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Abstract: Extracting features manually and employing preeminent knowledge is overly utilized
in methods to conduct fault diagnosis. A diagnosis approach utilizing intelligent methods of the
optimized variational mode decomposition and deep transfer learning is proposed in this manuscript
to deal with fault diagnosis. Firstly, the variational mode decomposition is optimized by K values
of the dispersion entropy to realize an adaptive decomposition and reduce the noise of the signal.
Secondly, an image with two dimensions is generated by a vibration signal with one dimension
utilizing a short-time Fourier transform, after conducting noise reduction. Then, the ResNet18
network model is used to pre-train the model. Finally, the model transfer method is used to detect
faults of a diesel engine. The results show that the proposed method outperforms the deep learning
methods available in the literature. Besides, better noise reduction ability and higher diagnostic
accuracy are attained.

Keywords: variational mode decomposition; short time Fourier transform; transfer learning; deep
residual network; diesel engine troubleshooting

1. Introduction

Diesel engines are generally utilized in the construction of machinery, automobiles,
vessels, and in other production areas. Due to their complex design structure and their
long-term operation in harsh environments, various failures will inevitably occur, which
lead to prolonged equipment downtime and increased maintenance costs. So, dealing with
these issues has become a hot research direction, contemporarily studied by many scholars.
Moreover, various intelligent data-driven approaches to coping with fault diagnosis of
diesel engine failures have been suggested and satisfactory research outcomes have been
achieved [1–3].

Fault diagnosis approaches with machine learning methodologies substantially in-
clude three fault facets: extraction of features, reduction of feature dimensionality, and
pattern recognition of features. For these purposes, the time-frequency analysis of the vibra-
tion signal is studied, the commonly implemented algorithms of which are called Hilbert
Huang Transform (HHT), Wavelet Transform (WT), and Short Time Fourier Transform
(STFT) [4–6]. The implementations of these algorithms aim at extracting the feature param-
eters of both time and frequency domains [7,8]. When feature dimensionality reduction
is under consideration, principal component analysis (PCA), kernel principal component
analysis (k-PCA), and autoencoder are generally implemented [9–11]. Similarly, when
pattern recognition is under consideration, support vector machine (SVM), random forest
(RF), and k-nearest neighbor (k-NN) methods are commonly utilized [12–14]. Thus, these
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feature extraction and dimensionality reduction techniques are combined to detect pattern
recognition of various failures. Moreover, various diagnostic methods to detect faults in
diesel engines have been suggested [15–17].

The conventional diagnosis methods utilizing intelligent approaches constitute a small
set of machine learning methods with higher diagnosis accuracies. However, they are also
accompanied by restrictions, as follows:

(1) Due to a large quantity of both noise and interference available in sampled vibration
signals, detection of weak fault signals is generally difficult. To cope with weak fault signals,
more advanced signal preprocessing techniques must be employed [18].

(2) If the feature parameters are set improperly, or rely on largely preeminent knowl-
edge of experts [19,20], the accuracy of fault diagnosis is affected.

As artificial intelligence technology rapidly advances, deep learning has gradually
turned into an efficient method and surmounts the deficiencies of the conventional fault
diagnosis approaches. So, extracting useful fault features directly from raw data is a key
advantage. Hence, deep belief network (DBN), convolutional neural network (CNN), and
long short-term memory network (LSMN) are commonly implemented to diagnose faults
related to mechanical applications [21,22]. The DBN was implemented by Xu et al. [23]
to diagnose the air path fault of turbofan engines with higher classification accuracy. The
parameters of the CNN were optimized by Zhou et al. [24], by utilizing the sorting method
of input measurement parameters, which was applied to detect the fault of the gas circuit of
an engine with a relatively ideal diagnosis impact. Han et al. [25] constructed a data-driven
fault prediction model using an LSTM network and applied it to marine diesel engines,
and obtained better fault prediction results.

Theproblems expressed below still exist and need to be dealt with:
(1) Since diesel engines work in complex environments for a long time, weak fault

features are masked by stronger noise and interference signals, which greatly increases the
difficulty of direct fault diagnosis using one-dimensional vibration signals.

(2) The parameters in network training increase with the increment of the number of
hidden layers. When a multi-layer deep network model is trained, both preparing labeled
samples in large quantities and the requirements of computational power and time need to
be taken into account. However, collecting a large amount of data with faulty tags is almost
impossible when the equipment basically runs in a steady state, in which few failures
could occur.

When training a multi-layer deep network model from scratch, there is not only a
need to prepare a large number of labeled samples, but also the training consumes a lot of
computing power and time. Then, in practical engineering applications, the equipment is
running in a normal condition, and there exist few failures, which makes it impossible to
obtain a large number of data samples with faulty tags.

(3) The hyperparameter optimization and selection of the deep learning network
model consumes a lot of time in training the network model and, thus, this will directly
affect its performance.

Due to the issues mentioned above, a method called transfer learning (TL) was sug-
gested when mechanical fault diagnosis is under consideration. Xu et al. [26] suggested
an approach employing migration component analysis to determine fault diagnosis when
various working conditions were taken into account. Zhao et al. [27] realized cross-domain
aero-engine fault diagnosis by employing extreme learning machines, using the TL method.
Xiong et al. [28] suggested a methodology utilizing stacked autoencoders and feature
transfer to diagnose diesel engine faults. Both training and optimizing the deep learning
network model are essential when the available TL research is under consideration, which
restricts its application in engineering implementations.

To resolve the issues presented above, this manuscript suggests a methodology to
diagnose faults utilizing both optimized variational mode decomposition (VMD) and deep
transfer learning (DTL), concurrently. Firstly, the VMD method is optimized by using the
K value of the dispersion entropy to conduct the noise reduction in the original vibration.
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Then, the noise-reduced vibration signal is converted into a frequency map with two dimen-
sions by the STFT method. To lower both training time and computational complexity of the
deep learning network model, a TL method, based on the ResNet18 network model, is sug-
gested, which could effectively extract useful features from the frequency map represented
by two dimensions, and quickly achieve accurate fault classification. Finally, experiments
conducted present both better-extracted features and higher diagnostic accuracies.

The key contributions of the manuscript are expressed as follows:
(1) The optimized VMD can not only withhold weak fault signals, but also better

excludes both noisy and interfering signals in the original vibration signal, which results in
successful noise reduction.

(2) By employing the ResNet18 network model, trained on the ImageNet dataset as
the transfer object, which provides a fine-tuning of the network structure, the training time
of the network could be effectively lowered, and the accuracy of identifying faults could
be improved.

(3) This research utilizes both optimized VMD and DTL concurrently to extract and
classify fault features of diesel engines in strong noise environments. The proposed method
exhibited greatly improved performance and a practically usable form to diagnose faults in
applications in experiments.

The remaining sections of the manuscript are constructed as follows: A method dealing
with noise reduction utilizing the optimized VMD is described in Section 2. Section 3 details
the basic theory of time-frequency images and DTL models. The fault diagnosis process
of a diesel engine, utilizing both optimized VMD and DTL, is described in Section 4.
Section 5 analyzes and validates the method suggested in this manuscript employing
pre-set experiments. The conclusion is provided in Section 6. Abbreviations provides the
commonly used symbols in this manuscript.

2. A Noise Reduction Approach Utilizing the Optimal VMD

The VMD, Variational Mode Decomposition, as a novel non-stationary and non-
linear signal processing methodology, was proposed in [29]. By resolving the constrained
variational problem to replace the previous empirical mode decomposition (EMD), ensem-
ble empirical mode decomposition (EEMD), and local mean decomposition (LMD) were
suggested [30]. Hence, the modal aliasing and end effect problems of the conventional
decomposition method were improved. However, the VMD itself also has certain limita-
tions. The determination of its decomposition level K needs to be set manually, which has
a certain degree of subjectivity and randomness that will have an impact on the modal
decomposition process. Therefore, this paper adopts a method of optimizing the VMD
based on the K value of dispersion entropy to realize the adaptive decomposition and
reconstruction of noise reduction of the signal.

2.1. The VMD

The function of the VMD is to establish and resolve the variational problem, and
decompose the available signal f into K Intrinsic Mode Function (IMF) components, uk(t).
Both epicenter frequency and bandwidth are continuously revised by running the process
iteratively, since the summation of each component is assumed to be equal to the input
signal. Then, the IMF component minimizing the summation of the bandwidths related to
the IMF is obtained, as follows:

(1) By running the Hilbert transform, the uk(t) (k= 1, 2, · ··, K) analytic signal unilat-
eral spectrum of each IMF component is obtained, namely,

[δ(t) + (j/πt)]× uk(t) (1)

then, the position of the center frequency of each eigenmode to the corresponding baseband
is expressed by

{[δ(t) + (j/πt)]× uk(t)}e−jωkt (2)
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where the impulse function is denoted by δ(t), the sign “∗” represents the convolution
calculation, and ωk represents the center frequency of each IMF component;

(2) The L2 norm of the gradient of the demodulated signal is computed, and the
bandwidth of each IMF component is estimated. Then, the constrained variational model
expression is expressed by

min
{uk ,ωk}

{
K
∑

k=1
‖∂t

[
(δ(t) + j

πt )× uk(t)
]
e−jωkt‖

2

2

}
s.t

K
∑

k=1
uk = f (t)

 (3)

where n ‖‖2 denotes the L2 norm operation; uk = {u1, u2, · · · , uk} is the k IMF component,
and f (t) represents the original time-domain signal; ωk = {ω1, ω2, · · · , ωk} represents the
central frequency of each component

(3) Both α and λ are used in the solution of the variational problem, which is called the
quadratic penalty factor and the Lagrange multiplication operator. Then, the constrained
variational problem is transformed into an unconstrained form, in which the Lagrange
function in the augmented form is expressed by

L({uk}, {ωk}, λ) = α∑
k
‖∂t

[
(δ(t) + j

πt )× uk(t)
]
e−jwkt‖

2

2

+‖ f (t)−
K
∑

k=1
uk(t)‖

2

2

+(λ(t), f (t)−
K
∑

k=1
uk(t))

(4)

where α represents the quadratic penalty factor, which is usually selected as a positive
large number to enhance the accuracy of the reconstructed signal; λ is called the Lagrange
multiplication operator, and λ(t) guarantees strict constraints. ADMM, the Alternate
Direction Method of Multipliers, is employed to recompute the values uk, ωk and λ in
each component. Then, the saddle point of the augmented Lagrange function is calculated,
namely, the constrained variational model is optimized to realize modal decomposition.

2.2. Dispersion Entropy

The principle of the VMD signal decomposition was introduced in the previous section.
However, determining the VMD decomposition layers, K, needs to be set manually. So, K
would directly have an impact on the decomposition effect of the signal when a complex
signal is processed. When K is set to large numbers, over-decomposition could occur, thus
redundant components would be obtained. On the other hand, when K is assigned to small
numbers, under-decomposition could happen and, thus, the useful signal could not be
effectively separated. In this paper, it is proposed that K is optimized by employing scatter
entropy to find and conduct the decomposition of the signal adaptively.

DE, Dispersion Entropy, is a novel method suggested by Rostaghi and Azami in 2016
to measure the complexity of time series [31]. The fact that conventional permutation
entropy does not consider the magnitude of amplitude was remedied and, thus, better
stability and faster calculation were mentioned as advantages. The steps are presented by:

(1) The function of the normal distribution is selected as the nonlinear normalization
function. The sequence x = {x1, x2, . . . , xN} is normalized with the mean and standard
deviation of x as parameters. Then y = {y1, y2, . . . , yN} is attained, where N represents the
sequence length with y ∈ (0,1).

(2) Map y to integers in the range [1,c] through a linear algorithm to obtain the
sequence by



Electronics 2022, 11, 1969 5 of 21

zc
j = int(cyj + 0.5) (5)

where c and int represent the category numbers and rounding, respectively.
(3) Compute both the embedded vector and the scatter pattern wv0 v1 ···vm−1

(v = 1, 2,
. . . ,c), and compute the probability P for all scattered patterns defined by

P(wv0 v1 ···vm−1
) =

num(wv0 v1 ···vm−1
)

N − (m− 1)d
(6)

where zc
i = v0, zc

i+d = v1, . . . , zc
i+(m−1)d = vm−1; num(wv0 v1 ···vm−1

) are zm,c
i the number of

mappings to scatter patterns, m and d represent the embedding dimension and the time
delay, respectively.

(4) The original sequence DE is calculated by utilizing the definition of information
entropy as follows:

DE(x, m, c, d) = −
cm

∑
w=1

P(wv0 v1 ···vm−1
)ln(P(wv0 v1 ···vm−1

))) (7)

According to the calculation method of the DE, the dispersion entropy, having max-
imum value when the probability of all dispersion modes is equal, is found. The larger
the value of the dispersion entropy, the greater the complexity of the time series would be.
Thus, the manuscript employs the dispersion entropy to optimize K of the VMD decompo-
sition level. The turning point of the dispersion entropy change in each IMF component is
obtained to determine the decomposition level K through the decomposition of the VDM.
Then, the IMF components with useful values are selected to reconstruct the signal, which
provides the noise reduction of the vibration signal.

3. Time-Frequency Image and Deep Transfer Learning Model
3.1. Time-Frequency Image Generation Method

The acquired signal presented by one-dimension, and having non-stationary and
nonlinear characteristics, is used as the original vibration signal when data acquisition
of the diesel engine is conducted. Nevertheless, three-channel images are used for the
input conditions of the data. Therefore, the model is based on the deep learning network
to pre-train needs to convert the vibration signal with one dimension into an image with
two dimensions. Time-frequency analysis methods are common approaches to extracting
fault diagnoses, such as HHT, WT, and STFT [32]. Although the fault characteristic signal
can be derived well when the conversion between one-dimension and two-dimension
representations is conducted, both WT and HHT methods are relatively slow, in terms of
implementation speed.

When considering the conversion speed and including the key feature information
concurrently, the STFT method is utilized to produce a time-frequency map represented by
two dimensions. Hence, the core idea of the TFT is to add windows to the one-dimensional
time-domain vibration signal in segments, and then perform the Fourier transform to run a
simultaneous analysis of the time and frequency domain characteristics of the vibration
signal, depicted in Figure 1. The STFT is represented by

Tst f ,x(ω, τ) =
∫

R
x(t)w(t− τ)e−jωtdt (8)
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The discrete form of the STFT is employed to determine the corresponding constituents,
and the frequency, amplitude, and phase of each component are given, defined by

X[m, k] =
N−1
∑

n=0
x[n]w[n− k] exp

(
−j 2π

N mn
)
,

m = 0, 1, · · · , N − 1
(9)

where the sequence x[k] represents the sampling signal of the continuous vibration signal
x(t); the width of the time window signal w(t) is N.

3.2. Deep Residual Network

In 2015, the Deep Residual Network (ResNet) model was proposed [33]. When
compared with the conventional deep learning network, the ResNet network adds the
identity mapping function, which can effectively perform the back-propagation calculation
of errors and optimize the hyperparameters of the model. By doing so, the difficulty of
network training is considerably decreased. Image processing and recognition methods
implement it effectively. Therefore, this manuscript generally deals with the research of the
ResNet18 network when diagnosing faults related to machinery.

3.2.1. Convolutional Layer

The neural network (NN) has a core called a convolutional layer that employs a
convolution kernel with two dimensions to conduct calculations on the input image. Thus,
each pixel in the image is traversed and the feature map is resolved through a nonlinear
activation function, depicted in Figure 2, the expression of which is given by

xl
j = σ( ∑

i=Mj

xl−1
i ×ωl

ij + bl
j) (10)

where l denotes the lth convolutional layer; ωl
ij represents the input of the lth convolutional

layer; xl
j denotes the output of the lth convolutional layer; the bias is denoted by bl

j; f (·)
stands for activation function. A Rectified Linear Unit (ReLU) is chosen as the activation
function, having expression

ReLU(x) = max(0, x), x ∈ (−∞,+∞) (11)
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3.2.2. Max Pooling Layer

The pooling layer comes just after the convolutional layer, and its main purpose is
to down-sample the input features by pooling. When the premise of reducing the feature
dimension is taken into account, more meaningful features are further extracted. Thus,
the parameters of the NN are effectively deceased and the training process would be
accelerated. Figure 3 depicts the utilization of the maximum pooling layer. The position-
independent characteristic parameters are obtained as the advantage, and its expression is
given by

xl
i = σ(βl × down(xl−1

i ) + bl) (12)
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The down(·) represents the pooling function; bl and βl denote layer l bias and
weight, respectively.

3.2.3. Residual Building Block

A deep residual network usually consists of multiple residual blocks, which are the
basic core of the ResNet network model. The differences between the predicted and the
observed values are called residuals. Figure 4 shows two commonly used residual block
structures. While Figure 4a shows the standard residual structure block, Figure 4b depicts
the residual structure block with a down-sampling layer. The two residual blocks generally
consist of two convolutional layers, two batch normalization, and two ReLU activation
functions [34]. On the other hand, the residual structure block with the down-sampling
layer has a shortcut path directly connecting the input and output, which is practical to
conduct backpropagation within the NNs. By doing so, the problem of gradient explosion
or disappearance could be resolved effectively, and make network training easier. Therefore,
this paper adopts the proposed residual structure block with a down-sampling layer.
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3.2.4. Global Average Pooling

To effectively avoid overfitting, a global average pooling layer (GAPL) is used near
the output layer of the ResNet network model. A GAPL is utilized to find the mean by
utilizing the feature map of each channel and employing it as the output characteristic
parameter. Figure 5 depicts this, and Equation (13) presents it.

YGAP(1, 1, ich) = aveageiro ,ico
(XGAP(iro, ico, ich)) (13)

where YGAP and XGAP represent the output and input of the feature map, respectively.
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This method could substantially decrease the number of weights necessary for training
and could handle translation changes well. In practical applications, the position of the
fault vibration signal in the sample is often different, even though the same fault type is
observed. The features extracted from the CNNs will also change, and this situation can
be summarized as a translational transformation problem. The global average pooling
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algorithm can be utilized to resolve the global feature of the average and preserves the
invariance of the fault impact location in the deep learning network model. This problem
has been improved to some extent, effectively advancing the generalization ability of deep
learning network models.

3.3. Transfer Learning

Taking data with sufficient numbers of labels from the source domain and transferring
the data to a small number of data samples in the target domain is called transfer learning
(TL). By running an analysis called sample size analysis, the samples of the source domain
are easy to collect and sufficient samples are available [35]. Nevertheless, collecting samples
in the target domain is difficult, and relatively few samples are available. When the fault
features contained in the trained network model are similar to the new fault features and
have potential common data features, employing the transfer method of the model would
achieve very ideal outcomes, presented in Figure 6.

D = {W, P(W)} (14)

T = {Y, P(Y/W)} (15)

where T denotes the domain task of the target; D denotes the domain task of the source;
W represents the vector space of the features, and P(W) denotes the marginal probability
distribution function. This paper adopts a model-based transfer method. From the sampled
data of the source and the target domains, the information regarding the model param-
eter, or the prior knowledge of the model, can be found and shared, which realizes the
knowledge transfer.
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4. Fault Diagnosis of the Diesel Engine Employing Both Optimized VMD and DTL

Figure 7 depicts the process to diagnose faults utilizing both optimized VMD and
DTL, which consists of steps such as data preprocessing, the transformation of a two-
dimensional time-frequency map, training network model, and fault classification. More
detailed descriptions are given below.
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Step 1 Preprocess data. The VMD algorithm decomposes the original vibration signal,
and the scatter entropy value of the IMF component is solved. When the change of
dispersion entropy first appears as a turning point, the corresponding decomposition
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level is found to be the optimal decomposition level. The valuable information of the
IMF component is screened out, according to the dispersive entropy value. Then, it is
superimposed and reconstructed to obtain a noise reduction signal.

Step 2 Transform the two-dimensional time-frequency map. Taking the noise re-
duction signal as the input condition, the STFT algorithm is employed to produce the
corresponding data set of the two-dimensional time-frequency graph. Then, training,
testing, and validation sets are generated, respectively, when the data set is split.

Step 3 Train the network model. The parameters of the pre-trained ResNet18 network
model are utilized as the transfer object. The parameters of the convolution 1 layer and
the residual layer are frozen, and the fully connected layer is fine-tuned. Both training and
test data sets are imported into the pre-trained model. The fine-tuned ResNet18 network
model is retained to attain a novel DTL-ResNet18 network model.

Step 4 Classify Fault. The new test and validation data sets are imported into the
trained ResNet18 network model. The Softmax activation function is utilized to obtain the
final result of the fault diagnosis.

5. The Verification of the Experimental Data
5.1. Experiment Preparation

To verify the efficiency of the proposed method to diagnose faults of the diesel engine
by employing both optimized VMD and DTL, an in-line 6-cylinder diesel engine test
bench was established, which was composed of a panel monitoring condition, and data
acquisition of the vibrational signal. A total of 6 vibration sensors were installed to collect
data. Figure 8 depicts this.

Electronics 2022, 11, x FOR PEER REVIEW 12 of 22 
 

 

 

Figure 8. The test rig of the planetary gearbox. 

During the actual operation of the diesel engine, the probability of failure of the fuel 

supply system is very high, which not only increases the maintenance cost but also brings 

great hidden dangers to production safety. Therefore, this paper mainly conducted de-

tailed research on the system of the fuel supply, and preset four failure modes 1-4, as 

shown in Table 1. The specific three preset faults are shown in Figure 9. 

Table 1. The pre-set failure modes of the diesel engine. 

Serial Numbers Fault States Failure Modes 

1 L1 Normal 

2 L2 Cylinder misfire 

3 L3 Air filter clogged 

4 L4 Broken oil supply pipe 

 

Figure 9. The preset failure modes: (a) Ring gear, (b) Planet gear, (c) Sun gear. 

5.2. Preprocessing and Analysis of the Experimental Data 

The presented experiment was to collect effective vibration data. The rotational speed 

was uniformly set to 800 rpm. Then, 10 groups of data were collected for each failure 

mode. The frequency of the sampling was assigned to 20 kHz, and the collection time of 

each group was assigned to 12 s. The next set of data after a 30 s interval was collected. 

Table 2 presents the detailed data collection parameters of the four preset failure modes. 

Figure 10 depicts the waveforms of the vibration data of the diesel engine in the four 

states.  

Figure 8. The test rig of the planetary gearbox.

During the actual operation of the diesel engine, the probability of failure of the fuel
supply system is very high, which not only increases the maintenance cost but also brings
great hidden dangers to production safety. Therefore, this paper mainly conducted detailed
research on the system of the fuel supply, and preset four failure modes 1–4, as shown in
Table 1. The specific three preset faults are shown in Figure 9.

Table 1. The pre-set failure modes of the diesel engine.

Serial Numbers Fault States Failure Modes

1 L1 Normal
2 L2 Cylinder misfire
3 L3 Air filter clogged
4 L4 Broken oil supply pipe
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5.2. Preprocessing and Analysis of the Experimental Data

The presented experiment was to collect effective vibration data. The rotational speed
was uniformly set to 800 rpm. Then, 10 groups of data were collected for each failure mode.
The frequency of the sampling was assigned to 20 kHz, and the collection time of each
group was assigned to 12 s. The next set of data after a 30 s interval was collected. Table 2
presents the detailed data collection parameters of the four preset failure modes. Figure 10
depicts the waveforms of the vibration data of the diesel engine in the four states.

Table 2. The datasets of the failures.

Fault
State

Rotating
Speed

Sampling
Frequency

Sampling
Time

Number
of Sensors

Number
of Samples

L1 800 rpm 20 kHz 12 s 6 10
L2 800 rpm 20 kHz 12 s 6 10
L3 800 rpm 20 kHz 12 s 6 10
L4 800 rpm 20 kHz 12 s 6 10
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(c) L3 state; (d) L4 state.

When the characteristics of the diesel engine were taken into account, the data of
sensor 4 was uniformly used as the verification of this experiment. Due to space issues,
only the air filter clogging failure mode was employed as an illustrative example. The
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VMD decomposed the original vibration signal. Hence, the dispersion entropy of each IMF
component was computed. Therefore, K, the end decomposition layer, was determined,
and the parameter settings of the spreading entropy were determined. So, the number
of categories were denoted by c = 8, the dimension by m = 2, and the time delay by d = 1,
respectively. The larger the dispersion entropy of each IMF component, the higher the
complexity would be. Besides, more complex interference signals and high-frequency
noise signals would be obtained. The dispersion entropy of each component for the VMD
decomposition layer was analyzed and the outcomes are presented in Table 3 when various
K values were utilized. For example, K = 5 was the dispersive entropy of each component
that had a turning point, indicating the utilization of components and noise components
that appeared. Thus, the dispersive entropy of the IMF2 component was found to be the
largest one indicating the complexity of the largest signal. Furthermore, the determination
of the number of the VMD decomposition layers, which was K = 5, was found and the IMF
components and spectrograms were eventually decomposed, as shown in Figure 11.

Table 3. The analysis of the dispersion entropy for each component of the VMD decomposition.

IMF
The Dispersion Entropy of Each IMF Component When Various Ks Is Used

3 4 5 6 7

IMF1 3.4637 3.5874 3.7228 3.5134 3.6991
IMF2 3.3146 3.4540 3.8595 3.6764 3.7245
IMF3 3.0940 3.2836 3.4521 3.6547 3.7565
IMF4 3.0683 3.2794 3.4482 3.4512
IMF5 3.0627 3.2768 3.2839
IMF6 3.0655 3.0765
IMF7 2.7068
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Figure 11b depicts that both IMF1 and IMF2 were high-frequency components with
a complex spectrum and wide bandwidths. On the other hand, the IMF3, IMF4, and
IMF5 components were selected as the basis for signal reconstruction when both inference
signal and complex noise were taken into account. The STFT algorithm was employed to
transform the denoised signal after reconstructing the two-dimensional time-frequency
map data conducted by the VMD. The sampling length of each fault was uniformly set to
5000, and the size of the time-frequency map was uniformly assigned to 227 × 227 pixels.
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To meet the requirements of the DTL- ResNet18 network model for the input layer data,
the specific two-dimensional time-frequency map data set is presented in Table 4.

Table 4. The four preset fault time-frequency graph datasets of the VMD decompositions.

Signal States Total Sample Training Samples Test Sample Validation Sample

L1 240 180 20 40
L2 240 180 20 40
L3 240 180 20 40
L4 240 180 20 40

Total 960 720 80 160

5.3. The Comparative Analysis of the Noise Reduction Effect

To further verify the effectiveness of the noise reduction effect of the VMD method,
the kurtosis value (K) and Peak Signal to Noise Ratio (PSNR) were selected to assess the
effect of the noise reduction as indicators, which are defined by

K =
1
n ∑n

i=1 (|xi| − µ)4

rms4 (16)

The kurtosis could best represent the shock characteristics of the vibration signal,
was more sensitive to the vibration shock, and was around 3 in the case of passing. If
the deviation would be too large, it meant that the equipment was subjected to a certain
vibration and shock, or there could a hidden danger of failure related to a key component.

PSNR = 101g(z2
max/(

1
N

N

∑
j=1

(zj − z′ j)
2
)) (17)

where Z and Z’ denote the original and constructed vibration signals, respectively. PSNR is
an important indicator directly reflecting the capacity of the noise reduction for the vibration
signal. When PSNR became higher, a better noise reduction effect could be observed.

Table 2 presents the L4 fault data that was uniformly used to conduct validity. It can
be seen from Table 5 that, after decomposing the vibration signal with strong noise by the
VMD method, the kurtosis became the highest, indicating that the equipment deviated
from the normal state, which was a more obvious characteristic of the fault. Thus, this
suggested that the VMD method could eliminate strong noise signals and had a strong
ability to retain fault features. When the PSNR index was compared with the CEEMD,
EEMD, and EMD methods, the PSNR value of the VMD method reached up to 32.983.
Hence, the higher the PSNR value, the better the noise reduction effect would be. Therefore,
it was verified that the VMD method not only had a better noise reduction impact, but also
reduced the difficulty of extracting fault features. Then, a basis to improve the accuracy of
the fault diagnosis was provided in the next step.

Table 5. The contrastive analysis of the noise reduction with different modal decompositions.

Evaluation Indicators Vibration Signal CEEMD EEMD EMD VMD

K-value 3.362 3.747 4.253 4.641 5.385
PSNR 4.253 15.652 18.368 24.527 32.983

5.4. The Setup and Training of the Network Model

The quality of the construction of the DTL-ResNet18 network model directly affected
the final results of the fault classification. The detailed parameter settings for the training
of the network model are shown in Table 6. To verify the effectiveness of the training of
the network model, the data set presented in Table 4 was utilized for verification. The
t-distributed Stochastic Neighbor Embedding (t-SNE) method was employed to extract the
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image features of the pre-trained ResNet18 network model [36]. Then, the analysis of the
data visualization was performed. Figure 12 depicts this.

Table 6. Setting the model parameters of the ResNet18 network.

Network Layer Type Size × Number of Output Channels Output (Size × Number of Channels)

Input layer RGB 227 × 227 × 3

Conv1 Convolutional Layer 7 × 7 × 54 114 × 114 × 64

Maxpool Max Pooling Layer 3 × 3 × 64 57 × 57 × 64

Layer1 Residual Layer:
IRB64 + IRB64

3 × 3 × 64 57 × 57 × 64
3 × 3 × 64 57 × 57 × 64
3 × 3 × 64 57 × 57 × 64
3 × 3 × 64 57 × 57 × 64

Layer2 Residual Layer:
SRB128 + SRB128

3 × 3 × 128 29 × 29 × 128
3 × 3 × 128 29 × 29 × 128
1 × 1 × 128 29 × 29 × 128
3 × 3 × 128 29 × 29 × 128
3 × 3 × 128 29 × 29 × 128

Layer3 Residual Layer:
SRB256 + SRB256

3 × 3 × 256 15 × 15 × 256
3 × 3 × 256 15 × 15 × 256
1 × 1 × 256 15 × 15 × 256
3 × 3 × 256 15 × 15 × 256
3 × 3 × 256 15 × 15 × 256

Layer4 Residual Layer:
SRB512 + SRB512

3 × 3 × 512 8 × 8 × 512
3 × 3 × 512 8 × 8 × 512
1 × 1 × 512 8 × 8 × 512
3 × 3 × 512 8 × 8 × 512
3 × 3 × 512 8 × 8 × 512

Avapool Global average
pooling layer 8 × 8 × 512 1 × 1 × 512

FC Fully connected layer 1 × 1 × 4 4
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Figure 12 depicts that extracting features related to faults in residual layer 1 could
only distinguish the fault feature parameters of L2. On the other hand, the other three
types of faults overlapped, thus, segregation became difficult. Then, the fault features
extracted in the residual layer 2 could effectively distinguish the fault features of both L2
and L4. However, there still existed some fault features that had not been distinguished.
When the fault features were extracted by residual layer 3, the fault features of both L1
and L3 also crossed each other. Eventually, the fault features extracted in the residual layer
4 could clearly distinguish four fault features, and the clustering effect was found to be
good. Therefore, this could effectively suggest the effectiveness of the pre-trained ResNet18
network model to determine features for fault diagnosis with a strong ability to extract
features. Table 7 presents the better fault classification and processing capabilities of the
pre-trained network model and its application status for the transfer of network models.

Table 7. The pre-training diagnostic results of the VMD-ResNet18.

Network
Model

Diagnostic Results Training
Time/SL1 L2 L3 L4

VMD-
ResNet18 100.0% 100.0% 100.0% 100.0% 121.635 s

5.5. The Contrastive Analysis of the Decomposition Diagnosis Results with Various Modes

To further verify the pre-trained ResNet18 network model and the effectiveness of
the optimized VMD method suggested in the manuscript, they were compared with the
CEEMD, EEMD, and EMD algorithms, respectively. First, the original vibration signals
were denoised by the VMD, CEEMD, EEMD, and EMD methods, respectively. Secondly,
the reconstructed noise-reduced signal was transformed into a two-dimensional time-
frequency graph by the STFT algorithm. The data set of each fault contained 180 training
samples and 20 test samples, respectively. Finally, the pre-trained ResNet18 network model
was uniformly employed to diagnose faults. Table 8 presents the outcomes.

Table 8. The results of the contrastive analysis of the various mode decomposition diagnosis.

Fault State
Different Modal Decomposition Methods

CEEMD EEMD EMD VMD

L1 97.92% 100.0% 100.0% 100.0%
L2 100.0% 100.0% 100.0% 100.0%
L3 87.50% 95.83% 93.75% 100.0%
L4 93.75% 87.50% 95.83% 100.0%

Accuracy 94.79% 95.83% 97.40% 100.0%
Training time/s 166.744 s 137.427 s 153.226 s 121.635 s

The diagnostic results suggested that the diagnostic accuracy of the VMD method
reached 100%, and the lowest diagnostic result of the CEEMD was only 94.79% when com-
pared to the three approaches. When the network training time was under consideration,
the VMD algorithm had less training time than the others. Besides, the accuracy was higher,
as shown in Figure 13. The verification results suggested that the proposed method could
effectively remove both interference signals and complex noises. Hence, the extracted and
reconstructed signal contained the required fault features, so that the pre-trained ResNet18
network model could obtain higher diagnostic accuracy.
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5.6. Comparison and Analysis of Diagnosis Results of Different Network Models

To validate the effectiveness of the ResNet-18 network model, based on DTL proposed
in this paper, AlexNet, SqueezeNet, and GoogLeNet network models were employed to
make comparisons. The data set in Table 4 was used. The main network parameter settings
of the four network models are shown in Table 9.

Table 9. Comparing parameters of the four methods.

ResNet18 AlexNet SqueezeNet GoogLeNet

Solver Name (Algorithm) sgdm sgdm sgdm sgdm
Initial Learn Rate 0.00005 0.00005 0.00005 0.00005

Max Epochs 10 10 10 10
Mini Batch Size 15 15 15 15

Validation Frequency 3 3 3 3
Shuffle Every epoch Every epoch Every epoch Every epoch

Execution Environment GPU GPU GPU GPU

From Table 10 it can be seen that the accuracy rate of the ResNet18 network model
reached 94.27% when the original data was directly used for 2D time-frequency map
conversion. The accuracy ratio was higher when the comparison was made with the three
approaches, which verified the effectiveness of the network model. After preprocessing of
the IMF component of the original data by the VMD, the accuracy of the ResNet18 network
model reached 100.0%, which was the highest when different modal decompositions were
under consideration. The experimental results suggested that the VMD method had a
better preprocessing ability when dealing with complex and strong noise signals. Besides,
not only could the interference signal be effectively eliminated, but also higher diagnostic
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accuracy could be obtained. When both different network models and the unified network
parameter settings were a concern, the ResNet18 network model had the best diagnostic
results. However, the diagnostic results of the GoogLeNet network model did not achieve
the same diagnosis effect. Therefore, both the effectiveness and feasibility of the ResNet18
network model once more were attained.

Table 10. The comparison of the fault diagnosis of the different network models.

Network Model
Accuracy

RAW DATA CEEMD EEMD EMD VMD

ResNet18 94.27% 94.79% 95.83% 97.39% 100.0%
AlexNet 88.02% 69.27% 79.16% 78.13% 95.31%

SqueezeNet 61.97% 65.10% 60.41% 71.35% 83.85%
GoogLeNet 62.50% 56.77% 41.14% 48.44% 76.56%

Both GoogLeNet and AlexNet network models showed stronger feature extraction
and network learning capabilities when both classification and recognition were a concern.
However, utilizing them for fault diagnosis cannot generate better outcomes when complex
nonlinear vibration signals are under consideration, as, for example, with diesel engines.
Figure 14 depicts that the method combining VMD and ResNet18 network model had
better noise reduction performance and better diagnosis effect. The proposed method
helped find a more efficient way of diagnosing faults of the diesel engine.
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6. Conclusions

This research suggested an approach to diagnosing faults utilizing the combination
of optimized VMD and DTL, concurrently. A successful transference of the pre-trained
ResNet18 model on the ImageNet samples was conducted to diagnose faults of diesel
engines in a more complex noise environment. The manuscript contributes the following:

(1) To decompose the level selection of the VMD, the level selection method of disper-
sive entropy was adopted and better noise reduction impact was attained.

(2) A two-dimensional time-frequency image processing problem with noise reduction
was dealt with, after employing the STFT method to convert the one-dimensional vibration
signal so as to extract features.

(3) An approach dependent upon the DTL was suggested. The ResNet-18 network
was selected as the transfer object, and the network was fine-tuned. The proposed approach
could directly derive key features of faults from two-dimensional time-frequency images
and perform fault diagnosis. Thus, the difficulty of manually extracting features and the
dependence on expert experience were reduced. Therefore, both diagnostic efficiency and
accuracy were greatly improved.

The experiments showed that the implementation impact of the DTL concerning
the diagnosis of faults for mechanical parts was better than other network models. As
artificial intelligence technology advances rapidly, the DTL would play a key role in
various engineering applications. Besides, the results of this research will help expand new
knowledge in this field and have good reference value.
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Abbreviations

Symbols Full Explanations
VMD Variational Mode Decomposition
IMF Intrinsic Mode Function
HHT Hilbert Huang Transform
WT Wavelet Transform
STFT Short Time Fourier Transform
DE Dispersion Entropy
IMF Intrinsic Mode Function
EMD Empirical Mode Decomposition
EEMD Ensemble Empirical Mode Decomposition
CEEMD Complete Ensemble Empirical Mode Decomposition
LMD Local Mean Decomposition
ADMM Alternate Direction Method of Multipliers
PSNR Peak Signal to Noise Ratio
ReLU Rectified Linear Unit
t-SNE t-distributed Stochastic Neighbor Embedding
ResNet Residual Network

References
1. Wang, X.; Wang, T.; Ming, A.; Zhang, W.; Li, A.; Chu, F. Semi-supervised hierarchical attribute representation learning via

multi-layer matrix factorization for machinery fault diagnosis. Mech. Mach. Theory 2022, 167, 104445. [CrossRef]
2. Ravikumar, K.N.; Yadav, A.; Kumar, H.; Gangadharan, K.V.; Narasimhadhan, A.V. Gearbox fault diagnosis based on Multi-Scale

deep residual learning and stacked LSTM model. Measurement 2021, 186, 110099. [CrossRef]
3. Jung, D. Engine fault diagnosis combining model-based residuals and data-driven classifiers. IFAC-Pap. 2019, 52, 285–290.

[CrossRef]

http://doi.org/10.1016/j.mechmachtheory.2021.104445
http://doi.org/10.1016/j.measurement.2021.110099
http://doi.org/10.1016/j.ifacol.2019.09.046


Electronics 2022, 11, 1969 20 of 21

4. Luque, J.; Anguita, D.; Pérez, F.; Denda, R. Spectral analysis of electricity demand using Hilbert–Huang transform. Sensors 2020,
20, 2912. [CrossRef]

5. Gupta, N.; Seethalekshmi, K.; Datta, S.S. Wavelet-based real-time monitoring of electrical signals in Distributed Generation (DG)
integrated system. Eng. Sci. Technol. Int. J. 2021, 24, 218–228. [CrossRef]

6. Xie, X.; Li, J.; Yin, F.; Xu, K.; Dai, Y. STFT based on bandwidth-scaled microwave photonics. J. Lightwave Technol. 2020,
39, 1680–1687. [CrossRef]

7. Samuel, P.D.; Pines, D.J. A review of vibration-based techniques for helicopter transmission diagnostics. J. Sound Vib. 2005,
282, 475–508. [CrossRef]

8. Liu, Z.; Qu, J.; Ming, J.Z. Fault level diagnosis for planetary gearboxes using hybrid kernel feature selection and kernel Fisher
discriminant analysis. Int. J. Adv. Manuf. Technol. 2013, 67, 1217–1230. [CrossRef]

9. Anowar, F.; Sadaoui, S.; Selim, B. Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, k-PCA,
LDA, MDS, SVM, LLE, ISOMAP, LE, ICA, t-SNE). Comput. Sci. Rev. 2021, 40, 100378. [CrossRef]

10. Li, J.; Li, X.; He, D.; Qu, Y. A novel method for early gear pitting fault diagnosis using stacked SAE and GBRBM. Sensors 2019,
19, 758. [CrossRef]

11. Sun, H.; Guo, Y.; Zhao, W. Fault detection for aircraft turbofan engine using a modified moving window KPCA. IEEE Access 2020,
8, 166541–166552. [CrossRef]

12. Cheng, Y.; Yuan, H.; Liu, H.; Lu, C. Fault diagnosis for rolling bearing based on SIFT-KPCA and SVM. Eng. Comput. 2017,
34, 53–65. [CrossRef]

13. Wang, Z.; Zhang, Q.; Xiong, J.; Xiao, M.; Sun, G.; He, J. Fault diagnosis of a rolling bearing using wavelet packet denoising and
random forests. IEEE Sens. J. 2017, 17, 5581–5588. [CrossRef]

14. Baraldi, P.; Cannarile, F.; Di Maio, F.; Zio, E. Hierarchical k-nearest neighbors classification and binary differential evolution for
fault diagnostics of automotive bearings operating under variable conditions. Eng. Appl. Artif. Intell. 2016, 56, 1–13. [CrossRef]

15. Bi, X.; Lin, J.; Tang, D.; Bi, F.; Li, X.; Yang, X.; Ma, T.; Shen, P. VMD-KFCM algorithm for the fault diagnosis of diesel engine
vibration signals. Energies 2020, 13, 228. [CrossRef]

16. Chen, K.; Mao, Z.; Zhao, H.; Jiang, Z.; Zhang, J. A variational stacked autoencoder with harmony search optimizer for valve train
fault diagnosis of diesel engine. Sensors 2019, 20, 223. [CrossRef]

17. Gu, C.; Qiao, X.Y.; Li, H.; Jin, Y. Misfire fault diagnosis method for diesel engine based on MEMD and dispersion entropy.
Shock. Vib. 2021, 2021, 9213697. [CrossRef]

18. Jia, F.; Lei, Y.; Lin, J.; Zhou, X.; Lu, N. Deep neural networks: A promising tool for fault characteristic mining and intelligent
diagnosis of rotating machinery with massive data. Mech. Syst. Signal Processing 2016, 72, 303–315. [CrossRef]

19. Shang, C.; Yang, F.; Huang, D.; Lyu, W. Data-driven soft sensor development based on deep learning technique. J. Process Control.
2014, 24, 223–233. [CrossRef]

20. Lei, Y.; Jia, F.; Lin, J.; Zhou, X.; Lu, N. An intelligent fault diagnosis method using unsupervised feature learning towards
mechanical big data. IEEE Trans. Ind. Electron. 2016, 63, 3137–3147. [CrossRef]

21. Zhang, J.; Tian, Y.; Ren, Z.; Chang, Q.; Jia, Z. The calibration of force offset for rocket engine based on deep belief network. Meas.
Control. 2018, 51, 172–181. [CrossRef]

22. Wang, Y.S.; Liu, N.N.; Guo, H.; Wang, X.L. An engine-fault-diagnosis system based on sound intensity analysis and wavelet
packet pre-processing neural network. Eng. Appl. Artif. Intell. 2020, 94, 103765. [CrossRef]

23. Xu, J.; Liu, X.; Wang, B.; Lin, J. Deep Belief Network-Based Gas Path Fault Diagnosis for Turbofan Engines. IEEE Access 2019,
7, 170333–170342. [CrossRef]

24. Zhou, D.; Yao, Q.; Wu, H.; Ma, S.; Zhang, H. Fault diagnosis of gas turbine based on partly interpretable convolutional neural
networks. Energy 2020, 200, 117467. [CrossRef]

25. Han, P.; Ellefsen, A.L.; Li, G.; Æsøy, V.; Zhang, H. Fault Prognostics Using LSTM Networks: Application to Marine Diesel Engine.
IEEE Sens. J. 2021, 21, 25986–25994. [CrossRef]

26. Xu, W.; Wan, Y.; Zuo, T.Y.; Sha, X.M. Transfer learning-based data feature transfer for fault diagnosis. IEEE Access 2020,
8, 76120–76129. [CrossRef]

27. Zhao, Y.P.; Chen, Y.B. Extreme learning machine-based transfer learning for aero-engine fault diagnosis. Aerosp. Sci. Technol. 2022,
121, 107311. [CrossRef]

28. Xiong, G.; Ma, W.; Zhao, N.; Zhang, J.; Jiang, Z.; Mao, Z. Multi-type diesel engines operating condition recognition method based
on stacked auto-encoder and feature transfer learning. IEEE Access 2021, 9, 31043–31052. [CrossRef]

29. Zhou, M.; Hu, T.; Bian, K.; Lai, W.; Hu, F.; Hamrani, O.; Zhu, Z. Short-Term Electric Load Forecasting Based on Variational Mode
Decomposition and Grey Wolf Optimization. Energies 2021, 14, 4890. [CrossRef]

30. Cai, W.; Yang, Z.; Wang, Z.; Wang, Y. A new compound fault feature extraction method based on multipoint kurtosis and
variational mode decomposition. Entropy 2018, 20, 521. [CrossRef]

31. Azami, H.; Escudero, J. Amplitude-and fluctuation-based dispersion entropy. Entropy 2018, 20, 210. [CrossRef] [PubMed]
32. Khetarpal, P.; Tripathi, M.M. A critical and comprehensive review on power quality disturbance detection and classification.

Sustain. Comput. Inform. Syst. 2020, 28, 100417. [CrossRef]
33. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 12 December 2016; pp. 770–778.

http://doi.org/10.3390/s20102912
http://doi.org/10.1016/j.jestch.2020.07.010
http://doi.org/10.1109/JLT.2020.3042985
http://doi.org/10.1016/j.jsv.2004.02.058
http://doi.org/10.1007/s00170-012-4560-y
http://doi.org/10.1016/j.cosrev.2021.100378
http://doi.org/10.3390/s19040758
http://doi.org/10.1109/ACCESS.2020.3022771
http://doi.org/10.1108/EC-01-2016-0005
http://doi.org/10.1109/JSEN.2017.2726011
http://doi.org/10.1016/j.engappai.2016.08.011
http://doi.org/10.3390/en13010228
http://doi.org/10.3390/s20010223
http://doi.org/10.1155/2021/9213697
http://doi.org/10.1016/j.ymssp.2015.10.025
http://doi.org/10.1016/j.jprocont.2014.01.012
http://doi.org/10.1109/TIE.2016.2519325
http://doi.org/10.1177/0020294018776442
http://doi.org/10.1016/j.engappai.2020.103765
http://doi.org/10.1109/ACCESS.2019.2953048
http://doi.org/10.1016/j.energy.2020.117467
http://doi.org/10.1109/JSEN.2021.3119151
http://doi.org/10.1109/ACCESS.2020.2989510
http://doi.org/10.1016/j.ast.2021.107311
http://doi.org/10.1109/ACCESS.2021.3057399
http://doi.org/10.3390/en14164890
http://doi.org/10.3390/e20070521
http://doi.org/10.3390/e20030210
http://www.ncbi.nlm.nih.gov/pubmed/33265301
http://doi.org/10.1016/j.suscom.2020.100417


Electronics 2022, 11, 1969 21 of 21

34. Hao, X.; Zheng, Y.; Lu, L.; Pan, H. Research on Intelligent Fault Diagnosis of Rolling Bearing Based on Improved Deep Residual
Network. Appl. Sci. 2021, 11, 10889. [CrossRef]

35. Ma, P.; Zhang, H.; Fan, W.; Wang, C.; Wen, G.; Zhang, X. A novel bearing fault diagnosis method based on 2D image representation
and transfer learning-convolutional neural network. Meas. Sci. Technol. 2019, 30, 055402. [CrossRef]

36. Agis, D.; Pozo, F. Vibration-Based Structural Health Monitoring Using Piezoelectric Transducers and Parametric t-SNE. Sensors
2020, 20, 1716. [CrossRef] [PubMed]

http://doi.org/10.3390/app112210889
http://doi.org/10.1088/1361-6501/ab0793
http://doi.org/10.3390/s20061716
http://www.ncbi.nlm.nih.gov/pubmed/32204396

	Introduction 
	A Noise Reduction Approach Utilizing the Optimal VMD 
	The VMD 
	Dispersion Entropy 

	Time-Frequency Image and Deep Transfer Learning Model 
	Time-Frequency Image Generation Method 
	Deep Residual Network 
	Convolutional Layer 
	Max Pooling Layer 
	Residual Building Block 
	Global Average Pooling 

	Transfer Learning 

	Fault Diagnosis of the Diesel Engine Employing Both Optimized VMD and DTL 
	The Verification of the Experimental Data 
	Experiment Preparation 
	Preprocessing and Analysis of the Experimental Data 
	The Comparative Analysis of the Noise Reduction Effect 
	The Setup and Training of the Network Model 
	The Contrastive Analysis of the Decomposition Diagnosis Results with Various Modes 
	Comparison and Analysis of Diagnosis Results of Different Network Models 

	Conclusions 
	References

