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Abstract: In recent years, image fusion has been a research hotspot. However, it is still a big challenge
to balance the problems of noiseless image fusion and noisy image fusion. In order to improve
the weak performance and low robustness of existing image fusion algorithms in noisy images, an
infrared and visible image fusion algorithm based on optimized low-rank matrix factorization with
guided filtering is proposed. First, the minimized error reconstruction factorization is introduced into
the low-rank matrix, which effectively enhances the optimization performance, and obtains the base
image with good filtering performance. Then using the base image as the guide image, the source
image is decomposed into the high-frequency layer containing detail information and noise, and the
low-frequency layer containing energy information through guided filtering. According to the noise
intensity, the sparse reconstruction error is adaptively obtained to fuse the high-frequency layers, and
the weighted average strategy is utilized to fuse the low-frequency layers. Finally, the fusion image is
obtained by reconstructing the pre-fused high-frequency layer and the pre-fused low-frequency layer.
The comparative experiments show that the proposed algorithm not only has good performance for
noise-free images, but more importantly, it can effectively deal with the fusion of noisy images.

Keywords: image fusion; low-rank matrix factorization; guided filtering; minimized error
reconstruction factorization; noisy image

1. Introduction

Infrared and visible image fusion is an important part of the image processing field,
and its main purpose is to merge the complementary information in different images into
one picture through technical algorithms [1]. Since the fused image can mostly maintain
the significant features and energy information from various sensors, the fusion result can
be utilized by subsequent processing tasks or decision-making assistance. Therefore, it can
provide strong support in target detection and tracking, military fields, computer vision,
remote sensing, and medical treatment [2].

In recent years, convolutional neural networks have developed rapidly and have
been widely used in many fields [3]. Since deep learning can effectively extract and
express salient features, it has developed rapidly in the field of image fusion. Liu et al. [4]
proposed a convolutional neural network (CNN)-based infrared and visible image fusion
method, using a twin convolutional network to obtain a weight map that integrates pixel
activity information from two source images. Liu et al. [5] proposed a new method called
convolutional sparse representation, which combines the advantages of convolutional
neural networks and sparse representation for image fusion. Luo et al. [6] proposed an
infrared and visible image fusion method based on Nonsubsampled Contourlet Transform
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(NSCT) and stacked autoencoders. The image was decomposed into high-frequency and
low-frequency layers using NSCT, and the low-frequency coefficients were calculated
by stacking autoencoders to achieve image fusion. Hui et al. [7] used a deep learning
network to extract salient features to obtain a better image fusion performance. Daniela
et al. [8] designed an automated solution for facial feature recognition, enabling further
applications of infrared and visible image fusion. However, judging from the fusion results
of these papers, the performance of deep learning-based algorithms is not always better
than traditional algorithms, and the results are even worse due to insufficient training
samples. Moreover, due to the high computational complexity, powerful hardware support
is required. In addition, due to the lack of actual ground data, both infrared and visible
deep learning-based methods belong to unsupervised learning. Therefore, compared with
the traditional method, the deep learning methods only rely on the composition of the
network architecture and the design of the loss function, and it is difficult to obtain an
overwhelming fusion result.

So far, the fusion methods based on multi-scale decomposition have been deeply and
meticulously researched, and a good fusion performance has been achieved. For example,
Singh et al. [9] designed two different infrared and visible image fusion schemes in the
wavelet domain and feature space domain, respectively, and achieved good results in
practice. Wang et al. [10] proposed an image fusion method based on an improved pulse-
coupled neural network (PCNN) and multi-scale decomposition, which can produce good
visual effects. Zhou et al. [11] proposed a new hybrid multi-scale image fusion method
based on gradient-guided filtering. The fusion result can fully show the advantages in
contrast and detail preservation. Ma et al. [12] proposed a multi-scale decomposition
image fusion method through the combination of rolling guided filters and Gaussian
filters. In order to improve the fusion performance of the detail layer, this method also
proposed an optimized weighted least squares scheme. To overcome the limitations of the
edge-preserving filter and reduce the artifacts at the edges of the image, Zhang et al. [13]
used a new edge-preserving technology to achieve image fusion, and the co-occurrence
filter can extract and fuse images. Therefore, a good image fusion effect was obtained.
Duan et al. [14] proposed a new decomposition method called the multi-scale decomposi-
tion of the double exponential edge preservation smoother. This method can fully extract
multi-scale structural information, and has good performance in terms of natural visual
effects and detail preservation.

Most of the algorithms mentioned above ignore a key issue. Generally, the image
fusion performance obtained by different image sensors is easily affected by imaging
equipment and environmental factors, and there may be some noise in the images. However,
traditional algorithms cannot take into account the fusion of noisy images and noise-free
images simultaneously. To solve this problem, a new image fusion algorithm based on
optimized low-rank matrix decomposition and guided filtering based on the traditional
algorithm is proposed, which can effectively remove the noise in the image and obtain a good
fusion image. In addition, the proposed algorithm also has good edge and detail preservation
ability as well as good robustness. The main contributions of this article are as follows:

(1) To achieve a good denoising performance, the minimized error reconstruction
factor is introduced. The effect of low-rank matrix decomposition is optimized, and image
denoising can be achieved through update iteration;

(2) In order to effectively separate the noise information and energy structure infor-
mation from the source image, guided filtering is utilized to decompose the source image
at two scales. Among them, due to the optimization of low-rank matrix decomposition,
an image with good denoising performance can be obtained, which can be utilized as a
guided image, and then the good filtering performance of guided filtering can be utilized
to better decompose the source image into a high-frequency layer with noise information
and a low-frequency layer with energy structure information;
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(3) In order to realize the denoising fusion of the high-frequency layer, an adaptive sparse
error reconstruction method is proposed, which can adaptively change the denoising ability
according to the intensity of the noise, avoiding excessive denoising or insufficient denoising.

The rest of this paper is organized as follows: Section 2 introduces some key theoretical
algorithms used in this paper; Section 3 introduces the proposed algorithm; Section 4 introduces
the comparative test and parameter setting; finally, the conclusion is described in Section 5.

2. Key Theories
2.1. Low-Rank Matrix Factorization Based on Minimizing Errors

The matrix D can be regarded as the low-rank part A and the sparse part E which can
be modeled as the following optimization problem [15]:

min
A,E

rank(A) + λ‖E‖0, s.t. D = A + E (1)

where rank(A) and ‖E‖0 are both nonlinear and non-convex, so optimization is difficult.
Therefore, it is necessary to use the rank and norm of the matrix to perform convex

relaxation, so that the above formula is relaxed into the following convex optimization
problem. In order to obtain a better optimization effect, the minimum error reconstruction
factor β is introduced, and the above formula becomes:

min
A,E
‖A‖∗ + λ‖E‖1,1 + β‖D− A− E‖1,1, s.t. D = A + E (2)

Solving convex optimization problems can be optimized by an iterative threshold
algorithm, accelerated near-end gradient method, dual method, etc. In this paper, an
augmented Lagrange multiplier algorithm (alternating direction multiplier method [16]) is
used for optimization. First, construct the augmented Lagrange function:

L(A, E, Y, u) = ‖A‖∗ + λ‖E‖1,1 + β‖D− A− E‖1,1+ < Y, D− A− E > +
u
2
‖D− A− E‖2

F (3)

when Y = Yk, u = uk, the alternate algorithm is used to solve the optimization problem:

min
A,E

L(A, E, Yk, uk) (4)

The exact Lagrange multiplier method is utilized to alternately iterate the matrices A
and E until the termination condition is met. If E = Ej

k+1, then

Aj+1
k+1 = argmin

A
L
(

A, Ej
k+1, Yk, uk

)
= argmin

A
‖A‖∗ + β‖D− A− Ej

k+1‖1,1 +
uk
2

∥∥∥∥A−
(

D− Ej
k+1 +

Yk
uk

)∥∥∥2

F

= D 1
uk

,β

(
D− Ej

k+1 +
Yk
uk

) (5)

Then update the matrix E according to Aj+1
k+1:

Ej+1
k+1 = argmin

A
L
(

Aj+1
k+1, E, Yk, uk

)
= argmin

A
λ‖E‖1,1 + β‖D− Aj+1

k+1 − E‖1,1 +
uk
2

∥∥∥∥E−
(

D− Aj+1
k+1 +

Yk
uk

)
‖

2

F

= S 1
uk

,β

(
D− Aj+1

k+1 +
Yk
uk

) (6)

Let A∗k+1 and E∗k+1 be the exact values of Aj+1
k+1 and Ej+1

k+1, respectively, then the update
formula of matrix Y is:

Yk+1 = Yk + uk
(

D− A∗k+1 − E∗k+1
)

(7)

The parameter uk can be updated as follows:

uk+1 =

{
ρuk ,

uk‖E∗k+1−E∗k ‖F
‖D‖F

< ε

uk , otherwise
(8)
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where ρ > 1 is a constant, and ε > 0 is a small positive number.
The above-mentioned accurate Lagrange multiplier method (ALM) requires multiple

updates in the inner loop and performs multiple singular value decompositions. Therefore,
an inaccurate Lagrange multiplier method is proposed, which does not require the exact
solution of min

A,E
L(A, E, Yk, uk) before the external loop starts; that is, the inner loop of the

ALM method is removed, and the update formula becomes the following form:

Ak+1 = argmin
A

L(A, Ek+1, Yk, uk) = D 1
uk

,β(D− Ek+1 +
Yk
uk

) (9)

Ek+1 = argmin
E

L(Ak+1, E, Yk, uk) = S λ
uk

,β(D− Ak+1 +
Yk
uk

) (10)

where D 1
uk

,β and S λ
uk

,β are singular value threshold operators and soft threshold

operators, respectively.

2.2. Guided Filtering

Traditional edge-preserving smoothing filters including the weighted least squares
filter [17] or bilateral filter [18] are widely utilized in the field of image processing, which
can avoid ringing artifacts and achieve the effect of not blurring the edges during the
decomposition process. Guided filtering [19] also belongs to an edge-preserving filtering
algorithm, which can obtain an edge-preserving smooth image through a guided image.
Guided filtering is a local linear model of guided image Gi and filter output Oi:

Oi = pnGi + qn, i ∈ θn (11)

where pn and qn are constants in the window θn at the pixel n. The idea of optimized
regression is used to solve Io. Then the cost function is defined, and a regular term ε is
added to the cost function through the ridge regression method to prevent overfitting.

E(pn, qn) = ∑
i∈θn

((pnGi + qn − Ii)
2 + εpn

2) (12)

where Ii is the input image. Through this formula, pn and qn that minimize E(pn, qn) can
be obtained

pn =

1
|α| ∑iεθn Gi Ii − θn În

σ2
n + ε

(13)

qn = În − pnθn (14)

where θn and σ2
n are the mean value and variance of I in θn, respectively, În is the mean value

of I in θn, and |α| is the number of pixels in θn. The pn and qn in each window are obtained
by traversing the image through the window. However, each pixel may be contained in
multiple windows, which leads to multiple calculations of pn and qn. Therefore, in order to
simplify the calculation, take the average value p̂n, q̂n of pn and qn, and then obtain:

Oi = p̂nGi + q̂n (15)

Guided filtering is different from most filtering methods in that it requires direct
convolution, and its calculation time has nothing to do with the filter parameters. Because
of its good edge retention and structure transfer characteristics, it is widely utilized in the
fields of image decomposition, image smashing, and image fusion. Figure 1 is a schematic
diagram of guided filtering.
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Figure 1. The principle diagram of guided filtering.

3. Fusion Framework

In order to solve the problem of effectively retaining details while denoising, a new
fusion model is introduced. Different from traditional decomposition methods, the source
image is first denoised and decomposed by using an optimized low-rank matrix in order
to achieve better denoising effect. At this time, the source image is decomposed into base
component and detail component, and most of the disturbance can be completely preserved
in the detail component. Then the base component is used as the guide image, the source
image is used as the input image, and the source image is decomposed into a high-frequency
layer and a low-frequency layer through a guided filter. The high-frequency layer contains
detail and noise components, and the low-frequency layer contains energy and structure
information. Different fusion methods are introduced to obtain pre-fusion layers based
on the characteristics of the two layers. Among them, for the high-frequency layer fusion,
fusion denoising is effectively realized by combining the relationship between sparse
representation and noise intensity; for the low-frequency layer, a weighted average fusion
strategy is used for pre-fusion. Finally, the final fusion image is realized by reconstructing
the two pre-fusion layers. Figure 2 shows the main flow of the algorithm in this paper.
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3.1. The Decomposition Model

In order to separate the noise in the source image in a targeted manner, using the
optimized low-rank matrix’s better denoising effect, first process the source image:(

Ib
n, Id

n

)
= LRF(In, µ, λ) (16)

where In is the nth source image, n ∈ {1, 2, . . . , N}, µ and λ are the iteration error and the
number of iterations, respectively, LRF(·) is the low-rank matrix factorization operator,
and Ib

n is the base component after the noise removal. Next, In is used as the input image,
Ib
n is used as the guide image, and the low-frequency layer of the image is obtained through

the guiding filter:
Il
n = GF

(
In, Ib

n, σs, σr

)
(17)

where σs, σr are filter parameters, GF(·) is the guided filter operator, and Il
n represents the

low-frequency layer of In. After the guided filtering, most of the noise has been removed
from the image, and the important details and structural information in the image are
retained in the low-frequency layer. The high-frequency layer of the image can be obtained
by the following formula:

Ih
n = In − Il

n (18)

Each group of images in Figure 3 contains a noise-free image and a noisy image with
σ = 20. These two groups of images test the reliability of the proposed decomposition
model, especially for noisy images. It can be seen from Figure 3:
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(1) After decomposition by the proposed algorithm, most of the noise and details are
preserved to the high-frequency layer. At the same time, it can be seen that some details
still exist in the low-frequency layer;

(2) The low-frequency layer produced by noise-free and noisy images is very similar;
that is, the noise information almost completely exists in the high-frequency layer.

3.2. Fusion Rules
3.2.1. High-Frequency Layers Pre-Fusion

The method based on SR can well realize the fusion denoising of the detail layers.
It includes two stages: dictionary learning and sparse representation. In the first step,
the high-frequency layer of training data is generated by Equation (17), 8 × 8 blocks
are collected from detail images, and the final training collection is constructed. The
Kernel-based singular value decomposition (KSVD) [20] algorithm can be used to obtain a
complete dictionary D. In the second step, an 8 × 8 block of each source image is taken and
normalized. To obtain SR parameters of high-frequency layers, an Orthogonal Matching
Pursuit (OMP) [21] algorithm is utilized by Equation (18):

min
αk

n

‖αk
n‖0, s.t.‖Vk

n − Dαk
n‖0 < ε (19)

where Vk
n is the k-th block of In, and αk

n is the related sparse vector. ε is the sparse recon-
struction error, represented as:

ε =

{
P, σ = 0
0.005 + 8Eσ, σ > 0

(20)

where σ is the Gaussian standard deviation, P is a constant, and E > 0 influences ε when σ > 0.
Next the “absolute-maximum” is utilized to obtain fusion sparse representation coefficients:

αk
Fh = αk

n̂, n̂ = argmax
n

{
‖αk

n‖1

∣∣∣n = 1, 2, . . . , N
}

(21)

The fusion high-frequency vector αk
Fh can be obtained by:

αk
Fh = Dαk

Fh (22)

Finally, the fusion high-frequency layer is obtained by reshaping each αk
Fh into 8× 8 blocks

and then arranging them according to the initial location to generate the pre-fused Fh.
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3.2.2. Low-Frequency Layers Pre-Fusion

The low-frequency layer of the source image contains more global structural informa-
tion and energy information. Therefore, this paper uses a weighted average strategy [22]
for low-frequency layer fusion:

Fl = ω1 Ih
1 + ω2 Ih

2 (23)

where ω1 and ω2 represent the weight value. In order to maintain the global structure and
energy information and reduce redundant information, let ω1 = 0.5 and ω2 = 0.5.

After obtaining these two pre-fusion components, the final fusion image F is:

F = Fh + Fl (24)

4. Discussion

In this section, after setting the parameters of the proposed algorithm, a comparative
experiment is carried out, including the experiment of the noiseless image and the experiment
of the image with noise. Qualitative and quantitative analyses were carried out, respectively.

4.1. Experimental Setup

The experimental dataset is selected from the website https://figshare.com/articles/
TN_Image_Fusion_Dataset/1008029 (accessed on 15 May 2022) to verify the proposed
algorithm. Six pairs of images are shown in Figure 4. Five recent methods are compared in
the same experimental environment for verification, including CBF [23], CNN [4], GTF [24],
IFEVIP [25], and TIF [26]. Furthermore, the fusion performance is quantitatively evaluated
by six indicators, including entropy (EN) [27], edge information retention (QAB/F) [28],
Chen-Blum’s index (QCB) [29], mutual information (MI) [30], structural similarity (SSIM) [31],
and peak signal-to-noise ratio (PSNR) [32].
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EN is used to measure the amount of information contained in the source image in the
fusion image. QAB/F utilizes local metrics to estimate how well salient information from
source images is represented in fused images. QCB is used as a human visual evaluation
index to measure the quality of fused images. MI is used to measure the amount of
information transferred from the source image into the fused image. SSIM is used to
measure the structural similarity between the fused image and the source image. PSNR
is used to measure the ratio between the effective information of the image and the noise,
which can reflect whether the image is distorted. In summary, these metrics are chosen to
evaluate the fused images obtained by the proposed algorithm from different perspectives.

4.2. Parameter Settings

The controlled variable method is utilized to analyze the two free parameters in
the model: the number of iterations λ in Equation (15) and the sparse reconstruction
error parameter E in Equation (20). In addition, µ in Equation (15) is set to 10−8, σs in
Equation (17) is set to 0.1, and parameter P in Equation (20) is set to 0.001.

https://figshare.com/articles/TN_Image_Fusion_Dataset/1008029
https://figshare.com/articles/TN_Image_Fusion_Dataset/1008029
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The discussion of E

First, fix λ = 200 and then use the two indicators SSIM and MI to analyze the
performance under different E. The experimental results are shown in the Figure 5. It
can be seen that both indicators are better when E = 0.003, and the fusion performance
decreases when E < 0.003 or E > 0.003. Therefore, after comprehensive consideration, the
best value for E is 0.003.

The discussion of λ
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If λ is too small, it will affect the denoising effect, but if λ is too large, it will affect the
speed of the experiment. Therefore, it is very necessary to choose an appropriate number
of iterations. Fix E = 0.003. In order to better determine the number of iterations, SSIM,
MI, and time T are used to observe the fusion performance and speed. It can be seen from
Figure 6 that when λ < 300, as the number of iterations increases, the image fusion effect
gets better and better. When λ > 300, the fusion effect hardly changes. In addition, the
fusion speed gradually slows down with an increase in the number of iterations. Taking
two factors into consideration, the best value for λ is 300.

Electronics 2022, 11, x FOR PEER REVIEW 9 of 17 
 

 

First, fix 𝜆 = 200 and then use the two indicators SSIM and MI to analyze the per-
formance under different 𝐸. The experimental results are shown in the Figure 5. It can be 
seen that both indicators are better when 𝐸 = 0.003 , and the fusion performance de-
creases when 𝐸 < 0.003 or 𝐸 > 0.003. Therefore, after comprehensive consideration, the 
best value for 𝐸 is 0.003.  

 
Figure 5. Quantitative evaluation of the fused images produced by different 𝐸. 

The discussion of 𝜆 
If 𝜆 is too small, it will affect the denoising effect, but if λ is too large, it will affect 

the speed of the experiment. Therefore, it is very necessary to choose an appropriate num-
ber of iterations. Fix 𝐸 = 0.003. In order to better determine the number of iterations, 
SSIM, MI, and time T are used to observe the fusion performance and speed. It can be seen 
from Figure 6 that when 𝜆 < 300, as the number of iterations increases, the image fusion 
effect gets better and better. When 𝜆 > 300, the fusion effect hardly changes. In addition, 
the fusion speed gradually slows down with an increase in the number of iterations. Tak-
ing two factors into consideration, the best value for 𝜆 is 300. 

  

(a) (b) 

Figure 6. Quantitative evaluation of the fused images produced by different 𝜆. ((a) represents the 
quality evaluation value of different 𝜆, and (b) represents the consumption time of different 𝜆.) 

Figure 6. Quantitative evaluation of the fused images produced by different λ. ((a) represents the
quality evaluation value of different λ, and (b) represents the consumption time of different λ.)



Electronics 2022, 11, 2003 10 of 16

4.3. Noise-Free Image Fusion and Evaluation

Figure 7 shows the fusion results of the proposed algorithm and the comparison
algorithm. The first column contains infrared images, and the second column contains
visible images; the remaining images are the fusion images obtained by various methods.
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4.3.1. Subjective Evaluation

It can be seen from Figure 7 that the proposed method can retain more detail infor-
mation, and there is less manual information. This is because the proposed two-scale
decomposition algorithm can well separate the noise information and other main detail
information, and the fusion rules are set appropriately. However, the salient features of
the images obtained by CBF are not obvious and contain more artificial noise information.
Although the fusion images generated by the CNN have lower brightness than the images
generated by the proposed algorithm, the structures are better preserved. The GTF and
IFEVIP methods maintain a good brightness, but the visual effects are too strengthened,
resulting in obvious errors in the results. The TIF method has the phenomenon of fuzzy in-
ternal characteristics. Therefore, in the fusion results, the proposed algorithm can preserve
the important content of the source image and obtain the best visual performance in terms
of brightness and structural details, which means that the proposed algorithm can produce
better subjective performance.

4.3.2. Objective Evaluation

Figure 8 shows the different objective evaluation values of the fusion results in the
six pairs of images. From each subgraph in Figure 8, we can see that the index values of
the proposed algorithm are almost all the highest, especially for the four indexes of QAB/F,
QCB, MI, and PSNR; the proposed algorithm is always better compared to other algorithms.
For the EN indicator, the proposed algorithm only performs poorly in the boat image. In
addition, compared with other algorithms, the proposed algorithm has obvious advantages
in the QAB/F index, and the value in Figure 8 is significantly higher than other methods.
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Among various evaluation indicators, the proposed algorithm is not optimal in only a few
places, but it can still be proven that the proposed algorithm has good performance.
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In summary, the proposed algorithm performs well both qualitatively and quantita-
tively for the fusion of noise-free infrared and visible images.

4.4. Noisy Image Fusion and Evaluation

Figures 9 and 10 are examples of six pairs of noisy infrared and visible images. The
noise intensity of the source images in Figures 9 and 10 are 10 and 20, respectively. The
first column of Figures 9 and 10 contains the infrared images, and the second column
contains the visible images; the remaining images are the fusion images obtained by
various methods.



Electronics 2022, 11, 2003 12 of 16

Electronics 2022, 11, x FOR PEER REVIEW 12 of 17 
 

 

first column of Figures 9 and 10 contains the infrared images, and the second column con-
tains the visible images; the remaining images are the fusion images obtained by various 
methods. 

 
Figure 9. Fusion results of noisy images (𝜎 = 10). Figure 9. Fusion results of noisy images (σ = 10).

Electronics 2022, 11, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 10. Fusion results of noisy images (𝜎 = 20). 

4.4.1. Subjective Evaluation 
When the noise intensity is 10, the noise-removing capabilities of CBF and TIF meth-

ods are insufficient, and their fusion results lack useful information. The CNN method 
has a certain denoising effect, but the result is too low in contrast. GTF and IFEVIP meth-
ods can denoise effectively to a certain extent, but the contrast is too high and the image 
is unnatural. These two methods can be fused in a noisy environment, but some irrelevant 
information will be introduced, resulting in unreal visual effects. Compared with other 
algorithms, the proposed algorithm has the best fusion performance in detail reservation, 
and the noise in the fusion results is significantly reduced simultaneously, so it has good 
performance in denoising. 

When the noise intensity reaches 20, the contours of the fusion results obtained by 
the CBF, CNN, and TIF methods have been severely damaged, and a large number of 
outstanding mistakes have been taken into the fusion results. In the IFEVIP method, the 
contrast is too high. Although the GTF method can denoise, the result is too smooth and 
lacks detail information. In contrast, the fusion results of the proposed algorithm not only 
preserve the detail content, contrast, and structure preservation of the source image, but 
its denoising effect is also remarkable. 

4.4.2. Objective Evaluation 
The objective evaluation of fusion results is shown in Tables 1 and 2. Compared with 

CBF, CNN, GTF, IFEVIP, and TIF methods, the proposed method can obtain better objec-
tive analysis results, and is basically consistent with the objective evaluation results of 
noise-free image fusion. So, it proves the usefulness and superiority of the method pro-
posed in this paper. 

Figure 10. Fusion results of noisy images (σ = 20).



Electronics 2022, 11, 2003 13 of 16

4.4.1. Subjective Evaluation

When the noise intensity is 10, the noise-removing capabilities of CBF and TIF methods
are insufficient, and their fusion results lack useful information. The CNN method has a
certain denoising effect, but the result is too low in contrast. GTF and IFEVIP methods
can denoise effectively to a certain extent, but the contrast is too high and the image is
unnatural. These two methods can be fused in a noisy environment, but some irrelevant
information will be introduced, resulting in unreal visual effects. Compared with other
algorithms, the proposed algorithm has the best fusion performance in detail reservation,
and the noise in the fusion results is significantly reduced simultaneously, so it has good
performance in denoising.

When the noise intensity reaches 20, the contours of the fusion results obtained by
the CBF, CNN, and TIF methods have been severely damaged, and a large number of
outstanding mistakes have been taken into the fusion results. In the IFEVIP method, the
contrast is too high. Although the GTF method can denoise, the result is too smooth and
lacks detail information. In contrast, the fusion results of the proposed algorithm not only
preserve the detail content, contrast, and structure preservation of the source image, but its
denoising effect is also remarkable.

4.4.2. Objective Evaluation

The objective evaluation of fusion results is shown in Tables 1 and 2. Compared with
CBF, CNN, GTF, IFEVIP, and TIF methods, the proposed method can obtain better objective
analysis results, and is basically consistent with the objective evaluation results of noise-free
image fusion. So, it proves the usefulness and superiority of the method proposed in this paper.

In summary, for the fusion of noisy infrared and visible images, the proposed algorithm
has a good performance both qualitatively and quantitatively. This is because the two-scale
decomposition algorithm designed in this paper can well separate the noise information and
structural information in the source image, which are reflected in the high-frequency layer
and the low-frequency layer, respectively. Through the adaptive sparse fusion algorithm,
the denoising fusion of the high-frequency layer can be adaptively realized according to
the intensity of the noise, and there will be no phenomenon of excessive denoising or
insufficient denoising, which lays the foundation for the final fusion effect.

Table 1. Quantitative index of image fusion results (σ = 10).

Source
Images Index CBF CNN GTF IFEVIP TIF Proposed

Camp

EN 6.601 6.761 6.820 6.901 6.403 6.797
QABF 0.317 0.422 0.459 0.380 0.359 0.480
QCB 0.517 0.550 0.475 0.520 0.561 0.568
MI 0.889 0.905 0.933 0.786 0.945 1.080

SSIM 1.213 1.109 1.090 1.224 1.200 1.297
PSNR 58.467 58.548 57.782 56.807 58.362 58.933

Shop

EN 6.559 6.807 6.739 6.883 6.608 6.890
QABF 0.301 0.453 0.408 0.474 0.408 0.497
QCB 0.447 0.438 0.294 0.384 0.446 0.472
MI 0.818 1.225 0.878 1.479 1.050 1.595

SSIM 0.980 1.050 0.764 1.120 1.018 1.194
PSNR 59.637 59.889 59.222 59.177 59.712 59.997

Boat

EN 6.141 6.756 6.788 6.283 6.608 6.867
QABF 0.273 0.481 0.475 0.471 0.317 0.496
QCB 0.439 0.569 0.469 0.488 0.547 0.576
MI 0.474 0.771 1.315 1.381 0.540 1.378

SSIM 1.145 1.200 1.095 1.217 1.229 1.295
PSNR 59.674 59.833 59.159 58.148 59.804 59.826
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Table 1. Cont.

Source
Images Index CBF CNN GTF IFEVIP TIF Proposed

House

EN 6.783 6.640 6.512 6.989 6.871 7.142
QABF 0.305 0.453 0.456 0.394 0.368 0.456
QCB 0.474 0.474 0.470 0.508 0.568 0.574
MI 0.727 0.896 1.027 1.535 0.791 1.696

SSIM 1.128 1.173 1.100 1.224 1.202 1.293
PSNR 59.720 60.172 59.458 58.560 60.068 60.198

Building

EN 6.935 6.882 7.114 7.272 7.031 7.349
QABF 0.278 0.476 0.440 0.407 0.341 0.540
QCB 0.467 0.485 0.435 0.509 0.532 0.556
MI 0.807 1.036 1.169 1.140 0.965 1.182

SSIM 1.117 1.131 0.991 1.213 1.159 1.294
PSNR 59.175 59.349 58.736 58.004 59.235 59.943

Car

EN 6.787 6.627 7.113 7.144 6.906 7.506
QABF 0.230 0.421 0.412 0.455 0.351 0.527
QCB 0.414 0,374 0.366 0.424 0.468 0.476
MI 0.421 0.672 0.844 0.671 0.726 0.926

SSIM 0.941 1.030 0.878 1.138 1.062 1.189
PSNR 58.131 58.371 57.875 57.137 58.315 58.494

Table 2. Quantitative index of image fusion results (σ = 20 ).

Source
Images Index CBF CNN GTF IFEVIP TIF Proposed

Camp

EN 6.942 6.890 7.131 7.264 7.123 7.277
QABF 0.285 0.322 0.496 0.343 0.311 0.429
QCB 0.474 0.456 0.498 0.492 0.552 0.553
MI 0.870 0.863 0.711 1.008 0.926 1.091

SSIM 1.160 1.132 0.948 1.144 1.070 1.197
PSNR 57.926 57.995 56.992 55.801 57.671 58.291

Shop

EN 6.878 6.972 6.983 7.237 6.881 7.519
QABF 0.326 0.325 0.407 0.449 0.338 0.520
QCB 0.441 0.426 0.302 0.472 0.467 0.495
MI 0.960 0.748 0.700 1.510 0.866 1.330

SSIM 1.009 0.854 0.615 1.063 0.924 1.094
PSNR 59.593 59.645 58.742 58.782 59.508 59.928

Boat

EN 6.612 6.764 6.225 6.855 6.653 6.995
QABF 0.268 0.384 0.515 0.332 0.283 0.521
QCB 0.485 0.493 0.487 0.501 0.524 0.542
MI 0.452 0.550 0.957 0.831 0.461 0.977

SSIM 1.136 1.063 0.910 1.128 1.064 1.195
PSNR 59.324 59.322 58.362 57.566 59.267 59.689

House

EN 6.910 6.925 7.314 7.211 7.129 7.494
QABF 0.276 0.346 0.421 0.348 0.309 0.481
QCB 0.471 0.448 0.487 0.500 0.424 0.551
MI 0.492 0.603 0.568 0.425 0.585 0.649

SSIM 1.128 1.100 0.945 1.147 1.064 1.193
PSNR 59.680 59.083 58.975 58.188 59.787 59.928
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Table 2. Cont.

Source
Images Index CBF CNN GTF IFEVIP TIF Proposed

Building

EN 7.152 7.150 7.339 7.545 7.300 7.062
QABF 0.267 0.325 0.476 0.356 0.303 0.486
QCB 0.464 0.442 0.449 0.469 0.519 0.538
MI 0.735 0.880 0.711 0.867 0.786 0.965

SSIM 1.088 1.063 0.840 1.137 1.027 1.193
PSNR 58.978 59.066 58.121 57.501 58.904 59.885

Car

EN 6.927 6.897 7.755 7.362 7.107 7.780
QABF 0.252 0.342 0.458 0.405 0.300 0.535
QCB 0.431 0.387 0.375 0.428 0.464 0.493
MI 0.416 0.500 1.175 1.118 0.542 1.342

SSIM 1.008 0.983 0.718 1.078 0.953 1.089
PSNR 58.048 58.197 57.378 56.827 58.108 58.435

4.5. Computational Efficiency

In order to test the real-time performance of the algorithm in this paper, the various
methods were placed in the same experimental environment for comparison, and the aver-
age execution time comparison is shown in Table 3. Since the experiment needs to perform
multiple iterations and achieve partial fusion through sparse representation, the efficiency
of the proposed method is not very high. Therefore, in future research, improving algorithm
performance and increasing computational efficiency are important research directions.

Table 3. Computational efficiency of different methods.

Method CBF CNN GTF IFEVIP TIF Proposed

Time/s 10.73 23.16 2.91 1.34 1.03 22.03

5. Conclusions

In this paper, an infrared and visible image fusion algorithm based on optimized
low-rank matrix decomposition and guided filtering is proposed. The proposed algorithm
takes advantage of the filtering effect of low-rank matrix decomposition on noisy images,
and introduces a reconstruction factor to minimize the error to improve the decomposition
efficiency and performance. The final two-scale decomposition is achieved through guided
filtering, and the noise information and structure information are better separated to obtain
a better fusion performance. A large number of fusion results show that the proposed
algorithm is obviously superior to the existing fusion methods in visual and quantitative
evaluation, and can obtain strong anti-noise performance. Furthermore, the method can be
effectively extended to image fusion problems of other modalities.
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