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Abstract: With the use of batteries increases, the complexity of battery management systems (BMSs)
also rises. Thus, assessing the functionality of BMSs and performance of the BMS hardware is
of utmost importance. Testing with embedded boards at an early stage of BMS development is
a pragmatic approach for developing a BMS because it is cost- and time-efficient and considers
hardware performance. In this study, we tested and analyzed the real-time state-of-charge (SOC)
estimation using a test platform with limited CPU performance as well as memory resources of the
embedded board. We collected battery data on a single-cell basis using a first-order RC equivalent
circuit and achieved an accuracy of 95% compared to the measured data obtained using actual battery
tests. The SOC estimation method applies the extended Kalman filter (EKF) and unscented Kalman
filter (UKF). The experiment was performed on the real-time test platform, with 1%, 2%, and 5% noise
in the measurement data. The algorithm complexity and hardware implementation were evaluated
in terms of the resources used and processing speed. Although the EKF is cost-effective, its error
rate increases by 5% with noise interference. The UKF exhibits high accuracy and noise robustness;
however, it has a high resource occupancy.

Keywords: real-time state-of-charge estimation; Raspberry Pi; battery management system; extended
Kalman filter; unscented Kalman filter; lithium-ion batteries

1. Introduction

Lithium-ion batteries (LiB) are widely used in the development of electric vehicles
(EVs) due to their several advantages such as superior specific energy and power and
prolonged lifespan [1,2]. However, the nonlinear and complex characteristics of LiBs
makes their behavior unpredictable. An accurate state-of-charge (SOC) can help drivers
make smarter decisions on when to charge their batteries. For this reason, the battery
management system (BMS) is tasked with the responsibility of monitoring the critical
battery internal variables such as SOC, state-of-health, state-of-energy, etc. [3]. In addition
to software, the BMS includes hardware composed of many microcontroller units. The
higher the complexity of the software model, the higher its estimation accuracy; however,
complex models take up more space due to the increase in computing cost. Hence, a trade-
off is needed between the complexity of the software model and the hardware resources [4].
Thus, high-accuracy SOC estimation based on an embedded board is difficult owing to its
high computing cost and limited resources [5].

The most widely used SOC estimation method in embedded systems is the current
integration method (Ampere hour counting). This method integrates the initial state of
charge, battery capacity, and measured current. The implementation of the algorithm
is simple; however, it is vulnerable to initial value errors or measurement noise since
it is an open-loop system [6]. Data-based methods, such as neural networks (NN) and
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support vector machines (SVM), are gaining ground owing to recent advancements in
computing performance. These methods simplify the parameter identification process
and approximation is advantageous for nonlinear systems; however, their application to
embedded boards is still challenging because it requires a large amount of training dataset
as well as a high computing cost [7–10].

In contrast, filter-based methods for observing nonlinear systems are widely used for
real-time SOC. The typical method is the extended Kalman filter (EKF) [11–13], which is
an adaptive control technique using first-order Taylor expansion that can diverge under
nonlinear system [11]. The unscented Kalman filter (UKF) [14,15] is based on an unscented
transform (UT) and it describes the statistical properties of the vector being transformed.
This method is a recursive estimating filter, and its properties meet the requirements of
suitable strongly nonlinear systems; however, it enhances the precision but at the outlay
of more computing time. Cui [13] conducted an experiment in MPC5604B to compare the
accuracy and computing cost of the SOC estimation algorithm for the limited resource. They
proposed a square-root cubature Kalman filter algorithm to minimize the in-board resource
usage as it has a faster convergence and higher accuracy with a low load rate of 68.3%.
In addition to the Kalman filter method, Chandra Shekar [16] estimated real-time SOC
using the particle swarm optimization method. They constructed an experimental setup
based on the Raspberry Pi 4 and verified it with suitably aged battery data. A maximum
CPU utilization of 26% and a root-mean-square error (RMSE) of 3.5% were observed in the
proposed model initialization.

Arduino and Raspberry Pi are the most commonly used IoT devices because of simple
in operation and easy to handle [17,18]. These devices were used as cloud-BMS to avoid
large resource consumption in implementing advanced algorithms. However, research on
limited resources as onboard rather than IoT devices was rare.

There are difficulties in achieving the requirements of BMS based on embedded boards.
The first limitation is the high computational complexity of the algorithm. In the case of
an embedded environment with limited resources, it is necessary to avoid a certain level
of computing costs for other complex BMS functions. A high-fidelity model increases the
computational burden and makes it impractical to deploy on embedded boards. Second, it
is not easy to provide a hardware-in-the-loop (HIL) that can provide real-time signals to
test BMS functions. Although processor-in-the-loop (PIL) is more accessible than HIL to
analyze the trade-off relationship between complexity and accuracy, there may be some
problems such as precision. Therefore, in this study, we present a Raspberry Pi-based SOC
estimation test bench to verify if it meets the real-time requirements.

The paper is organized as follows. Section 2 describes the battery first-order RC
equivalent model setting process and the operation process of the SOC estimation model.
Validation of the equivalence model is also presented in this section. Section 3 presents a
Raspberry Pi-based real-time test bench. The data acquisition model and SOC estimation
model are deployed on each Raspberry Pi 1 and 2, and the hardware requirements and
communication for this are described. Section 4 provides real-time experimental results for
data with noise. This section includes analyzing the computing cost required to deploy the
algorithm on the Raspberry Pi. Finally, Section 5 provides a conclusion.

2. Methodology for SOC Estimation
2.1. Battery Model
2.1.1. Parameter Identification

The electrical equivalent circuit model (ECM) facilitates the state-estimation by rep-
resenting the internal electrochemical state of a battery through circuit elements. ECM
consists of a voltage source, an internal resistor, and Resistance-Capacitance (RC) networks,
which are able to describe the electrical relationship between inputs and terminal volt-
age [19]. The Rint model, Thevenin model, Partnership for a new generation of vehicle
(PNGV), and General Non-Linear model are common ECMs [20]. In [21], they compare
five battery models including the first-order RC model. The first-order RC model is more
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suitable for the modeling of lithium-ion batteries. Considering the trade-off relationship
between the accuracy and complexity of the model, we applied the first-order RC model
in this study. As shown in Figure 1a, the Thevenin model consisted of a voltage source, a
resistor, and an RC ladder network. The open-circuit voltage (OCV) is the terminal voltage
of the battery in a steady state, no-load, where no current flows, and it can be expressed as
a nonlinear function of the SOC [14]. Internal resistance is the ohmic resistance (R0), which
represents a voltage characteristic that responds instantaneously to changes in current, and
polarization voltage (R1), which represents resistance to ionization loss due to charging and
discharging currents. The voltage drop at R0 was abrupt, but gradual in the RC network.
C1 represents the capacitance of the electrical double layer. An RC network is equivalent
to the dynamic properties of diffusion. The battery terminal voltage from the equivalent
circuit model is expressed as follows:

VL = Voc(SOC)− R0 IL −V1 (1)

where V1 is the polarization voltage. The polarization voltage is expressed as the difference
in potential between terminals when current flows and when no current flows and is
expressed as follows:

.
V1 = − 1

R1C1
V1 +

1
C1

IL (2)

The transfer function that outputs the terminal voltage with the battery load-current
as the input is as follows:

VL −Voc(SOC)

IL
=

R0(s + ωz)

s−ωp
(3)

ωp =
1

R1C1
, ωz = ωp

(
1 +

R1

R0

)
(4)

where ωp and ωz represent the zero and pole of each transfer function, respectively, which
represent the dynamic battery characteristics. The variation in the terminal voltage of
the battery has the characteristic of a minimum phase system, and the amplitude of the
terminal voltage proportionally decreases with an increase in the frequency of the unit
load current. Figure 1b shows the response voltage when a load current was applied to a
constant current profile.
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Figure 1. Battery parameter identification: (a) equivalent circuit battery model and (b) parameter
extraction from discharge section.

2.1.2. Operating Temperature Effect of Battery Parameters

The operating temperature affected the parameters of the battery model [22]. Pulse
discharge tests should be performed at specific temperatures to ensure the accuracy of
SOC estimation at these temperatures. In this study, a complete constant-current pulsed
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discharge test was performed at 0 ◦C, 25 ◦C, and 45 ◦C. Figure 2 shows the optimized
battery parameters as functions of operating temperature. The obtained parameters were
optimized using MATLAB’s “lsqnonlin” function. R0 was high because the voltage was
lowered at the operating temperature, and the maximum increased by 0.054 Ω at an
operating temperature of 0 ◦C. In addition, the internal lithium-ion concentration decreased
in the low SOC range, and thus the resistance increased. In R1, the resistance increased
because the internal chemical properties of the lithium diffusion rate decreased per the
operating temperature and SOC. In contrast, the diffusion rate of R1 increased as the SOC
increased, and as the lithium-ion concentration increased, the charge amount increased and
decreased continuously. In C1, the double-layer capacitor increased because the amount of
charge increased with the fast lithium-ion diffusion rate as the operating temperature and
SOC increased. However, C1 decreased sharply in the section with a 20% SOC.
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2.1.3. Battery Model Verification in Simulation

The performance of battery model is verified through the voltage response. The inter-
nal resistance of the battery is remarkably influenced by aging and operating temperature,
and the SOC affects the shape of the response voltage [23]. The battery model is set with the
parameters identified in Section 2.1.1. The surface temperature of the battery is calculated
by considering the amount of heat generated by convective heat and resistance between
cells when current flows. The simulation included a temperature sensor and a source in
addition to the battery model. The convective heat represents a heat transfer by convection
between two cells by means of fluid motion and calculated as follows:

Q = k·A·(TCell1 − Tcell2) (5)

where, Tcell1 and Tcell2 are temperature of two cells. k and A are heat transfer coefficient and
surface area, respectively. The setting values of each k and A are 0.01 m2 and 3 W/m2K. In
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this study, the battery uses a simplified electrical thermal model rather than a chemical ther-
mal model. The cell temperature is determined from a summation of all the ohmic losses.

CT
.
T = ∑i V2

i /Ri (6)

where CT is the battery thermal mass. i corresponds to the ith ohmic loss contributor
and include series and polarization resistance. The value of CT is 950 J/kgK and initial
temperature is 298.45.

Therefore, in this section, the performance of the model was verified by comparing
acquired data with actual battery data. Figure 3 shows the difference between the simulated
cell voltage and the actual voltage at 25 ◦C. The maximum error was 0.18 V, which is within
5% (0.21 V) of the real-time voltage. The battery cell temperature ranged from 25 ◦C to
27 ◦C, showing similar results to the actual battery experiment. Table 1 illustrates the
voltage accuracies for each operating temperature. We compared the performance of the
model using two metrics: the mean-absolute error (MAE) and maximum error (MAX). The
performance evaluation metric is expressed as follows:

MAE =
1

n− 1

n−1

∑
t=1
|et| (7)

MAX = max(|et|) (8)

where n denotes the size of datasets, et is a residual of the true SOC and estimated SOC.
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Table 1. Accuracy of terminal voltage based on the battery model.

Operating Temperature (◦C) MAE (%) MAX (%)

0 4.04 4.82
25 3.12 4.51
45 3.35 4.55

The accuracy of the terminal voltage at 25 ◦C and 45 ◦C showed similar results;
however, at 0 ◦C, the accuracy was 0.92% lower than that at room temperature. Thus, by
achieving an accuracy within 95% at the three operating temperatures, the battery model
was set to the conditions provided in Section 2.1.2.
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2.2. SOC Estimation Algorithm
2.2.1. Extended Kalman Filter (EKF)

The EKF is a nonlinear version of the Kalman filter that linearizes the estimate of
the mean and covariance [11]. In the EKF, the distribution was approximated by a GRV
(Gaussian Random Variable), which is then propagated analytically through first-order
linearization [24]. In a nonlinear dynamic system, the state space can be described as

xk+1 = F(xk, uk) + ωk ωk ∼ N(0, Qk)
yk = H(xk, uk) + vk vk ∼ N(0, Rk)

(9)

where xk, uk, yk, ωk, and vk are the unobserved state, control vector, observed signal, process
noise, and observation noise, respectively.

Transform Equations (1) and (2) to a discrete system:{
V1, k+1 = exp

(
− 1

R1C1

)
×V1, k +

(
1− exp

(
− 1

R1C1

))
× IL, kR1

VL, k = VOC, k − R0, k IL −V1, k
(10)

The state transition matrix and observation matrix of nonlinear systems are obtained
using the first-order Taylor formula to get the linearized result:{

xk+1 = Akxk + Bkuk + ωk
yk = Ckxk + Dkuk + vk

(11)

V1 and SOC are the state variables and VL is the observable variable, the standard
state function is as follows:

xk+1 =

[
V1, k+1

SOCk+1

]
=

[
1− ∆t

R1C1
0

0 1

][
V1, k

SOCk

]
+

[
∆t/C1
∆t/Qn

]
Ik + ωk

yk = [VL, k] = [−1 0]
[

V1, k
SOCk

]
− R0 Ik + Voc + vk

(12)

2.2.2. Unsented Kalman Filter (UKF)

The UKF used a deterministic sampling method to solve the posterior mean and
covariance errors that may occur in the process of first-order linearization of a nonlinear
system by approximating a Gaussian random variable in the state distribution of the
EKF. It uses an unscented transformation to approximate a Gaussian distribution without
approximating any nonlinear function [13,25,26]. When the nonlinear equation, y = f (x),
has mean (xm) and covariance (Px), the sigma point (xi) represents a point separated by a
distance ± ui from the mean and is expressed as follows:

x0 = xm
xi = xm + ui i = 1, 2, . . . , n

xi = xm − ui i = L + 1, . . . , 2n
(13)

ui =
√
(n + λ)Px (14)

where λ is the scaling parameter, and ui is the ith row of the matrix square root. These
sigma vectors are propagated through a nonlinear function.

yi = g(Xi) i = 0, 1, . . . , 2n (15)
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The mean of sigma vectors and covariance are expressed as follows:
ym ≈

2n
∑

i=0
Wm

i yi

Py ≈
2n
∑

i=0
Wc

i (yi − ym)(yi − ym)
T

(16)

where ym and Py are approximated using the weighted sample mean and covariance of the
posterior sigma points.

Wm
0 = λ/(n + λ)

Wc
0 = λ

n+λ +
(
1− α2 + β

)
Wm

i = Wc
i = 1

{2(n+λ)} i = 1, 2, . . . ., 2n
(17)

where α determines the spread of the sigma points around xm and is usually set to a small
positive value. k is a secondary scaling parameter that is usually set to 0, and β is used to
incorporate previous knowledge of the distribution of x (for Gaussian distributions, β = 2
is optimal).

3. Experimental Setup for Real-Time Test
3.1. Test Bench

The test bench based on HIL for real-time SOC estimation consisted of a battery
experiment setup and two Raspberry Pis. Raspberry Pi 1 and Pi 2 are the battery plant
and SOC estimators, respectively. Figure 4 shows the overall cell-level test bench and
it involves three principal steps to achieve this objective. The first step was to perform
constant current-pulse discharge tests at 0 ◦C, 25 ◦C, and 40 ◦C to establish the battery
equivalent model. The second step was to deploy this model to each Raspberry Pi, where
the hardware configuration was set. To test for limited resources, we adjusted the sample
time and battery unit and calculated the computational cost. This is discussed in detail in
Section 4. The last step is the monitoring step, and the actual SOC is compared with the
SOC estimated by the EKF and UKF.
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3.1.1. Battery Cell Experiment

The battery experimental platform is shown in Figure 5. It includes a battery testing
equipment, a host computer, a thermal chamber, a data logger, and a LiB set consisting of
four cells. The test subject was a 21700-50E battery cell with a capacity of 4900 mAh. Table 2
shows the detailed specifications, including the standard capacity and the nominal voltage.
The test subjects were exposed to two testing profiles: a constant-current pulsed discharge
profile and a dynamic stress test. Dynamic stress test (DST) profiles were designed by the
US Advanced Battery Consortium to simulate the discharge mode of an EV battery [27].



Electronics 2022, 11, 2010 8 of 14

The measured voltages and currents are shown in Figure 6. Datasets were constructed by
repeating the procedure at chamber temperatures of 0 ◦C, 25 ◦C, and 45 ◦C for the battery
samples. Before the full-scale experiment, temperature soaking was performed for 3 h to
stabilize the internal chemistry of cells. The constant-current pulsed discharge profile for
battery parameter identification consists of two steps. First, the cells were charged with a
constant current-constant voltage of 0.5 C (2.45 A) and terminated when the upper limit
voltage of 4.2 V was reached. Second, the discharge was repeated at 0.5 C until a cut-off
voltage of 2.5 V was reached. The cells were made to rest for stabilization after the process.
The DST profile considers regenerative charging and consists of various charge-discharge
current cycles of different lengths and amplitudes, with a duration of 360 s. This cycle was
repeated until the cut-off voltage was reached.
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Table 2. Specification of Samsung SDI INR 21700-50E.

Item Specification

Standard Capacity Min 4900 mAh
Cut-off Voltage 2.5 V

Nominal Voltage 3.6 V

Operation Temperature Charge: 0 ◦C to 45 ◦C
Discharge: −20 ◦C to 60 ◦C

Manufacturer Samsung SDI
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3.1.2. Raspberry Pi Setting

The Raspberry Pi was distributed directly through the MATLAB Raspberry Pi support
package that runs as a standalone executable. The Raspberry Pi used as hardware was a
Raspberry Pi 4 Model B, as shown in Table 3. The experimental setup of the two Raspberry
Pis is shown in Figure 7. The Raspberry Pi 1 (slave) collected battery data and performed
data transmission, while Raspberry Pi 2 (master) estimated the SOC using the received
data. The communication interface and estimation algorithm period (sample time) were set
at 1 s by default. The data type of the measurement signal was 16 bits and a scale factor
was applied to ensure a variable range. Modbus TCP/IP was applied for communication
between the embedded boards. Figure 8 shows the communication sequence using Modbus.
Register addresses 0–2 stored the voltage, current, and temperature measured by the battery
model, and address 4 stored a Boolean flag indicating the start of data transmission.

Table 3. Specification of Raspberry Pi 4 Model B.

Item Specification

CPU ARM Cortex-A72 1.5 GHz
GPU Broadcom VideoCoreVi 500 MHz
RAM 4GB LPDDR4
USB Micro HDMI

Dimensions 85.60 mm × 56.50 mm
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3.2. Residual SOC between Simulation and Embedded Board

Figure 9 shows the SOC estimation results between the embedded board and simu-
lation using the same setup. The simulation result had a value close to that of the actual
SOC estimate, but it demonstrated a difference of up to 0.8% from the actual SOC when an
embedded board was used, despite having the same model conditions. This is caused by
data precision.

3.3. Sensor Noise Models

The performance of a BMS depends on battery sensor data and state indicators, such as
SOC and SOH, and can be estimated based on these. Unreliable battery data are generated
by sensor failures or communication errors [28]. According to actual EV tracking results,
the maximum measurement error of the current and voltage in an environment with severe
jamming is 2% [12]. In this section, we simulated the offset error due to sensor failure
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and the delay error due to communication errors, which are required for verification. The
model for the constant offset error data is defined as:

yo f (t) = y(t) + rand(n) (18)

where y(t) represented the normal signal, and t was the sample time. rand(n) was the
constant offset value of each signal and is set to 1% and 2%, respectively. Figure 10 shows
the voltage and current profiles with offset errors of 1%, 2%, and 5% applied after 360 s.

Electronics 2022, 11, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 7. Experimental setup of Raspberry Pi. 

 

Figure 8. Scheme of communication protocol between Raspberry Pi. 

3.2. Residual SOC between Simulation and Embedded Board 
Figure 9 shows the SOC estimation results between the embedded board and simu-

lation using the same setup. The simulation result had a value close to that of the actual 
SOC estimate, but it demonstrated a difference of up to 0.8% from the actual SOC when 
an embedded board was used, despite having the same model conditions. This is caused 
by data precision. 

Figure 8. Scheme of communication protocol between Raspberry Pi.

Electronics 2022, 11, x FOR PEER REVIEW 11 of 15 
 

 

 
Figure 9. SOC estimation between embedded board and simulation. 

3.3. Sensor Noise Models 
The performance of a BMS depends on battery sensor data and state indicators, such 

as SOC and SOH, and can be estimated based on these. Unreliable battery data are gener-
ated by sensor failures or communication errors [28]. According to actual EV tracking re-
sults, the maximum measurement error of the current and voltage in an environment with 
severe jamming is 2% [12]. In this section, we simulated the offset error due to sensor 
failure and the delay error due to communication errors, which are required for verifica-
tion. The model for the constant offset error data is defined as: 𝑦௢௙(𝑡) = 𝑦(𝑡) +  𝑟𝑎𝑛𝑑(𝑛) (18) 

where y(t) represented the normal signal, and t was the sample time. rand(n) was the con-
stant offset value of each signal and is set to 1% and 2%, respectively. Figure 10 shows the 
voltage and current profiles with offset errors of 1%, 2%, and 5% applied after 360 s. 

 
(a) 

 
(b) 

Figure 10. Measured voltage and current profile from a noise model: (a) voltage and (b) current. 

4. Results of Real-Time SOC Estimation 
4.1. Analysis of Computing Cost 

To analyze the limited computing power of the hardware, we performed a compari-
son test between the EKF and UKF. On Raspberry Pi, the execution time of the algorithm 
per sample time was less than 0.1 s, and no overrun occurred. Table 4 shows the compu-
ting cost of deployment when the number of algorithms is distributed as many as the 
number of cells. The time consumed and Load rate denote the initial execute time and 
memory usage that algorithms are deployed on Raspberry Pi. In both models, the initial 
computing cost increased as the number of cells increased. The UKF especially more con-
sumes computing cost than EKF, because time consumed by unit cell increased by 7 s and 
load rate increased by 12.4%. The UKF needs a higher two-dimensional state space than 

Figure 9. SOC estimation between embedded board and simulation.



Electronics 2022, 11, 2010 11 of 14

Electronics 2022, 11, x FOR PEER REVIEW 11 of 15 
 

 

 
Figure 9. SOC estimation between embedded board and simulation. 

3.3. Sensor Noise Models 
The performance of a BMS depends on battery sensor data and state indicators, such 

as SOC and SOH, and can be estimated based on these. Unreliable battery data are gener-
ated by sensor failures or communication errors [28]. According to actual EV tracking re-
sults, the maximum measurement error of the current and voltage in an environment with 
severe jamming is 2% [12]. In this section, we simulated the offset error due to sensor 
failure and the delay error due to communication errors, which are required for verifica-
tion. The model for the constant offset error data is defined as: 𝑦௢௙(𝑡) = 𝑦(𝑡) +  𝑟𝑎𝑛𝑑(𝑛) (18) 

where y(t) represented the normal signal, and t was the sample time. rand(n) was the con-
stant offset value of each signal and is set to 1% and 2%, respectively. Figure 10 shows the 
voltage and current profiles with offset errors of 1%, 2%, and 5% applied after 360 s. 

 
(a) 

 
(b) 

Figure 10. Measured voltage and current profile from a noise model: (a) voltage and (b) current. 

4. Results of Real-Time SOC Estimation 
4.1. Analysis of Computing Cost 

To analyze the limited computing power of the hardware, we performed a compari-
son test between the EKF and UKF. On Raspberry Pi, the execution time of the algorithm 
per sample time was less than 0.1 s, and no overrun occurred. Table 4 shows the compu-
ting cost of deployment when the number of algorithms is distributed as many as the 
number of cells. The time consumed and Load rate denote the initial execute time and 
memory usage that algorithms are deployed on Raspberry Pi. In both models, the initial 
computing cost increased as the number of cells increased. The UKF especially more con-
sumes computing cost than EKF, because time consumed by unit cell increased by 7 s and 
load rate increased by 12.4%. The UKF needs a higher two-dimensional state space than 

Figure 10. Measured voltage and current profile from a noise model: (a) voltage and (b) current.

4. Results of Real-Time SOC Estimation
4.1. Analysis of Computing Cost

To analyze the limited computing power of the hardware, we performed a comparison
test between the EKF and UKF. On Raspberry Pi, the execution time of the algorithm per
sample time was less than 0.1 s, and no overrun occurred. Table 4 shows the computing
cost of deployment when the number of algorithms is distributed as many as the number of
cells. The time consumed and Load rate denote the initial execute time and memory usage
that algorithms are deployed on Raspberry Pi. In both models, the initial computing cost
increased as the number of cells increased. The UKF especially more consumes computing
cost than EKF, because time consumed by unit cell increased by 7 s and load rate increased
by 12.4%. The UKF needs a higher two-dimensional state space than the EKF, which causes
a lot of computational cost. In conclusion, the hardware requirements for single-cell and
pack unit battery models can be satisfied using Raspberry Pi.

Table 4. Computing cost for initial deployment according to SOC estimation method.

Method Unit Cell 1 Pack (6 Cells) 2 Pack (12 Cells)

EKF
Time consumed [s] 45 48 52

Load rate [%] 25.1 30.5 35.8

UKF
Time consumed [s] 52 56 59

Load rate [%] 37.5 44.5 46.1

4.2. Results of SOC Estimation in Sensor Noise

In this section, noise was included in the measurement data using the error model
described in Section 3.3. At an ambient temperature of 25 ◦C, the initial SOC was 1, and
the DST profile was discharged to SOC 0%. Figure 2 shows the SOC estimation results
with the measurement data with noise errors of 1%, 2%, and 5%. Figure 11a–c shows the
SOC estimation results when 1%, 2%, and 5% noise was included in current, voltage, and
temperature, respectively. Figure 11d–f illustrate the MAE between the SOC and SOC
estimation methods without the actual noise. When the noise increased from 1% to 5%, the
MAE of the EKF and UKF increased to 2.28% and 1.15%, respectively; thus, the UKF was
less affected by noise.
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according to including noise (a) 1%, (b) 2%, (c) 5%. Difference between the true SOC and the
estimated SOC of the estimation methods in noise (d) 1%, (e) 2%, (f) 5%.

Figure 12 shows the MAE and MAX of the overall SOC estimation method based on the
operating temperature including input noise. At an operating temperature of 0 ◦C, lower
accuracies were obtained compared to those obtained at 25 ◦C and 40 ◦C. These results
are similar to those obtained in the software simulation, and the cause was insufficient
parameter capture owing to capacity reduction at low temperatures. In all cases, as the
noise ratio increased, the error also increased. When the operating temperature was 0 ◦C
and the noise was 5%, the EKF exhibited the largest error, with an MAE of 2.98% and an
MAX of 8.2%. The UKF showed a relatively high performance with an MAE 2.32% and
an MAX of 5.12% under the same conditions. Thus, the UKF was more resistant to noise
interference than the EKF. Considering the results of Section 4, the UKF had a 12.4% higher
computing cost than that of the EKF, and the performance had a difference in MAE of 0.04%
and MAX of 0.19%. At a suggested operating temperature, both the EKF and UKF achieved
more than a 94% performance.
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5. Conclusions

A BMS requires an analysis of limited resources because many functions are performed
in an actual hardware system. In this study, we tested the SOC estimation using a test bench
with a limited CPU performance as well as the memory resources of an embedded board.
For real-time estimation, we distributed the battery data and SOC estimation algorithm
through Raspberry Pi and connected them through communication. A first-order RC
model was used for the battery model, and the error was within 5% of the measured data
at various operating temperatures. We interfered with the noise to verify the EKF and UKF
algorithms on the test bench. The UKF had a 12.4% higher computing cost on average
than that of EKF and maintained a 95% performance against noise interference. Contrarily,
although the EKF had a lower computing cost than that of the UKF, it exhibited an 5.2%
error when the noise interference was high. Thus, it is advantageous to apply the UKF
when input data exhibit high noise or when many resources of the embedded board are
utilized; however, it is better to apply the EKF under contrasting conditions.
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