponding STT (h = {1, . . . , H}). The STT of Mealy FSM S1 is represented by Table 1.

Step 2. For FSM S1, there is M = 8. Using (1) gives R = 3. This determines the set of
state variables T = {T1, T2, T3}. To simplify the presentation of our method, the states are
encoded in the trivial way: K(a1) = 000, K(a2) = 001,. . . , K(a8) = 111.

Step 3. The analysis of Table 1 allows finding Q = 9 different collections Yq ⊆ Y. These
COs are the following: Y1 = ∅, Y2 = {y1, y2}, Y3 = {y3}, Y4 = {y1, y4}, Y5 = {y3, y6},
Y6 = {y4}, Y7 = {y5, y7}, Y8 = {y3, y8} and Y9 = {y4, y5}. Using (7) gives RQ = 4 and the
set Z = {z1, . . . , z4}.
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Table 1. State transition table of Mealy FSM S1.

am aS Xh Yh h

a1
a2 x1 y1y2 1

a3 x̄1 y3 2

a2

a2 x2 y1y4 3

a5 x̄2x3 y4 4

a4 x̄2 x̄3 y3y6 5

a3 a6 1 y4y5 6

a4
a5 x3 y4 7

a8 x̄3 y3y8 8

a5
a5 x4 y3 9

a7 x̄4 y5y7 10

a6

a1 x6 – 11

a4 x̄6x5 y3 12

a8 x̄6 x̄5 y4 13

a7

a5 x4 y3 14

a8 x̄4x6 y1y2 15

a8 x̄4 x̄6 y4 16

a8 a6 1 y3y8 17

As shown in [21], COs should be encoded in a way that minimizes the number of
literals in SBF (8). If the condition

RQ > IL (21)

holds, then such an approach could minimize the LUT count for LUTerY [21]. If (21) is
violated, this method of encoding reduces the number of interconnections [21]. This reduces
chip areas occupied by LUT-based FSM circuits [23].

To encode COs, we use the approach proposed in [61]. The outcome of encoding is
shown in Figure 9.

z1z2

z3z4 00 01 11 10

00

01

11

10

Y1 Y2 Y7∗
Y3 ∗ Y5∗

Y6 Y4 Y9∗
∗ ∗ Y8∗

Figure 9. The outcome of encoding of COs for FSM S1.

Step 4. Using the codes of COs Figure 9 gives the following SBF:

y1 = Y2 ∨Y4; y2 = Y2 = z2z̄3;
y3 = Y3 ∨Y5 ∨Y8 = z4; y4 = Y4 ∨Y6 ∨Y5 = z3z̄4;
y5 = Y7 ∨Y9 = z1z̄4; y6 = Y5 ∨Y8 = z1z4;
y7 = Y7 = z1z3z4; y8 = Y8 = z3z4.

(22)

The analysis of (22) shows that there are 15 literals in this system. So, there are
15 interconnections between the blocks LUTerZV and LUTerY. Obviously, the maximum
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number of these interconnections is equal to NRQ [21]. In the discussed case, there is
NRQ = 32. So, the number of interconnections is reduced by 2.13 times due to applying
the approach [61].

If condition (21) is violated, then there are N LUTs in the circuit of LUTerY. The
analysis of (22) shows that SOPs of functions y1 and y3 have a single literal. So, these
functions are produced by LUTs of LUTerZV. So, there are N − 2 = 6 LUTs in the circuit
of LUTerY of FSM PCZ(S1). Thus, the number of LUTs is reduced by 1.33 times due to
applying the approach [61]. This is an upside effect of the method [61].

Step 5. The columns of a classical DST [27] are shown in Figure 3c. We have modified
the traditional DST. The column Yh is replaced by a column Zh (Table 2). This table
determines the Mealy FSM PZ(S1).

Table 2. Modified DST of Mealy FSM PZ(S1).

am K(am) aS K(aS) Xh Φh Zh h

a1 000
a2 001 x1 D3 z2 1

a3 010 x̄1 D2 z4 2

a2 001

a2 001 x2 D3 z2z3 3

a5 100 x̄2x3 D1 z3 4

a4 011 x̄2 x̄3 D2D3 z1z4 5

a3 010 a6 101 1 D1D3 z1z3 6

a4 011 a5 100 x3 D1 z3 7

a8 111 x̄3 D1D2D3 z1z3z4 8

a5 100
a5 100 x4 D1 z4 9

a7 110 x̄4 D1D2 z1 10

a6 101

a1 000 x6 – – 11

a4 011 x̄6x5 D2D3 z4 12

a8 111 x̄6 x̄5 D1D2D3 z3 13

a7 110

a5 100 x4 D1 z4 14

a8 111 x̄4x6 D1D2D3 z2 15

a8 111 x̄4 x̄6 D1D2D3 z3 16

a8 111 a6 101 1 D1D3 z1z3z4 17

The column Zh contains a variable zr ∈ Z if the r-th bit of K(Yq) is equal to 1 (we
assume that the CO Yq ⊆ Y is written in the h-th row of STT). For example, there is the CO
Y3 in the second row of Table 1. As follows from Figure 9, there is K(Y3) = 0001. Due to it,
there is the symbol z4 in the second row of Table 2. All other rows for column Zh are filled
in the same manner.

Step 6. A table of pairs Pg = 〈Yi, Yj〉 shows a correspondence between these pairs
and the pairs 〈am, X〉. It includes the following columns: am (a current FSM state); as (a
state of transition); Ym and Ys (COs produced during the transition into the state am and
as, respectively); Pg (a pair 〈Ym, Ys〉); g (the number of a pair Pg(g ∈ {1, . . . , G})). In the
discussed case, there is G = 29. These pairs are represented by Table 3.
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Table 3. Table of pairs of COs

am aS Ym YS g am aS Ym YS g

a1 a2 Y1 Y2 1 a5 a5 Y3 Y3 15
a1 a3 Y1 Y3 2 a5 a7 Y6 Y7 16
a2 a2 Y2 Y4 3 a5 a7 Y3 Y7 17
a2 a2 Y4 Y4 4 a6 a4 Y9 Y3 18
a2 a5 Y2 Y6 5 a6 a4 Y8 Y3 19
a2 a5 Y4 Y6 6 a6 a8 Y9 Y7 20
a2 a4 Y2 Y5 7 a6 a8 Y8 Y7 21
a2 a4 Y4 Y5 8 a6 a1 Y9 Y1 22
a3 a6 Y3 Y9 9 a6 a1 Y8 Y1 23
a4 a5 Y5 Y6 10 a7 a5 Y7 Y3 24
a4 a5 Y5 Y8 11 a7 a8 Y7 Y2 25
a4 a8 Y3 Y6 12 a7 a8 Y7 Y6 26
a4 a8 Y3 Y8 13 a8 a6 Y6 Y8 27
a5 a5 Y6 Y3 14 a8 a6 Y8 Y8 28

a8 a6 Y2 Y8 29

Step 7. In the discussed example, using the methods [39,40], the partition ΠA =
{A1, A2} can be found. There is the following distribution of states am ∈ A between
the classes: A1 = {a1, a2, a4, a8} and A2 = {a3, a5, a6, a7}. The partition determines the
following sets: X1 = {x1, x2, x3}, X2 = {x4, x5, x6}, and Z1 = Z2 = Z.

So, there is K = 2, M1 = M2 = L1 = L2 = 3. Using (4) gives the number of state
variables RS = 2. To implement the circuit of PCZ(S1), the LUTs having IL = 5 inputs are
used. Because the relation (15) holds for each class Ak ∈ ΠA, this partition satisfies the
previously discussed requirements.

Step 8. In the discussed example, there are K = 2 classes Ak ∈ ΠA. Using (16)
gives RC = 1 and TB = {T1}. Because there is RS = 2, the state variables form the set
TA = {T2, T3}. So, there is the set T = {T1, T2, T3}. The class–state codes are shown
in (Figure 10).
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used for creating SBFs (18)–(20).
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For example, the following codes can be found from Figure 10: SC(a2) = 01, CC(A1) = 0,
CSC(a2) = 001, SC(a5) = 01, CC(A2) = 1, CSC(a5) = 101 and so on. These codes are
used for creating SBFs (18)–(20).

Step 9. Tables of LUTer1–LUTer2 are created using the modified DST (Table 2) and state
codes from Figure 10. Each table includes the columns am,SC(am),X1

h,Z1
h,h. The LUTerZ1 is

represented by Table 4, the LUTerZ2 by Table 5.
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Table 4. Table of LUTerZ1.

am SC(am) X1
h Z1

h h

a1 00
x1 z2 1

x̄1 z4 2

a2 01

x2 z2z3 3

x̄2x3 z3 4

x̄2 x̄3 z1z4 5

a4 10
x3 z3 6

x̄3 z1z3z4 7

a8 11 1 z1z3z4 8

Table 5. Table of LUTerZ2.

am SC(am) X2
h Z2

h h

a3 00 1 z1z3 1

a5 01
x4 z4 2

x̄4 z1 3

a6 10
x6 – 4

x̄6x5 z4 5

x̄6 x̄5 z3 6

a7 11
x4 z4 7

x̄4x6 z2 8

x̄4 x̄6 z3 9

These tables are used for deriving SBFs (18). For example, the following equations can
be derived for functions z1

1 (from Table 4) and z2
1 (Table 4):

z1
1 = T̄2T3 x̄2 x̄3 ∨ T2T̄3 x̄3 ∨ T2T3;

z2
1 = T̄2T̄3 ∨ T̄2T3 x̄4.

(23)

Step 10. Table of LUTerZV includes the columns zr (a function generated by LUTerZV);
LUTr; r (the subscript of the corresponding function). If a partial function zk

r appears in
table of LUTerk, then there is 1 at the intersection of the row zr and column k. In the
discussed case, the LUTerZV is represented by Table 6.

Table 6. Table of LUTerZV.

zr LUTr r

z2 1 1 1
z2 1 1 2
z3 1 1 3
z4 1 1 4

The following SBF is derived from Table 6:

z1 = T̄1z1
1 ∨ T1z2

1; z2 = T̄1z1
2 ∨ T1z2

2;
z3 = T̄1z1

3 ∨ T1z2
3; z4 = T̄1z1

4 ∨ T1z2
4;

(24)

Step 11. The table of LUTerT is constructed using table of pairs of COs Table 3 and
codes of COs (Figure 9). This table includes the columns Ym, K(Ym),YS, K(YS), as, CSC(as),
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T(as), g. The g-th row of this table corresponds to the g-th row of table of pairs. The column
T(as) include IMFs equal to 1 to create the code CSC(as). In the discussed case, LUTerT is
represented by Table 7.

Table 7. Table of LUTerT.

Ym K(Ym) YS K(YS) aS CSC(aS) T(aS) g

Y1 0000 Y2 0100 a2 001 T3 1
Y1 0000 Y3 0001 a3 100 T1 2
Y2 0100 Y4 0110 a2 001 T3 3
Y4 0110 Y4 0110 a2 001 T3 4
Y2 0100 Y6 0010 a5 101 T1T3 5
Y4 0110 Y6 0010 a5 101 T1T3 6
Y2 0100 Y5 1001 a4 010 T2 7
Y4 0110 Y5 1001 a4 010 T2 8
Y3 0001 Y9 1010 a6 110 T1T2 9
Y5 1001 Y6 0010 a5 101 T1T3 10
Y5 1001 Y8 1011 a5 101 T1T3 11
Y3 0001 Y6 0010 a8 011 T2T3 12
Y3 0001 Y8 1011 a8 011 T2T3 13
Y6 0010 Y3 0001 a5 101 T1T3 14
Y3 0001 Y3 0001 a5 101 T1T3 15
Y6 0010 Y7 1000 a7 111 T1T2T3 16
Y3 0001 Y7 1000 a7 111 T1T2T3 17
Y9 1010 Y3 0001 a4 010 T2 18
Y8 1011 Y3 0001 a4 010 T2 19
Y9 1010 Y7 1000 a8 011 T2T3 20
Y8 1011 Y7 1000 a8 011 T2T3 21
Y9 1010 Y1 0000 a1 000 – 22
Y8 1011 Y1 0000 a1 000 – 23
Y7 1000 Y3 0001 a5 101 T1T3 24
Y7 1000 Y2 0100 a8 011 T2T3 25
Y7 1000 Y6 0010 a8 011 T2T3 26
Y6 0010 Y8 1011 a6 110 T1T2 27
Y8 1011 Y8 1011 a6 110 T1T2 28
Y2 0100 Y8 1011 a6 110 T1T2 29

This table is a base for creating SBF (20). For example, the following SOP can be
derived from Table 7:

T1 = E2 ∨ E5 ∨ E6 ∨ E9 ∨ E10 ∨ E11 ∨ E14 ∨ E15 ∨ E16 ∨ E17 ∨ E24 ∨ e27 ∨ E28 ∨ E29

= v̄1v̄2v̄3v̄4 z̄1 z̄2 z̄3 z̄4 ∨ · · · ∨ v̄1v2v̄34̄z1 z̄2z3z4.
(25)

Step 12. Using the obtained SBFs, we can implement the logic circuit of Mealy FSM
PCZ(S1). This circuit includes 24 LUTs having 5 inputs. The circuit is shown in Figure 11.

The first logic level of the circuit includes 2RQ = 8 LUTs. As follows from Table 4,
there are 4 LUTs in the circuit of LUTerZ1 (LUT1–LUT4). As follows from Table 5, there are
4 LUTs in the circuit of LUTerZ2 (LUT5–LUT8).

The second level includes RQ = 4 LUTs. It follows from either Table 6 or SBF (24).
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Figure 11. Logic circuit of Mealy FSM PCZ(S1).

The third logic level includes two logic blocks (LUTerY and LUTerT) operating in
parallel. As follows from SBF (22), there are 6 LUTs in the circuit of LUTerY. This circuit
includes LUT13–LUT18.

For the discussed case, the condition

2RQ > IL (26)

holds. Due to it, there are 2 LUTs in the circuit implementing any equation for Tr ∈ T.
For example, the circuit for T1 ∈ T is a serial connection of LUT19 and LUT20. There
are 2(RC + RS) = 6 LUTs in the circuit of LUTerT. To improve the time characteristics
of LUTerT. The LUT pairs (LUT19–LUT20, LUT21–LUT22, and LUT23–LUT24) can be
connected using the dedicated multiplexer [28].

To obtain the LUT-based FSM circuits, the step of technology mapping [42] should be
executed. To execute the technology mapping, some industrial CAD tools are used. If an
FSM circuit is based on the internal resources of Virtex-7, the industrial package Vivado [55]
should be used. The Vivado executes the steps of mapping, placement, routing, testing,
and finding such characteristics of a circuit as the numbers of LUTs, slices, flip-flops, as
well as maximum operating frequency and power consumption.

6. Experimental Results

In this Section, we show results of experiments conducted using the industrial CAD
package Vivado and the library of standard benchmark (BM) FSMs [62]. In these experi-
ments, we compared characteristics of PCZ-based Mealy FSMs with characteristics of FSM
circuits based on some other models. The library [62] includes 48 BMs represented by STTs
in the format KISS2. These benchmarks have a wide range in such characteristics as the
numbers of states, inputs, transitions and outputs. The results of research based on this
library can be found in many articles, as well as the BM characteristics.
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The research was conducted using a personal computer with the following char-
acteristics: CPU—Intel Core i7 6700K 4.2@4.4 GHz; Memory—16 GB RAM 2400 MHz
CL15. To implement CLB-based circuits, we used the Virtex-7 VC709 Evaluation Platform
(xc7vx690tffg1761-2) [63]. The package Vivado v2019.1 (64-bit) of Xilinx [55] was used for
the implementation of FSM circuits. The CLBs of this platform have 6- LUTs. We use the
reports of Vivado for creating the tables with research results.

The created tables include such parameters of FSM circuits as the LUT counts and
maximum operating frequencies. The following FSM models have been used in our
experiments: (1) Auto of Vivado (the state codes of these FSMs have R = dlog2Me bits); (2)
One-hot of Vivado (the state codes have R = M bits); (3) JEDI; (4) MPY-based FSMs [23]
and (5) PCZ- based FSMs.

As in the research [23], we have divided the BMs by 5 sets denoted as BM1–BM5.
Belonging to a particular set is determined by the relation between L + R and IL. In the
discussed case, there is IL = 6. The number of a set j is determined as

j =

⌈
L + R

IL

⌉
. (27)

The value of (27) determines a set BMj(j ∈ {1, . . . , 5}). The distribution is shown in
Table 8.

Table 8. Distribution of benchmarks between sets BM1–BM5.

BM1 BM2 BM3 BM4 BM5

bbtas dk512 ex1 sand s420
dk1 bbsse kirkman s510
dk27 beecount planet s820

dk512 cse planet1 s832
ex3 dk14 pma
ex5 dk15 s1
lion dk16 s1488

lion9 donefile s149
mc ex2 s1a

modulo12 ex4 s208
shiftreg ex6 styr

ex7 tma
keyb
mark
opus

s2
s386
s840
sse

The results of experiments are shown in Tables 9–16. The same organization is used
in these tables. The table columns are marked by the names of FSM design methods. The
names of benchmarks are written into the rows of these tables. Inside each table, the
benchmarks are listed in alphabetical order, and sorted by ascending value of j. The rows
“Total” contain results of summation of numbers for each column. The row “Percentage”
contains the percentage of summarized characteristics of FSM circuits produced by other
methods, respectively, to PCZ-based FSMs. We use the model of Mealy P for all design
methods except of MPY FSMs. The sets BMj are shown in the columns “Set”.

These tables include the following information: (1) the numbers of LUTs for all BMs
(Table 9); (2) the numbers of LUTs for BMs of the set BM1 (Table 10); (3) the numbers of
LUTs for BMs of the set BM2 (Table 11); (4) the numbers of LUTs for BMs of sets BM3–BM5
(Table 12); (5) the maximum operating frequency for all BMs (Table 13); (6) the maximum
operating frequency for BMs of the set BM1 (Table 14); (7) the maximum operating frequency
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for BMs of the set BM2 (Table 15); (8) the maximum operating frequency for BMs of the
sets BM3–BM5 (Table 16). The following conclusions can be made from the analysis of
these tables.

Table 9. Experimental results (numbers of LUTs for BM1–BM5).

Benchmark Auto One-Hot JEDI MPY Our
Approach Set

bbtas 5 5 5 8 8 BM1
dk17 5 12 5 8 8 BM1
dk27 3 5 4 7 7 BM1

dk512 10 10 9 12 12 BM1
ex3 9 9 9 11 11 BM1
ex5 9 9 9 10 10 BM1
lion 2 5 2 6 6 BM1

lion9 6 11 5 8 8 BM1
mc 4 7 4 6 6 BM1

modulo12 7 7 7 9 9 BM1
shiftreg 2 6 2 4 4 BM1

bbara 17 17 10 10 10 BM2
bbsse 33 37 24 26 25 BM2

beecount 19 19 14 14 14 BM2
cse 40 66 36 33 33 BM2

dk14 16 27 10 12 11 BM2
dk15 15 16 12 6 7 BM2
dk16 15 34 12 11 11 BM2

donfile 31 31 24 21 20 BM2
ex2 9 9 8 8 10 BM2
ex4 15 13 12 11 10 BM2
ex6 24 36 22 21 20 BM2
ex7 4 5 4 6 7 BM2

keyb 43 61 40 37 36 BM2
mark1 23 23 20 19 18 BM2

opus 28 28 22 21 21 BM2
s27 6 18 6 6 7 BM2

s386 26 39 22 25 24 BM2
s8 9 9 9 9 10 BM2

sse 33 37 30 26 24 BM2
ex1 70 74 53 40 34 BM3

kirkman 42 58 39 33 27 BM3
planet 131 131 88 78 68 BM3

planet1 131 131 88 78 68 BM3
pma 94 94 86 72 65 BM3

s1 65 99 61 54 48 BM3
s1488 124 131 108 89 83 BM3
s1494 126 132 110 90 78 BM3

s1a 49 81 43 38 32 BM3
s208 12 31 10 9 9 BM3
styr 93 120 81 70 59 BM3
tma 45 39 39 30 27 BM3

sand 132 132 114 99 79 BM4
s420 10 31 9 8 9 BM5
s510 48 48 32 22 19 BM5
s820 88 82 68 52 46 BM5
s832 80 79 62 50 44 BM5

Total 1808 2104 1489 1323 1202
Percentage, % 150.42 175.04 123.88 110.07 100.00
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Table 10. Experimental results (numbers of LUTs for BMs from BM1).

Benchmark Auto One-Hot JEDI MPY Our
Approach

bbtas 5 5 5 8 8
dk17 5 12 5 8 8
dk27 3 5 4 7 7

dk512 10 10 9 12 12
ex3 9 9 9 11 11
ex5 9 9 9 10 10
lion 2 5 2 6 6

lion9 6 11 5 8 8
mc 4 7 4 6 6

modulo12 7 7 7 9 9
shiftreg 2 6 2 4 4

Total 62 86 61 89 89
Percentage, % 69.66 96.63 68.54 100.00 100.00

Table 11. Experimental results (numbers of LUTs for BM2).

Benchmark Auto One-Hot JEDI MPY Our
Approach

bbara 17 17 10 10 10
bbsse 33 37 24 26 25

beecount 19 19 14 14 14
cse 40 66 36 33 33

dk14 16 27 10 12 11
dk15 15 16 12 6 7
dk16 15 34 12 11 11

donfile 31 31 24 21 20
ex2 9 9 8 8 10
ex4 15 13 12 11 10
ex6 24 36 22 21 20
ex7 4 5 4 6 7

keyb 43 61 40 37 36
mark1 23 23 20 19 18

opus 28 28 22 21 21
s27 6 18 6 6 7

s386 26 39 22 25 24
s8 9 9 9 9 10

sse 33 37 30 26 24

Total 406 525 337 322 318
Percentage, % 127.67 165.09 105.97 101.26 100.00

Table 12. Experimental results (numbers of LUTs for BM3–BM5).

Benchmark Auto One-Hot JEDI MPY Our
Approach

ex1 70 74 53 40 34
kirkman 42 58 39 33 27

planet 131 131 88 78 68
planet1 131 131 88 78 68

pma 94 94 86 72 65
s1 65 99 61 54 48

s1488 124 131 108 89 83
s1494 126 132 110 90 78

s1a 49 81 43 38 32
s208 12 31 10 9 9
styr 93 120 81 70 59
tma 45 39 39 30 27

sand 132 132 114 99 79
s420 10 31 9 8 9
s510 48 48 32 22 19
s820 88 82 68 52 46
s832 80 79 62 50 44

Total 1340 1493 1091 912 795
Percentage, % 168.55 187.80 137.23 114.72 100.00
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Table 13. Experimental results (the maximum operating frequency for BM1–BM5, MHz).

Benchmark Auto One-Hot JEDI MPY Our
Approach Set

bbtas 204.16 204.16 206.12 200.38 200.38 BM1
dk17 199.28 167 199.39 199.87 199.87 BM1
dk27 206.02 201.9 204.18 196.65 196.65 BM1

dk512 196.27 196.27 199.75 194.17 194.17 BM1
ex3 194.86 194.86 195.76 191.22 191.22 BM1
ex5 180.25 180.25 181.16 178.06 178.06 BM1
lion 202.43 204 202.35 200.18 200.18 BM1

lion9 205.3 185.22 206.38 199.12 199.12 BM1
mc 196.66 195.47 196.87 193.17 193.17 BM1

modulo12 207 207 207.13 201.12 201.12 BM1
shiftreg 262.67 263.57 276.26 256.69 256.69 BM1

bbara 193.39 193.39 212.21 202.23 201.82 BM2
bbsse 157.06 169.12 182.34 181.23 179.22 BM2

beecount 166.61 166.61 187.32 185.14 183.29 BM2
cse 146.43 163.64 178.12 175.18 171.64 BM2

dk14 191.64 172.65 193.85 190.18 188.12 BM2
dk15 192.53 185.36 194.87 192.23 190.84 BM2
dk16 169.72 174.79 197.13 194.34 192.18 BM2

donfile 184.03 184 203.65 200.92 197.47 BM2
ex2 198.57 198.57 200.14 198.32 196.63 BM2
ex4 180.96 177.71 192.83 190.14 189.69 BM2
ex6 169.57 163.8 176.59 171.27 169.19 BM2
ex7 200.04 200.84 200.6 198.14 196.26 BM2

keyb 156.45 143.47 168.43 162.01 160.65 BM2
mark1 162.39 162.39 176.18 170.18 168.73 BM2

opus 166.2 166.2 178.32 175.29 173.68 BM2
s27 198.73 191.5 199.13 196.13 194.42 BM2

s386 168.15 173.46 179.15 176.85 175.16 BM2
s8 180.02 178.95 181.23 178.23 177.39 BM2

sse 157.06 169.12 174.63 170.12 168.14 BM2
ex1 150.94 139.76 176.87 182.34 180.01 BM3

kirkman 141.38 154 156.68 167.15 166.25 BM3
planet 132.71 132.71 187.14 189.12 188.73 BM3

planet1 132.71 132.71 187.14 189.12 188.73 BM3
pma 146.18 146.18 169.83 178.19 177.67 BM3

s1 146.41 135.85 157.16 162.23 162.12 BM3
s1488 138.5 131.94 157.18 168.32 167.54 BM3
s1494 149.39 145.75 164.34 172.27 171.09 BM3

s1a 153.37 176.4 169.17 178.21 177.42 BM3
s208 174.34 176.46 178.76 181.72 181.02 BM3
styr 137.61 129.92 145.64 161.87 160.73 BM3
tma 163.88 147.8 164.14 176.72 175.72 BM3

sand 115.97 115.97 126.82 145.68 153.49 BM4
s420 173.88 176.46 177.25 187.23 190.62 BM5
s510 177.65 177.65 181.42 187.32 189.12 BM5
s820 152 153.16 176.58 181.96 182.58 BM5
s832 145.71 153.23 173.78 186.12 188.32 BM5

Total 8127.08 8061.22 8701.97 8536.27 8508.25
Percentage, % 95.52 94.75 102.28 100.33 100.00
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Table 14. Experimental results (the maximum operating frequency for BM1, MHz).

Benchmark Auto One-Hot JEDI MPY Our
Approach

bbtas 204.16 204.16 206.12 200.38 200.38
dk17 199.28 167 199.39 199.87 199.87
dk27 206.02 201.9 204.18 196.65 196.65

dk512 196.27 196.27 199.75 194.17 194.17
ex3 194.86 194.86 195.76 191.22 191.22
ex5 180.25 180.25 181.16 178.06 178.06
lion 202.43 204 202.35 200.18 200.18

lion9 205.3 185.22 206.38 199.12 199.12
mc 196.66 195.47 196.87 193.17 193.17

modulo12 207 207 207.13 201.12 201.12
shiftreg 262.67 263.57 276.26 256.69 256.69

Total 2254.90 2199.70 2275.35 2032.57 2032.57
Percentage, % 110.94 108.22 111.94 100.00 100.00

Table 15. Experimental results (the maximum operating frequency for BM2, MHz).

Benchmark Auto One-Hot JEDI MPY Our
Approach

bbara 193.39 193.39 212.21 202.23 201.82
bbsse 157.06 169.12 182.34 181.23 179.22

beecount 166.61 166.61 187.32 185.14 183.29
cse 146.43 163.64 178.12 175.18 171.64

dk14 191.64 172.65 193.85 190.18 188.12
dk15 192.53 185.36 194.87 192.23 190.84
dk16 169.72 174.79 197.13 194.34 192.18

donfile 184.03 184 203.65 200.92 197.47
ex2 198.57 198.57 200.14 198.32 196.63
ex4 180.96 177.71 192.83 190.14 189.69
ex6 169.57 163.8 176.59 171.27 169.19
ex7 200.04 200.84 200.6 198.14 196.26

keyb 156.45 143.47 168.43 162.01 160.65
mark1 162.39 162.39 176.18 170.18 168.73

opus 166.2 166.2 178.32 175.29 173.68
s27 198.73 191.5 199.13 196.13 194.42

s386 168.15 173.46 179.15 176.85 175.16
s8 180.02 178.95 181.23 178.23 177.39

sse 157.06 169.12 174.63 170.12 168.14

Total 3339.55 3335.57 3576.72 3508.13 3474.52
Percentage, % 96.12 96.00 102.94 100.97 100.00

Table 16. Experimental results (the maximum operating frequency for BM3-BM5, MHz).

Benchmark Auto One-Hot JEDI MPY Our
Approach

ex1 150.94 139.76 176.87 182.34 180.01
kirkman 141.38 154 156.68 167.15 166.25

planet 132.71 132.71 187.14 189.12 188.73
planet1 132.71 132.71 187.14 189.12 188.73

pma 146.18 146.18 169.83 178.19 177.67
s1 146.41 135.85 157.16 162.23 162.12

s1488 138.5 131.94 157.18 168.32 167.54
s1494 149.39 145.75 164.34 172.27 171.09

s1a 153.37 176.4 169.17 178.21 177.42
s208 174.34 176.46 178.76 181.72 181.02
styr 137.61 129.92 145.64 161.87 160.73
tma 163.88 147.8 164.14 176.72 175.72

sand 115.97 115.97 126.82 145.68 153.49
s420 173.88 176.46 177.25 187.23 190.62
s510 177.65 177.65 181.42 187.32 189.12
s820 152 153.16 176.58 181.96 182.58
s832 145.71 153.23 173.78 186.12 188.32

Total 2532.63 2525.95 2849.90 2995.57 3001.16
Percentage, % 84.39 84.17 94.96 99.81 100.00
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As follows from Table 9, our approach produces FSM circuits with fewer LUTs than
seen in other investigated methods. Our approach produces circuits having 50.42% less 6-
LUTs than it is for equivalent Auto-based FSMs; 75.040% less 6-LUTs than it is for equivalent
One-hot-based FSMs; 23.88% less 6-LUTs than it is for equivalent JEDI-based FSMs. As we
expected, our approach allows circuits with better LUT counts than equivalent MPY-based
FSMs to be obtained. Our approach gives 10.07% of gain. However, the analysis for different
sets of benchmarks showed that sometimes our method loses, and sometimes it wins. The
amount of gain (or loss) depends on each set a particular BM belongs to.

As follows from Table 10, our approach loses compared to three other investigated
methods. There is the following loss: 30.34% relative to Auto-based FSMs; 3.37% relative
to One-hot-based FSMs; 31.46% relative to JEDI-based FSMs. It is worth noting that there
are the same LUT counts for equivalent BMs-based on both MPY and PCZ FSMs. This is
easily explained. If there is j = 1, then L + R ≤ IL. In this case, LUT-based circuits of P
FSMs are single-level. Therefore, there is no sense in the replacing inputs and encoding of
COs. However, the encoding of COs is executed for both MPY and PCZ FSMs. Thus, their
circuits include the redundant block LUTerY. This block consumes some chip resources;
also, it adds some delay in the FSM cycle time.

Analysis of Tables 11 and 12 shows that using our approach leads to circuits with
fewer LUTs compared with other investigated methods. Compared with Auto-based FSMs,
there is either 27.67% win rate (set BM2) or 68.55% of gain in LUT counts (sets BM3–BM5).
Compared with One-hot-based FSMs, there is either 65.09% win rate (set BM2) or 87.8%
of gain in LUT counts (sets BM3–BM5). Compared with JEDI-based FSMs, there is either
5.97% of gain (set BM1) or 37.23% win rate (sets BM3–BM5). Compared with MPY-based
FSMs, there is either 1.26% of gain (set BM1) or 14.72% win rate (sets BM3–BM5). So, the
gain from using PCZ FSMs increases with the growth of the value L + R.

As follows from Table 13, our approach produces slightly faster LUT-based FSM
circuits compared to Auto- and One-hot-based approaches. There is a gain of 4.48% and
5.25%, respectively. However, our approach is slightly inferior in performance compared
to both JEDI-based FSMs (2.28%) and MPY-based FSMs (0.33%). The gain and loss varies
depending on the value determined by the Formula (27). For the set BM1 (Table 14),
our approach provides a loss relative to Auto-based FSMs (10.94%), One-hot-based FSMs
(8.22%) and JEDI-based FSMs (11.94%). The same is true for MPY-based FSMs. This is
explained by the existence of LUTerY which is redundant for trivial FSMs. So, it does not
make sense to use our approach for FSMs with L + R ≤ IL.

Table 15 shows results for the set BM2. As follows from Table 15, our approach
produces faster circuits than both Auto- and One-hot-based FSMs (3.88% and 4% of gain,
respectively). There is loss relatively to equivalent MPY-based FSMs (0.97% of loss). The
JEDI-based FSMs win 2.94%. So, JEDI-based FSMs are the fastest for BMs from BM2.

As follows from Table 16, our method produces the fastest FSM circuits. There is the
following gain: 15.61% compared with Auto-based FSMs; 15.83% compared with One-hot-
based FSMs; 5.04% compared with JEDI-based FSMs; 0.19% compared with MPY-based
FSMs. We believe that the gain compared to MPY-based FSMs is due to the fact that there
are several levels of LUTs in the circuit of the block replacing FSM inputs.

So, the proposed approach allows the reduction of the LUT counts (and, therefore,
the chip area occupied by FSM circuit) compared to equivalent MPY-based FSMs. At the
same time, the gain in the number of LUTs grows with the increase in the total number of
FSM inputs and state variables. The experimental results show that this gain in LUTs is
not accompanied by the significant degradation in FSM operating frequency. Moreover,
our approach produces slightly faster FSMs for rather complex FSMs (they belong to sets
BM2–BM5). As follows from experimental results, PCZ-based FSMs can replace other
investigated models starting from simple FSMs (the set BM2).
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7. Conclusions

Today, FPGA chips are widely used for implementing circuits of finite state machines
representing sequential blocks of various digital systems. The increasing complexity of
digital systems leads to an increase in the complexity of their sequential block circuits. In
turn, this leads to an increase in the values of such FSM parameters as the numbers of inputs,
outputs, transitions and states. At the same time, there is an increase in the gap between the
numbers of LUT inputs on the one hand, and the summarized values of state variables and
FSM inputs on the other hand. Modern LUTs have no more than six inputs. However, the
number of literals in SOPs of functions representing FSM circuits significantly exceeds six.
In these conditions, there is a need to apply various methods of functional decomposition
for implementing LUT-based FSM circuits. As a result [42], the produced FSM circuits are
multi-level and they have sophisticated systems of spaghetti-type interconnections.

As follows from [21], in many cases, the structural decomposition of LUT-based FSM
circuits allows the improvement of their characteristics compared with equivalent FD-based
FSM. So, as shown in [23], the three-block SD-based FSM circuits require fewer LUTs than
their FD-based counterparts. However, the reducing LUT counts leads to the introduction
of additional functions. To implement these functions, some FPGA chip internal resources
are used. This is the main drawback of this approach.

It is known that the number of interconnections in a circuit is directly proportional to
the LUT count. Interconnects have a significant impact on FSM performance and power
consumption. Therefore, it is important to reduce the number of LUTs in the circuits
of implemented blocks of digital systems. Modern very powerful FPGA chips are quite
expensive. Many digital system designers may simply not have enough funds to purchase
such expensive chips. Therefore, reducing the number of LUTs can make it possible to
replace a more expensive chip with a cheaper one, where the number of elements will be
sufficient to implement a system with optimized sequential blocks.

In this article, we propose to use the codes of collections of FSM outputs for generating
both output functions and state variables. To do this, it is necessary to use two registers
which keep these codes. The proposed method results in two-level FSM circuits which
require fewer LUTs than their counterparts based on the approach [23]. Our approach
gives an average a gain in the LUT counts around 10.07%. Note that the payoff in the
number of LUTs increases with increasing complexity of FSMs. Moreover, the proposed
two-block FSMs have practically the same cycle times as their three-block counterparts. It
is very important that reducing the number of LUTs for the proposed method does not lead
to performance degradation. We think that the proposed approach has enough positive
qualities to be used for the implementation of LUT-based FSM circuits.
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Abbreviations
The following abbreviations are used in this manuscript:

BM standard benchmark
CLB configurable logic block
CO collection of outputs
CSC composite state code
DST direct structure table
FD functional decomposition
FPGA field-programmable gate array
FSM finite state machine
IMF input memory function
LUT look-up table
SBF systems of Boolean functions
SCR state code register
SD structural decomposition
SOP sum-of-products
STG state transitions graph
STT state transition table
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