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Abstract: Belief propagation (BP) is widely used to solve the cooperative localization problem due to
its excellent performance and natural distributed structure of implementation. For a mobile agent
network, its factor graph inevitably encounters loops. In this case, the BP algorithm becomes iterative
and can only provide an approximate marginal probability density function of the estimate with
finite iterations. We propose an augmented-state BP algorithm for mobile agent networks to alleviate
the effect of loops. By performing state augmentation, the messages in the factor graph will actually
be allowed to be backward propagated, which reduces the number of loops in the factor graph,
increases the available information of agents, and thus, benefits the localization. Experimental results
demonstrate the better performance of the proposed algorithm over the original BP method.

Keywords: cooperative localization; belief propagation; state augmentation; message propagation;
mobile agent networks

1. Introduction

Location awareness promotes the rapid development of autonomous driving [1], for-
mation flying [2], robotics [3], etc. Accurate location estimation is a prerequisite for proper
functioning control loops [4,5]. Traditionally, agents can perform localization tasks through
the global positioning system (GPS) or beacon localization. However, localization by GPS
requires continuous and stable GPS signal reception, which is usually impossible in harsh
scenarios, e.g., when indoors or when the signal is jammed. On the other hand, beacon
localization requires a large number of anchors with known location and is impractical
due to its high cost. Another way to perform localization is to use inertial measurement
units (IMUs) and dead reckoning (DR), but the unlimited increase of accumulated errors is
often unacceptable [6]. In recent years, cooperative localization (CL) has received extensive
attention due to its broad applicability. CL uses relative measurements among neighboring
agents to improve the absolute position of each agent in the network. Compared with
noncooperative localization (NCL), CL can achieve better-precision localization of the entire
agent network with some additional computation and communication [7,8]. The advan-
tages of CL are more obvious, especially for heterogeneous agent networks. For example, a
small number of agents equipped with high-precision sensors can share information with
other agents to benefit the entire agent network through the master-slave CL algorithm [9].

Various CL algorithms have been investigated in the existing work [10–15], among
which, a message-passing algorithm called belief propagation (BP) [14,15] is the most popu-
lar for its high-precision localization and natural distributed architecture of implementation.
The original BP algorithm involves complex integration, product operations, and trans-
mission of probability density functions (pdfs), so it cannot be directly applied in practice.
For the case of linear models and Gaussian noise, the Gaussian BP [16,17] is a reduced and
simplified version that can be easily implemented. However, it cannot handle real-world
scenarios of nonlinear measurements and non-Gaussian noise. For that case, one effective
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approach is nonparametric belief propagation (NBP) [18,19]. As a generalization of particle
filters, NBP uses particle representation [20] to approximate the incoming and outgoing
messages of agents and thus can handle noise with arbitrary distribution and nonlinear
measurements. However, a small number of particles are inadequate to provide satisfactory
estimation accuracy, and too many particles will cause unacceptable communicational and
computational burden. Ref. [21] proposed to propagate the beliefs instead of the messages,
and used Gaussian mixture density with fewer components to approximate the beliefs. In
this way, each agent can perform broadcast instead of peer-to-peer communication, which
greatly reduces the communication overhead, requiring only a little extra computation.
In Ref. [22], NBP was investigated in an anchor-free environment, and an intermittent BP
framework based on dead reckoning was proposed, which naturally combined CL and
NCL algorithms. Since the accumulated error of IMU was considered in the prediction
process, the localization accuracy was further improved. In Refs. [23,24], the posterior
linearization filter and the unscented Kalman filter were integrated with BP to deal with
nonlinear measurements. Compared with NBP, these two methods also have satisfactory
performance but less computation and communication. In Refs. [25,26], Two BP algorithms
based on non-Gaussian ranging models were proposed to deal with non-Gaussian noise.

BP has demonstrated its powerful capabilities in CL. However, as a message-passing
algorithm based on factor graphs, BP can only provide the optimal results when there is no
loop in the factor graph. Otherwise, BP becomes iterative and can only obtain approximate
solutions [27]. Further, for mobile agent networks, the existing methods based on BP merely
allow forward message passing and thus neglect the loops across time. This definitely
sacrifices the accuracy of localization. In this paper, we propose an augmented state BP
algorithm for mobile agent networks, which realizes a backward propagation of messages
by performing state augmentation. This backward propagation (or retrodiction) in essence
reduces the number of loops in the factor graph, increases the available information at each
agent, and thus improves the accuracy of localization. Considering the computational and
communicational burden, we suggest to use a few limited steps of retrodiction. Besides
the proposed augmented BP, the contribution of this paper includes the formulation of the
CL problem under the assumption that each agent has a dynamic motion model. Different
from formulations of the existing CL work, this assumption actually considers the prior
motion information of agents. Our formulation can reduce to the existing ones by setting an
extremely large covariance of process noise in the dynamic model. Thus, our formulation
is more general. We also provide the corresponding centralized fusion algorithm for
the formulated CL problem, which acts as a benchmark for evaluating the distributed
CL algorithms. Experimental results demonstrate the effectiveness and advantage of
our algorithm.

The paper is organized as follows. Section 2 describes the system model and formulates
the CL problem. Section 3 provides the centralized fusion algorithm for the formulated CL
problem. Section 4 briefly reviews the BP algorithm. Section 5 proposes the augmented state
BP algorithm. Experimental results are given in Section 6. Section 7 concludes the paper.

2. System Model and Problem Formulation

Consider N agents in a two-dimensional plane in a GPS-denied scenario without any
anchors. The set of agents is denoted as A. Each agent moves according to the following
dynamic model

xi
k+1 = Fi

kxi
k + Gi

kwi
k, i ∈ A (1)

where xi
k = [xi

k,
.
xi

k, yi
k,

.
yi

k]
T

is the state of the ith agent at time k, and xi
k,

.
xi

k and yi
k,

.
yi

k
are the horizontal and vertical positions and velocities, respectively. The process noise
wi

k is assumed white and Gaussian-distributed with zero mean and covariance Qi
k. The

process noises are assumed independent across agents. The initial state xi
0 is also assumed

Gaussian-distributed and independent across agents. It is assumed that each agent i ∈ A
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can measure its own position and/or velocity increments with respect to a geostationary
coordinate frame. The internal measurement of the ith agent at time k is modeled as

zi
k = Hi

k(x
i
k − xi

k−1) + vi
k, i ∈ A (2)

where Hi
k and vi

k indicate the measurement matrix of the ith agent at time k and the

corresponding measurement noise, respectively. When Hi
k =

[
1 0 0 0
0 0 1 0

]
, zi

k is called

displacement measurement, which is a special case of model (2). The measurement noise
vi

k is assumed to be white Gaussian with zero mean and covariance Ri
k. Certain pairs of

agents, say i, j ∈ A, can obtain inter-agent measurements zi.j
k , called relative measurements.

Two agents having relative measurements are called neighbors and it is assumed that
information can only be shared among neighbors. Denote by Ni, k the set of neighbors of
agent i at time k. The relative measurements have the following model

zi.j
k = Hi.j

k (xj
k − xi

k) + vi.j
k , i ∈ A, j ∈ Ni, k (3)

where vi.j
k is the corresponding measurement noise and is assumed to be white Gaussian

with zero mean and covariance Ri,j
k . All measurement noises, process noises and initial

states are assumed mutually independent.
Let

Zk , [(Zself
k )

T
, (Zrel

k )
T
]
T

(4)

where
Zself

k , [(z1
k)

T, . . . , (zN
k )

T
]
T

Zrel
k , [(Z1, rel

k )
T

, . . . , (ZN, rel
k )

T
]
T

Zi, rel
k , [zi, j1

k , · · · , z
i, jni
k ]

T
, j1, · · · , jni ∈ Ni, k

and ni is the number of neighbors of agent i. The problem considered is to use all available
measurements including the internal measurements and the inter-agent relative measure-
ments to estimate the states of all agents, i.e.,

X̂k = E[Xk|Zk]

where Xk , [(x1
k)

T, . . . , (xN
k )

T
]
T

and E[·] denotes the minimum mean-squared error (MMSE)
estimator. Note that the stacking way of the measurements in Equation (4) is for the
convenience of developing of filtering algorithm. The linear Gaussian assumptions made
through Equations (1)–(3) do not reduce the significance of our study, since our proposed
algorithm can be directly combined with NBP to deal with nonlinear or non-Gaussian
cases.

Remark 1. The major difference between our formulation and the existing ones (see, e.g., Ref. [28])
lies in the assumption of dynamic models of agents, i.e., Equation (1). Traditionally, the displace-
ment measurement model is commonly used as the dynamic model by viewing the displacement
measurement zi

k as known inputs, i.e.,[
xi

k
yi

k

]
=

[
xi

k−1
yi

k−1

]
+ zi

k − vi
k

Thus, the information from displacement measurements is actually utilized in the prediction
step of the filter. In our formulation, the internal measurement Equation (2), including displacement
model as a special case, is more general. Another advantage of our formulation is that the prior
motion information of agents can be adopted in the filtering algorithm to improve the localization
performance. If such information is unavailable, we can simply set a large enough Qi

k to represent
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that we have very little faith in the dynamic model and it naturally has slight effect on the estimation
results. Thus, intuitively, our formulation reduces to the existing ones by setting a large enough Qi

k.

3. Centralized Fusion

The centralized fusion, which utilizes all measurements from all agents to estimate
the states of all agents at the fusion center, can provide the optimal state estimates [29].
The optimal centralized fusion in the best linear unbiased estimation (BLUE) sense for
the formulation without the assumption of agents’ dynamic models is given in Ref. [28].
Therein, the system states are viewed as non-random unknown quantities, which is different
from ours. Next, we investigate the centralized fusion for our formulated problem.

Stacking states and measurements from all agents, we have the following dynamic model

Xk+1 = FkXk + Gkwk (5)

Zk = Hc
kXk −Hp

k Xk−1 + Vk (6)

where

Fk = diag(F1
k , . . . , FN

k ), Gk = diag(G1
k , . . . , GN

k )

wk = [(w1
k)

T, . . . , (wN
k )

T
]
T

, Hc
k = [(Hself

k )
T

, (Hrel
k )

T
]
T

Hp
k = [(Hself

k )
T

, 0]
T

, Vk = [(v1
k)

T, . . . , (vN
k )

T, (v1,rel
k )

T
, . . . , (vN,rel

k )
T
]
T

vi,rel
k = [vi, j1

k , · · · , v
i, jni
k ]

T
, j1, · · · , jni ∈ Ni, k

The matrix Hself
k corresponding to the internal measurements is given by

Hself
k = diag(H1

k , . . . , HN
k )

The matrix Hrel
k corresponding to the relative measurements is determined by the

concrete topology of the network. Taking the chain topology as an example, we have

Hrel
k =


−H1, 2

k H1, 2
k

H2, 1
k −H2, 1

k
−H2, 3

k H2, 3
k

. . .
HN, N−1

k −HN, N−1
k


The state estimation of system Equations (5) and (6) consists of two steps: prediction

and update. The state prediction is calculated as

X̂k+1|k = FkX̂k|k (7)

Pk+1|k = FkPk|kFT
k + GkQkGT

k (8)

where Qk = diag(Q1
k , . . . , QN

k ) is the covariance matrix of wk.
For the update step, the normal update in the Kalman filter cannot be used since the

measurement Zk+1 is also related to Xk as shown in Equation (6). Next, we use the linear
MMSE (LMMSE) estimator [30], which is also optimal in the MMSE sense due to the linear
Gaussian assumptions made in this paper, and the update can be calculated as

X̂k+1|k = FkX̂k|kX̂k+1|k+1 = E[Xk+1|Zk+1] = X̂k+1|k + Ck+1S−1
k+1(Zk+1 − Ẑk+1|k) (9)

and
Pk+1|k+1 = MSE(X̂k+1|k+1) = Pk+1|k − Ck+1S−1

k+1CT
k+1 (10)
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where MSE denotes the mean-square error matrix. From Equation (6), the measurement
prediction is

Ẑk+1 = Hc
k+1X̂k+1|k −Hp

k+1X̂k|k (11)

and

Sk+1 = E[(Zk+1 − Ẑk+1|k)(Zk+1 − Ẑk+1|k)
T
]

= E[(Hc
k+1X̂k+1|k −Hp

k+1X̂k|k + vk)(Hc
k+1X̂k+1|k −Hp

k+1X̂k|k + vk)
T
]

= Rk + Hc
k+1Pk+1|k(H

c
k+1)

T + Hp
k+1Pk|k(H

p
k+1)

T

−Hc
k+1FkPk|k(H

p
k+1)

T −Hp
k+1Pk|kFT

k (H
c
k+1)

T

(12)

where Rk = E[VkVT
k ]. The cross-covariance Ck+1 is

Ck+1 = E[(Xk+1 − X̂k+1|k)(Zk+1 − Ẑk+1|k)
T
]

= E[X̂k+1|k(H
c
k+1X̂k+1|k −Hp

k+1X̂k|k + vk+1)
T
]

= Pk+1|k(H
c
k+1)

T − FkPk|k(H
p
k+1)

T
(13)

Substituting Equations (11)–(13) into Equations (9) and (10), we can get

X̂k+1|k+1 = X̂k+1|k + Wk+1(Zk+1 − Ẑk+1|k) (14)

Pk+1|k+1 = Pk+1|k −Wk+1Sk+1WT
k+1 (15)

where the filter gain Wk+1 is given by

Wk+1 = Ck+1S−1
k+1 = (Pk+1|k(H

c
k+1)

T − FkPk|k(H
p
k+1)

T
)S−1

k+1

The centralized fusion Equation (9) can achieve the best performance in the MMSE
sense, but it needs to transmit all measurements to the fusion center, which is impossible in
practice especially for mobile agent networks.

4. BP-Based Cooperative Localization

In this section, we briefly introduce the BP algorithm, which serves as the basis for our
augmented state BP discussed in the next section. The procedures of BP are presented in a
general form with pdfs. For the linear Gaussian case, these pdfs are all Gaussian, and BP
can be implemented with the first two-order moments straightforwardly.

The MMSE estimates of each agent is

x̂i
k =

∫
xi

k f (xi
k|Z1:k)dxi

k (16)

where Z1:k is all measurements up to time k. Obtaining f (xi
k|Z1:k) involves the marginaliza-

tion of the joint pdf f (X0:k|Z1:k), where X0:k , [(X0)
T, . . . , (Xk)

T]
T

. Since its computational
complexity increases exponentially with the size of the agent network, direct marginaliza-
tion is infeasible. To solve this problem, BP provides an effective way. According to the
independent assumption, the joint pdf f (X0:k|Z1:k) can be factorized into

f (X0:k|Z1:k) ∝ ∏
i∈A

f (xi
0)

k

∏
t = 1

∏
i1∈A

f (xi1
t |x

i1
t−1) f (zi1

t |x
i1
t , xi1

t−1) ∏
j∈Ni1, k

f (zi1, j
t |x

i1
t , xj

t) (17)

Equation (17) is mapped to the factor graph as shown in Figure 1. A factor graph
G = (V , E) is composed of nodes V and edges E . The nodes are divided into factor
nodes and variable nodes. Factor nodes are represented by boxes, which are associated
with f (zi

k|x
i
k, xi

k−1) f (xi
k|x

i
k−1) or f (zi, j

k , zj, i
k |x

i
k, xj

k), and variable nodes are represented by
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circles, which are associated with xi
k. Each edge connects the factor node with its related

variable nodes. The BP algorithm propagates messages along the edges on the factor graph
to calculate the belief b(xi

k) corresponding to each variable node xi
k. For the case of loop-free

factor graph, the beliefs are the exact conditional marginal pdfs, i.e., b(xi
k) = f (xi

k|Z1:k).
Otherwise, the BP becomes iterative and can only provide an approximated solution. It is
not ensured that, by iterations, the BP will converge, although it usually converges in many
cases [23,27]. In real practice, a number of iterations are commonly performed.
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i
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i
k−1)

and f i,j
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k |x

i
k, xj

k). The arrows indicate the directions of message propagation.

For the pth iteration, the belief is given by

bp(xi
k) ∝ m→k(x

i
k) ∏

j∈Ni, k

mp
j→i(x

i
k), i ∈ A (18)

where m→k(xi
k) is the messages propagated from variable node xi

k−1 to variable node xi
k

m→k(x
i
k) ∝

∫
f (zi

k|x
i
k, xi

k−1) f (xi
k|x

i
k−1)b

p(xi
k−1)dxi

k−1 (19)

and mp
j→i(x

i
k) is the message propagated from the factor node f (zi, j

k , zj, i
k |x

i
k, xj

k) to variable

node xi
k

mp
j→i(x

i
k) ∝

∫
f (zi, j

k , zj, i
k |x

i
k, xj

k)n
p−1
j→i (x

j
k)dxj

k, j ∈ Ni, k (20)

with
np−1

j→i (x
j
k) ∝ m→k(x

j
k) ∏

l∈Nj, k\i
mp−1

l→j (x
j
k) (21)

Note that since Equation (3) distinguishes between zi, j
k and zj, i

k , the conditional joint

pdf of zi, j
k and zj, i

k is used in Equation (20). The iteration starts with n0
j→i(x

j
k) = m→k(x

j
k).

When b(xi
k), i.e., the posterior f (xi

k|Z1:k), is obtained, we can get the approximate MMSE
estimate of xi

k.
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5. Augmented State BP Cooperative Localization
5.1. Motivation

As we can see, the BP-based CL is generally recursive along time, and iterative at each
time instant for the existence of loops in the factor graph. That is to say, the BP algorithm
only accounts for the loops existing at one time instant and neglects the loops across
time. This approximation brings to the BP-based CL the recursion property, conciseness
in procedures, and straightforwardness in implementation. However, the resulting error
caused by neglecting the loops across time will accumulate and degrade the accuracy of
localization. Completely eliminating this approximation needs to consider all loops from
the initial time to the current time, which is computationally infeasible, not to mention the
tremendous communication cost. To deal with this problem, we propose to allow message
backward passing in the factor graph via state augmentation.

To consider the loops across time, the messages in BP need to propagate in both
forward and backward directions. However, due to the complexity of the factor graph
structure, it is difficult to find a suitable message propagation order, i.e., message prop-
agation schedule [27]. Fortunately, for mobile agent networks, all agents naturally have
their historical states, which allow us to realize message backward propagation by state
augmentation. The idea is similar to the fixed-lag smoother [31]. They both utilize state
augmentation. However, the optimal fixed-lag smoother only cares about the estimation of
a previous state (at a fixed-lag time) and cannot improve the state estimation at the current
time. The augmented state BP (AS-BP) aims to improve the state estimation at current
time and can intuitively achieve this goal by considering the loops across time. We use the
following example to show how the state augmentation accounts for the loops across time.

Example 1. Consider two different agent network topologies, i.e., a chain topology and a fully
connected topology, as shown in Figure 2. For brevity, boxes representing the factor nodes are
omitted in the factor graphs shown in Figure 2 and we know each link connecting two variable
nodes acts as a factor node. Figure 2b,d show the factor graphs after state augmentation according to
Figure 2a and 2c, respectively. For the chain topology shown in Figure 2a, the factor graph after
state augmentation is loop-free as shown in Figure 2b, and thus an accurate conditional marginal
pdf can be obtained without any iteration. For the fully connected topology shown in Figure 2c,
loops both at one time instant and across time exist. After stat-augmentation shown in Figure 2d,
only one loop is left. Iterations are still needed in the BP for Figure 2d since there is still a loop.
However, it is intuitive that the BP on the augmented state (shown in Figure 2d) outperforms the
BP acting on the fact graph shown in Figure 2c since the number of loops is significantly reduced.

Figure 2. Factor graphs.
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5.2. Augmented State BP (AS-BP) Algorithm

For the ease of presentation, we consider to augment states at two successive times. That is
to say, we only consider the AS-BP with 1-step retrodiction. The n-step (n ≥ 2) algorithms can be

implemented according to readers’ concrete applications. Let Xi
k+2 = [(xi

k+2)
T, (xi

k+1)
T
]
T

and

Zi
k+2 = [(zi

k+2)
T, (zi

k+1)
T
]
T

. For each agent i ∈ A, the prediction message m→k+2(Xi
k+2) is

given by

m→k+2(X
i
k+2) ∝

∫
f (Zi

k+2|X
i
k+2, xi

k) f (Xi
k+2|x

i
k)b

p(xi
k)dxi

k (22)

From Equations (1) and (2), we have

m→k+2(X
i
k+2) ∝ N (Xi

k+2, X̂m, i
k+2|k, Pm, i

k+2|k) (23)

The calculation of the message m→k+2(Xi
k+2) involves prediction and update. Note

that by state augmentation, the measurements used in the update involve not only zi
k+2

but also zi
k+1. The prediction is

X̂p, i
k+2|k = Fp, i

k X̂i
k|k (24)

Pp, i
k+2|k = Fp, i

k Pi
k|k(F

p, i
k )

T
+ Gp, i

k Qp, i
k (Gp, i

k )
T

(25)

where

Fp, i
k =

[
Fi

k+1Fi
k 0

Fi
k 0

]
Gp, i

k =

[
Gi

k+1 Fi
k+1Gi

k
0 Gi

k

]
Qp, i

k = diag(Qi
k+1, Qi

k)

and the update is
X̂m, i

k+2|k = X̂p, i
k+2|k + Wi

k+2(Z
i
k+2 − Ẑi

k+2) (26)

Pm, i
k+2|k = Pp, i

k+2|k −Wi
k+2Si

k+2(W
i
k+2)

T
(27)

where
Ẑi

k+2 = Hm1, i
k+2 X̂p, i

k+2|k −Hm2, i
k+2 X̂i

k|k

Si
k+2 = Rm, i

k+2 + Hm1, i
k+2 Pp, i

k+2|k(H
m1, i
k+2 )

T
+ Hm2, i

k+2 Pi
k|k(H

m2, i
k+2 )

T

−Hm1, i
k+2 Fp, i

k Pi
k|k(H

m2, i
k+2 )

T
−Hm2, i

k+2 Pi
k|k(F

p, i
k )

T
(Hm1, i

k+2 )
T

Wi
k+2 = (Pp, i

k+2|k(H
m1, i
k+2 )

T
− Fp, i

k Pi
k|k(H

m2, i
k+2 )

T
)(Si

k+2)
−1

with Hm1,i
k+2 =

[
Hi

k+2 −Hi
k+2

0 Hi
k+1

]
, Hm2,i

k+2 =

[
0 0

Hi
k+1 0

]
and Rm,i

k+2 = diag(Ri
k+1, Ri

k). Then,

it comes to calculate the message np
j→i(X

j
k+2). Following Equations (20) and (21), we have

np
j→i(X

j
k+2) =

∫
m→k+2(X

j
k+2) ∏

l∈N j
k+2\i

f (Zl, j
k+2|X

l
k+2, Xj

k+2)n
p−1
l→j (X

l
k+2)dXl

k+2 (28)

where Zl, j
k+2 = [(zl, j

k+2)
T

, (zj, l
k+2)

T
, (zl, j

k+1)
T

, (zj, l
k+1)

T
]
T

and N j
k+2 = Nj, k+2 ∪ Nj, k+1.

Equation (28) can be calculated by performing the update step of Kalman filter and is
given by

np
j→i(X

j
k+2) ∝ N (Xj

k+2; X̂p, ji
k+2, Pp, ji

k+2) (29)
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where
X̂p, ji

k+2 = X̂m,j
k+2|k + Wp,ji

k+2(Z
ji
k+2 − Ẑp, ji

k+2) (30)

Pp, ji
k+2 = Pm, j

k+2|k −Wp, ji
k+2Sp, ji

k+2(W
p, ji
k+2)

T
(31)

and

Zji
k+2 =

[{
(Zj, l

k+2)
T
}

l∈N j
k+2\i

]T

Ẑp,ji
k+2 =

[{
(Hjl

k+2(X̂
p−1, l j
k+2 − X̂m, j

k+2|k))
T
}

l∈N j
k+2\i

]T

Rn, ji
k+2 = diag(

{
Rjl

k+2 + Hjl
k+2Pp−1, l j

k+2 (Hjl
k+2)

T
}

l∈N j
k+2\i

)

Rjl
k+2 = diag(Rj, l

k+2, Rl, j
k+2, Rj, l

k+1, Rl, j
k+1)

Sp, ji
k+2 = Hn, ji

k+2Pm, j
k+2|k(H

n, ji
k+2)

T
+ Rn, ji

k+2

Wp, ji
k+2 = Pm, j

k+2|k(H
n, ji
k+2)

T
(Sp, ji

k+2)
−1

Hn, ji
k+2 =

[{
(Hjl

k+2)
T
}

l∈N j
k+2\i

]T

Hjl
k+2 =


Hj, l

k+2 0

−Hl, j
k+2 0

0 Hj, l
k+1

0 −Hl, j
k+1


For simplicity of notation, we use

{
(al)

T
}

l∈A
to denote stacking all vectors al , l = 1, . . . , |A|

into a row vector with a fixed index order of elements in set A, where |A| is the cardinality
of the set A.

The initial message n0
j→i(X

j
k+2) is m→k+2(X

j
k+2). Since Equation (18) is analogous to

Equation (21), the belief bp(Xi
k+2), which is approximately the conditional marginal pdf

f (Xi
k+2|Z1:k+2), can be calculated in a similar way to the message np

j→i(X
j
k+2). The overall

algorithm is given in Algorithm 1.

Algorithm 1 AS-BP algorithm.

Start with x̂i
0|0 = xi

0, Pi
0|0 = Pi

0, and compute at each agent i:

Step 1. Calculate the prediction message m→k(Xi
k) as in Equations (23)–(27).

Step 2. Calculate the belief bp(Xi
k):

1: for p′ = 1 to p do

2: Calculate the message np′−1
i→j (X

i
k) as in Equations (29)–(31) and its initial value n0

i→j(X
i
k) is set

to m→k(Xi
k).

3: Send np′−1
i→j (X

i
k) and zi,j

k to its neighbor agent j.

4: Receive np′−1
j→i (X

j
k) and zj,i

k , j ∈ N i
k .

5: Calculate the belief bp′ (Xi
k) as in Equations (29)–(31) but it is a little different, that is l ∈ N i

k .
6: end for

5.3. Computation and Communication Overhead

From Equations (18)–(21), it can be seen that the BP algorithm, for each agent i in each
iteration, needs to calculate the belief b(xi

k) and the outgoing message np
i→j(x

i
k) based on the
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incoming messages mp
j→i(x

i
k) from all neighboring agents j ∈ Ai, k and its own prediction

message m→k(xi
k). The computational complexity of the BP algorithm increases linearly

with the scale of the network. Our proposed algorithm utilizes state augmentation to
realize messages backward propagation, which capably retains the excellent characteristics
of the BP algorithm. However, due to the use of state augmentation, the computational
cost inevitably increases. Compared with the BP algorithm, the computational cost of the
proposed algorithm increases linearly with the number of retrodiction steps. By using state
augmentation, the computational time of AS-BP increases along with the retrodiction step
compared with original BP. The computational complexity is generally O((rdz)

3), where
dz is the dimension of relative measurements and r is the number of retrodiction steps,
since matrix inverse is involved in Equations (30) and (31). This nonlinear increase of
computation can be avoided by a sequential (or recursive) implementation of the update of
the Kalman filter due to the uncorrelated assumption of relative measurement noises [32].
With such an implementation, the computational time of AS-BP increases linearly with the
retrodiction step, since it is equivalent to say r times of filtering of original BP are needed
in the AS-BP. On the other hand, if the batch form of update in Equations (30) and (31) is
directly used in the implementation of AS-BP. The computational time still shows nearly
linear increase along with the retrodiction step r, when r is relatively small. This is due
to the fact that the nonlinear part of the matrix inverse is not dominating in the whole
filtering procedure.

For the communication cost, since Gaussian BP is used in this paper, the data that each
agent i needs to transmit to its neighbor j are only the first two moments of the outgoing
message np

i→j(x
i
k) and the relative measurements between them. The communication cost

of the proposed algorithm is increased by (r2 − 1)d2 + (r− 1)d compared with the original
BP algorithm, where d is the dimension of the agent state. The BP algorithm requires
peer-to-peer communication, which has high communication requirements. To solve this
problem, the belief can be transmitted instead of messages [10,21]. In this way, the agent can
perform broadcast communication, which greatly reduces the communication requirements.
This is beyond the scope of this paper and thus is not discussed in detail here.

6. Illustrative Examples

Two scenarios of CL are simulated to verify the performance of our proposed AS-BP
algorithm. Both scenarios use the same motion agents but different network topologies,
including a chain and a full connected topology. The network contains N = 9 agents
and each agent moves according to a nearly constant velocity model in a two-dimensional
plane. The dynamic model of each agent is formulated by Equation (1) with

Fi
k = diag(F, F), Gi

k = diag(G, G)

F =

[
1 T
0 1

]
, G =

[
T2/2
T

]
wi

k ∼ N (0, Q)

(32)

where the time interval T = 1 s and Q = diag(0.01 m2/s4, 0.01 m2/s4).
In the simulation, the initial state xi

0 is distributed as N (xi
0; xi

0, pi
0), where xi

0 is set as

x1
0 = [0 m, 20 m/s, 400 m, 20 m/s]T, x2

0 = [100 m, 20 m/s, 400 m, 20 m/s]T

x3
0 = [200 m, 20 m/s, 400 m, 20 m/s]T, x4

0 = [300 m, 20 m/s, 400 m, 20 m/s]T

x5
0 = [400 m, 20 m/s, 400 m, 20 m/s]T, x6

0 = [400 m, 20 m/s, 300 m, 20 m/s]T

x7
0 = [400 m, 20 m/s, 200 m, 20 m/s]T, x8

0 = [400 m, 20 m/s, 100 m, 20 m/s]T

x9
0 = [400 m, 20 m/s, 0 m, 20 m/s]T
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and the covariance Pi
0 = diag(0.0022 m2, 0.0022 m2/s2, 0.0022 m2, 0.0022 m2/s2). The inter-

nal measurements model and the relative measurement model are as in Equations (2) and (3) with

Hi, j
k = Hi

k =

[
1 0 0 0
0 0 1 0

]
, Ri

k = diag(0.25 m2, 0.25 m2) and Ri, j
k = diag(4 m2, 4 m2),

where i = 1, 2, . . . , N and j ∈ Ni, k. We use the average root mean square error (ARMSE)
over all agents to compare different algorithms

ARMSE =
1
N

N

∑
i = 1

RMSE(xi
k) (33)

The absolute position refers to the position in the fixed global coordinate system, and
the relative position refers to a moving coordinate system taking the position of agent 1 as
the origin. For the chain topology, the number of iterations is set to be 3 for both the AS-BP
and the BP. For the fully connected scenario, it is set to be 5. All simulations have performed
a total of 5000 Monte Carlo runs. The simulation results are shown in Figures 3 and 4.
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Figure 3. Absolute and relative position RMSEs in chain topology. (a) Absolute position RMSE.
(b) Relative position RMSE.
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Figure 4. Absolute and relative position RMSEs in fully connected topology. (a) Absolute position
RMSE. (b) Relative position RMSE.

In all simulations, the AS-BP algorithm and the BP algorithm show better absolute
localization accuracy than DR. This reflects the advantage of CL in which the error accu-
mulation of IMU can be effectively alleviated through cooperation. In the chain topology
scenario, the AS-BP algorithm has better absolute localization accuracy and relative lo-
calization accuracy than the BP algorithm. As the number of retrodiction steps increases,
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the localization accuracy of the AS-BP gradually improves. This is because the AS-BP
performs messages backward propagation by using state augmentation, which effectively
increases the available information of agents and thereby reduces the accumulation of
errors caused by the approximation of beliefs. In the scenario of chain topology, as the steps
of retrodiction increase, the number of loops in the factor graph approaches to zero and
the performance of the proposed algorithm approaches to the one of the centralized fusion.
In the fully connected topology scenario, the BP algorithm and the AS-BP algorithm have
a relative localization accuracy similar to that of the centralized fusion. This is because
the entire network has adequate information from relative measurements and can achieve
better performance. However, since the amount of absolute position information has not
increased, the absolute localization accuracy of the BP algorithm and the AS-BP algorithm
are still lower than that of the centralized fusion. On the other hand, due to the use of
state augmentation, the AS-BP algorithm has a higher absolute localization accuracy than
the BP algorithm. However, note that, unlike in the chain topology, in the fully connected
topology scenario, the use of state augmentation can only reduce the loops in the factor
graph but cannot completely eliminate them. Therefore, in this case, the AS-BP algorithm
can only improve the performance of the BP algorithm, but cannot achieve the centralized
fusion. More loops in the fully connected scenario exist than in the chain topology scenario.
Thus, accumulation of errors caused by the belief approximation increases more severely in
the fully connected scenario than in the chain scenario, that is why the absolute localization
accuracy of the BP algorithm and the AS-BP algorithm in the fully connected topology
scenario is lower than that in the chain topology scenario.

The relative computation time of the AS-BP algorithm and the BP algorithm in Matlab
are provided in Tables 1 and 2. It can be seen that the computational cost of the AS-BP
algorithm increases almost linearly with the increase of the retrodiction steps.

Table 1. Relative computation time for the chain topology.

BP AS-BP (1-Step Retrodiction) AS-BP (2-Step Retrodiction) AS-BP (3-Step Retrodiction)

1.0000 1.6697 2.2094 2.8575

Table 2. Relative computation time for the fully connected topology.

BP AS-BP (1-Step Retrodiction) AS-BP (2-Step Retrodiction) AS-BP (3-Step Retrodiction)

1.0000 2.1122 3.7309 5.4305

7. Conclusions

In this paper, an augmented state BP algorithm for mobile agent networks has been
proposed. Compared with the existing BP algorithms, AS-BP further considers the across
time loops in the factor graph. By state augmentation, the messages in the factor graph can
be backward propagated, which reduces the number of loops in the factor graph, increases
the available information of the agent, and improves the localization accuracy of the agent.
When the network topology has no loops, AS-BP can obtain the optimal estimation. Oth-
erwise, AS-BP can only obtain approximate estimations. However, the large reduction of
loops allows AS-BP to still have higher estimation accuracy than the original BP. AS-BP
can be directly combined with nonlinear algorithms to deal with nonlinear measurement
scenarios. Compared with the original BP, AS-BP has higher computational and commu-
nicational costs, so we suggest using limited steps of retrodiction. Experimental results
demonstrate the performance of our algorithm. In addition, this paper has reformulated
the CL problem in a more general form and gives its corresponding centralized fusion
algorithm. Future work includes further reducing the computation and communication
overhead of the algorithm.



Electronics 2022, 11, 1959 13 of 14

Author Contributions: Formal analysis, G.G.; Investigation, B.Z. and Y.G.; Methodology, Y.G.;
Validation, G.G.; Writing—original draft, B.Z.; Writing—review & editing, Y.G. All authors have read
and agreed to the published version of the manuscript.

Funding: This research is supported by the National Natural Science Foundation of China (No. 61773306).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, K.; Lim, H.B.; Frazzoli, E.; Ji, H.; Lee, V.C.S. Improving positioning accuracy using GPS pseudorange measurements for

cooperative vehicular localization. IEEE Trans. Veh. Technol. 2014, 63, 2544–2556. [CrossRef]
2. Sun, G.; Zhou, R.; Xu, K.; Weng, Z.; Zhang, Y.; Dong, Z.; Wang, Y. Cooperative formation control of multiple aerial vehicles based

on guidance route in a complex task environment. Chin. J. Aeronaut. 2020, 33, 701–720. [CrossRef]
3. Ahmad, A.; Lawless, G.; Lima, P. An online scalable approach to unified multirobot cooperative localization and object tracking.

IEEE Trans. Robot. 2017, 33, 1184–1199. [CrossRef]
4. Roman, R.C.; Precup, R.E.G.; Petriu, E.M. Hybrid data-driven fuzzy active disturbance rejection control for tower crane systems.

Eur. J. Control 2021, 58, 373–387. [CrossRef]
5. Chi, R.H.; Li, H.Y.; Shen, D.; Hou, Z.; Huang, B. Enhanced P-type Control: Indirect Adaptive Learning from Set-point Updates.

IEEE Trans. Autom. Control 2022. [CrossRef]
6. Paull, L.; Saeedi, S.; Seto, M.; Li, H. AUV navigation and localization: A review. IEEE J. Ocean. Eng. 2014, 39, 1184–1199.

[CrossRef]
7. Roumeliotis, S.I.; Bekey, G.A. Distributed multirobot localization. IEEE Trans. Robot. Autom. 2002, 18, 781–795. [CrossRef]
8. Shen, Y.; Wymeersch, H.; Win, M.Z. Fundamental limits of wideband localization-part II: Cooperative networks. IEEE Trans. Inf.

Theory 2010, 56, 4981–5000. [CrossRef]
9. Zhai, G.; Zhang, J.; Zhou, Z. Coordinated target localization base on pseudo measurement for clustered space robot. Chin. J.

Aeronaut. 2013, 26, 1524–1533. [CrossRef]
10. Wymeersch, H.; Lien, J.; Win, M.Z. Cooperative localization in wireless networks. Proc. IEEE 2009, 97, 427–450. [CrossRef]
11. Nguyen, T.V.; Jeong, Y.; Shin, H.; Win, M.Z. Least square cooperative localization. IEEE Trans. Veh. Technol. 2015, 64, 1318–1330.

[CrossRef]
12. Ouyang, R.W.; Wong, A.K.S.; Lea, C.T. Received signal strength-based wireless localization via semidefinite programming:

Noncooperative and cooperative schemes. IEEE Trans. Veh. Technol. 2010, 59, 1307–1318. [CrossRef]
13. Vaghefi, R.M.; Buehrer, R.M. Cooperative joint synchronization and localization in wireless sensor networks. IEEE Trans. Signal

Process. 2015, 63, 3615–3627. [CrossRef]
14. Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference; Morgan Kaufmann: San Mateo, CA, USA, 1988.
15. Wainwright, M.J.; Jaakkola, T.S.; Willsky, A.S. Tree-based reparameterization framework for analysis of sum-product and related

algorithms. IEEE Trans. Inf. Theory 2003, 49, 1120–1146. [CrossRef]
16. Su, Q.; Wu, Y.C. Convergence analysis of the variance in Gaussian belief propagation. IEEE Trans. Veh. Technol. 2014, 62, 5119–5131.

[CrossRef]
17. Yuan, W.; Wu, N.; Etzlinger, B.; Wang, H.; Kuang, J. Cooperative joint localization and clock synchronization based on Gaussian

message passing in asynchronous wireless networks. IEEE Trans. Veh. Technol. 2016, 65, 7258–7273. [CrossRef]
18. Sudderth, E.B.; Ihler, A.T.; Freeman, W.T.; Willsky, A.S. Nonparametric belief propagation. In Proceedings of the 2003 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, Madison, WI, USA, 18–20 June 2003; pp. I-605–I-612.
19. Ihler, A.T.; Fisher, J.W.; Moses, R.L.; Willsky, A.S. Nonparametric belief propagation for self-localization of sensor networks. IEEE

J. Sel. Areas Commun. 2005, 23, 809–819. [CrossRef]
20. Ihler, A.T.; Sudderth, E.B.; Freeman, W.T.; Willsky, A. Efficient multiscale sampling from products of Gaussian mixtures. In

Proceedings of the 17th Annual Conference on Neural Information Processing Systems (NIPS), Vancouver, BC, Canada, 13–18
December 2004; pp. 1–8.

21. Savic, V.; Zazo, S. Reducing communication overhead for cooperative localization using nonparametric belief propagation. IEEE
Wirel. Commun. Lett. 2012, 1, 308–311. [CrossRef]

22. Li, Y.; Wang, Y.; Yu, W.; Guan, X. Multiple autonomous underwater vehicle cooperative localization in anchor-free environments.
IEEE J. Ocean. Eng. 2019, 44, 895–911. [CrossRef]

23. Garcia-Fernandez, A.F.; Svensson, L.; Sarkka, S. Cooperative localization using posterior linearization belief propagation. IEEE
Trans. Veh. Technol. 2018, 67, 832–836. [CrossRef]

24. Meyer, F.; Hlinka, O.; Hlawatsch, F. Sigma point belief propagation. IEEE Signal Process. Lett. 2014, 21, 145–149. [CrossRef]

http://doi.org/10.1109/TVT.2013.2296071
http://doi.org/10.1016/j.cja.2019.08.009
http://doi.org/10.1109/TRO.2017.2715342
http://doi.org/10.1016/j.ejcon.2020.08.001
http://doi.org/10.1109/TAC.2022.3154347
http://doi.org/10.1109/JOE.2013.2278891
http://doi.org/10.1109/TRA.2002.803461
http://doi.org/10.1109/TIT.2010.2059720
http://doi.org/10.1016/j.cja.2013.10.004
http://doi.org/10.1109/JPROC.2008.2008853
http://doi.org/10.1109/TVT.2015.2398874
http://doi.org/10.1109/TVT.2010.2040096
http://doi.org/10.1109/TSP.2015.2430842
http://doi.org/10.1109/TIT.2003.810642
http://doi.org/10.1109/TSP.2014.2345635
http://doi.org/10.1109/TVT.2016.2518185
http://doi.org/10.1109/JSAC.2005.843548
http://doi.org/10.1109/WCL.2012.042512.120172
http://doi.org/10.1109/JOE.2019.2935516
http://doi.org/10.1109/TVT.2017.2734683
http://doi.org/10.1109/LSP.2013.2290192


Electronics 2022, 11, 1959 14 of 14

25. Li, S.; Hedley, M.; Collings, I.B. New efficient indoor cooperative localization algorithm with empirical ranging error model. IEEE
J. Sel. Areas Commun. 2015, 33, 1407–1417. [CrossRef]

26. Georges, H.M.; Xiao, Z.; Wang, D. Hybrid cooperative vehicle positioning using distributed randomized sigma point belief
propagation on non-Gaussian noise distribution. IEEE Sens. J. 2016, 16, 7803–7813. [CrossRef]

27. Kschischang, F.R.; Frey, B.J.; Loeliger, H.A. Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 2001, 47,
498–519. [CrossRef]

28. Barooah, P.; Russell, W.J.; Hespanha, J.P. Approximate distributed Kalman filtering for cooperative multi-agent localization. In
Proceedings of the 6th IEEE International Conference on Distributed Computing in Sensor Systems, Santa Barbara, CA, USA,
21–23 June 2010; pp. 102–115.

29. Li, X.R.; Zhu, Y.M.; Wang, J.; Han, C. Optimal linear estimation fusion—Part I: Unified fusion rules. IEEE Trans. Inf. Theory 2003,
49, 2192–2208. [CrossRef]

30. Bar-Shalom, Y.; Li, X.R.; Kirubarajan, T. Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software;
Wiley: New York, NY, USA, 2001.

31. Gao, Y.X.; Li, X.R. Optimal linear fusion of smoothed state estimates. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 1236–1248.
32. Li, X.R. Recursibility and optimal linear estimation and filtering. In Proceedings of the 43rd IEEE Conference on Decision and

Control, Nassau, The Bahamas, 14–17 December 2004; pp. 1761–1766.

http://doi.org/10.1109/JSAC.2015.2430273
http://doi.org/10.1109/JSEN.2016.2602847
http://doi.org/10.1109/18.910572
http://doi.org/10.1109/TIT.2003.815774

	Introduction 
	System Model and Problem Formulation 
	Centralized Fusion 
	BP-Based Cooperative Localization 
	Augmented State BP Cooperative Localization 
	Motivation 
	Augmented State BP (AS-BP) Algorithm 
	Computation and Communication Overhead 

	Illustrative Examples 
	Conclusions 
	References

