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Abstract: Soil total nitrogen (TN) is a vital nutrient element that affects the growth and rubber
production of rubber trees. Especially in the coastal environment, soil nutrients will show significant
differences. Using hyperspectral technology to detect soil nitrogen ion content in the offshore
environment can provide technical support for nutrient management. Preprocessing hyperspectral
data is a crucial step in accurate spectral model estimation. At the same time, it is considered that the
traditional first-order and second-order derivatives are easily unbalanced between the signal-to-noise
ratio, resulting in the loss of adequate information. Therefore, this work focuses on the feasibility of
fractional order derivative (FOD) combined with partial least squares regression (PLSR) to estimate
its TN content. By collecting soil samples from rubber plantations, the TN content of the soil samples
was determined, and the spectral reflectance was measured. The FOD of the original spectrum
was preprocessed with an interval of 0.2, and 11 spectral curves were obtained. Then, successive
projections algorithm (SPA) was used to extract spectral features, and partial least squares regression
(PLSR) models of soil TN content were established. The research results show that compared with the
traditional integer derivative, FOD has a tremendous advantage in balancing spectral information
and noise and can provide more abundant characteristic variables, which helps establish a more
robust estimation model. In the range of orders 0–2, the model established by the 1.8-order is the best.
Under that circumstance, the determination coefficients of validation (R2v) is 0.649, and the ratio
of the performance to deviation (RPD) is 1.72. Combined with FOD, it is feasible and practical to
establish an accurate and rapid estimation model of soil TN content, which can provide an important
reference for large-scale detection of soil TN content in rubber plantations.

Keywords: hyperspectral; nitrogen detection; machine learning; fractional order derivative; spectral
sensors

1. Introduction

Soil nutrient content significantly affects the growth of rubber trees [1–3]. Compared
with other rubber-producing areas, Hainan Province is surrounded by the sea. The erosion
of the marine environment and the high temperature and rainy climate have caused soil
weathering, resulting in the decline in soil fertility in Hainan rubber plantations, especially
the severe loss of nitrogen nutrients. At the same time, with the growth of rubber trees year
by year, the TN content in the soil will show a downward trend [4], which requires timely
supplementary nutrients. In order to better manage the nutrients in rubber plantations
and ensure the increase in rubber production and quality, it is necessary to regularly detect
the TN content of the soil. The Kjeldahl method is used to determine the TN content
in the soil nutrient detection of rubber plantations [5,6]. The detection method, based
on the Kjeldahl method of determining TN content, involves measuring several points
in the area and taking the average value to represent the nutrient content of the entire
area. Due to the considerable variation in soil nutrients in the offshore environment, this
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method cannot accurately represent the TN content of the soil. Moreover, this method
is time-consuming, labor-intensive, costly, and unsuitable for batch use. Therefore, it is
crucial to find an efficient and low-cost detection method for the scientific decision making
of soil nutrient management.

Hyperspectral diagnosis technology is a rapid non-destructive detection technology
that combines traditional nutrient diagnosis methods and artificial intelligence scientific
decision making [7,8]. In recent years, hyperspectral has also made remarkable achieve-
ments in soil element inversion [9–11]. Lin L et al. improved the random forest method by
mixing-based weight learning, which significantly improved the estimation of soil TN [12].
Tan K et al. estimated the distribution trend of soil heavy metals in mining areas based
on hyperspectral images based on ensemble learning [13]. Through intensive sampling, a
higher-precision estimation model can be established. Thereby, hyperspectral detection
technology can measure soil nutrient content quickly and in large quantities, which further
improves fertilization decision making.

Establishing a hyperspectral rubber plantation soil TN content model can accurately,
quickly, and cost-effectively predict the soil TN content. However, when acquiring spectral
data, the final quantitative analysis is often affected by the complexity of the sample itself,
the untreated sample, or the interference of the instrument itself [14]. The research results
show that spectral data preprocessing can effectively reduce or remove these interferences,
thereby improving the quantitative analysis and prediction ability of the model [15,16].
Specifically, integer-order derivatives are often used in hyperspectral data processing.
However, some researchers have shown that fractional order derivatives (FOD) have
more potential than integer derivatives [17,18]. By exploring the potential of FOD for
the prediction of soil copper content, Cui S et al. proved that the FOD is better than the
integer-order, as it can effectively eliminate noise and highlight the spectral sensitivity of
copper [19]. Lao C et al. used FOD with an interval of 0.05 and a range of 0–2 to pretreat
soil spectra to predict soil salinity and soluble ion content. The results showed that the
optimal FOD orders of different ions were different [20]. In order to estimate soil organic
matter content, Hong Y et al. processed the VIS-NIR spectral data FOD, and the results
showed that the PLS-SVM with 1.25-order was the best model [21]. However, even now, the
application of hyperspectral-based techniques for assessing TN content in rubber plantation
soils in offshore environments is still unknown. At the same time, there are few studies
on the soil TN content model using FOD. Therefore, it is exceptionally urgent to study the
TN content of rubber plantation soils in the offshore environment using a hyperspectral
prediction model combined with FOD.

In this study, we tried to study Hainan rubber plantation soil with substantial soil
variability in the offshore environment, evaluate the applicability of hyperspectral in the
diagnosis of nutrient components in rubber plantations, and provide a scientific basis for
fertilization decision making. On this basis, the FOD was introduced to study the optimal
estimation model of hyperspectral soil TN based on FOD, which further improved the
estimation ability of the model.

2. Materials and Methods
2.1. Study Area, Soil Sampling and Preparation

The soil sample collection sites, rubber plantations, are located in Danzhou City, a
coastal city in the northwest of Hainan Province. Danzhou has a tropical monsoon climate
and is close to the sea. High temperature: the average annual temperature is 23.1 ◦C, the
average temperature of the hottest month (July) is 28.0 ◦C, and the coldest month (January)
is 17.8 ◦C. Rainy: Danzhou has an annual rainfall of 900–2200 mm, with an annual average
of 1815 mm. The dry and wet seasons are apparent, and the annual average sunshine hours
are 1967 h. The soil of the sample collection area in this study is latosol soil, and its parent
materials are mainly sand shale, basalt, and granite. The latosol soil presents acidic, which
is a suitable condition for rubber trees to grow.
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Figure 1 shows the location of the study area and the spatial pattern of soil sampling
in Hainan province, Southern China. As shown in the sampling spatial distribution map,
the red part is the latosol soil area, and we collected samples around this area. From
March to April 2021, we collected 105 soil samples within the study area. Each sample
was collected under the following collection principles. First, we avoided the fertilization
ditch, the compost area and the ridge, which were not suitable for collecting samples.
When sampling, the weeds and other coverings from the surface were removed. Then,
we used the earth borrower to borrow soil, with a borrowing depth of 0–20 cm. We then
collected five sub-samples in a 100 m2 area, mixed the five sub-samples to form a regional
mixed soil sample (about 2.5 kg), and put them in a white transparent sealed bag. At
the same time, the longitude and latitude coordinates of the sampling site were recorded
synchronously by hand-held GPS and were pasted on the sample bag. Finally, according to
the longitude and latitude information of the collection point, the site locations were drawn
on the topographic map of Danzhou City using ArcGIS software to form a sampling spatial
distribution map. The collected samples were shipped back to the laboratory on the same
day and processed. Sample processing was performed in the following order. First, the
soil samples were air-dried at room temperature and some debris was removed. After the
samples were air-dried, 105 latosol soil samples were passed through a sieve with a size of
2 mm by a vibrating screen machine. Finally, a small amount of soil was taken using the
quartering method. The TN content was determined by the Kjeldahl method. The rest of
the soil was used as the sample to be tested for spectral by the hyperspectral method [12].

Figure 1. Location of the study area and the spatial pattern of soil sampling in Hainan province,
Southern China.

2.2. Laboratory Spectral Measurements and Preprocessing

The soil samples were collected by a hyperspectral imaging system with a spectral
reflectance of 866–1701 nm. The hyperspectral imaging system consists of an imaging
spectrograph (ImSpector N17E, Specim, Finland) with a spectral resolution of 4 nm, an
InGaAs camera with a resolution of 320 × 256, 256 wavelength channels and a camera
lens (HSIA-OLE22, Finland), and was provided by Sichuan Shuangli Hepu Technology
Co. Ltd., China. After the tested sample was placed in the sample stage, four halogen
lamps irradiated the sample. The four 200 W halogen lamps were placed 0.8 m from
the soil sample and irradiated the sample at a 45◦ angle of incidence. Before acquiring
hyperspectral data, it was required to perform an initial calibration of the instrument, adjust
the height of the lens, and correct the position of the sample so that was able to take the
whole soil sample and take a clear spectral image. After the sample was irradiated, the
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imaging lens captured the reflected light, and a picture (connotative spatial information and
spectral information) was obtained. As the conveyor belt drives the sample continuously,
continuous pictures and three-dimensional cube data (spatial information and spectral
information) can be obtained.

The steps of soil spectrum collection are as follows. First, the sieved soil samples were
placed in black Petri dishes (4.5 cm in radius and 1.5 cm in height). Then, the surface of
the sample was smoothed by gently scraping the surface of the Petri dish through a piece
of cardboard. Next, the Petri dish was placed on black cardboard with approximately
zero reflectivity, and the instrument collected soil spectral data through line scanning. The
acquired spectral data are hyperspectral images of all objects within a rectangular area
(including soil and non-soil areas). Finally, the hyperspectral image was corrected for black
and white, and the average spectrum of the soil sample was calculated. Each soil sample to
be tested was measured three times according to the above steps, and the average value of
the three values was taken.

When collecting spectral data, we found that the collected spectral curves had intense
noise at the beginning and end, mainly due to the influence of the external environment
and the instrument itself [22,23]. In order to eliminate the noise caused by the error of the
instrument itself, the hyperspectral bands with higher noise were removed (866–978 nm,
1671–1701 nm), and the final hyperspectral data band range was 979–1670 nm.

2.3. Data Division

As shown in Table 1, among the 105 soil samples, outliers and duplicates were removed.
By removing the outliers, 91 soil samples were retained. This study used the concentration
gradient method to divide the dataset. The ratio of the calibration set to the validation
set was 2:1. Among the 91 soil samples in the total sample, 61 soil samples were used
as the calibration set, and the remaining 30 soil samples were used for the validation
calibration model. The maximum value of TN content of the soil samples was 0.8885,
the minimum value was 0.3064, the mean value was 0.5631, the standard deviation was
0.1558, and the coefficient of variation was 28.4%. The coefficients of variation in the
calibration set and validation set were 27.87% and 27.75%, respectively. From the coefficient
of variation, it can be seen that the calibration set and the validation set have almost the
same distribution characteristics as the total sample. Such a divided sample set makes the
establishment and evaluation of the model more reasonable and ensures the generalization
of the estimated model.

Table 1. Descriptive statistics of total content (TN, g/kg) in the entire set.

Sample Set n Minimum Mean Median Maximum SD CV

Total 91 0.3064 0.5631 0.5487 0.8885 0.1558 28.4%
Calibration 61 0.3064 0.5613 0.5487 0.8885 0.1564 27.87%
Validation 30 0.3191 0.5666 0.5449 0.8852 0.1572 27.75%

Notes: n, sample number; SD, standard deviation; CV, coefficient of variation.

2.4. Fractional Order Derivative (FOD)

The fractional order derivative (FOD) extends the traditional integer-order derivatives
(first-order, second-order) to any order, and different orders of derivatives can be obtained
through different intervals. Among many FOD definitions, the Grünwald-Letnikov (G-L)
definition is widely used in practical applications because it is easier to obtain numerical
solutions [24–26]. Therefore, this study is based on the G-L definition of conducting research
analyses. Taking the TN spectral data of rubber plantation-soil as the FOD object, we set the
step size to 1. After processing and calculation in MATLAB, 11 fractional order derivatives
of soil spectral data, ranging from 0 to 2, with 0.2 as an interval, are obtained.
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2.5. Spectral Variable Selection Techniques

Spectral data are characterized by high dimensionality and redundancy. When applied
to the quantitative analysis of soil nutrient content, due to the problems of high correlation
and much useless information, the soil nutrient diagnostic model constructed based on
the full spectral data has low predictive ability and poor robustness. In order to find the
profound relationship between spectral data and samples, eliminate useless information,
and highlight characteristic bands, wavelength extraction has become a vital issue in
nutrient diagnostic models.

The successive projections algorithm (SPA) method is a widely used method. The SPA
can reduce the model complexity by effectively eliminating the collinearity between multi-
ple wavelength variables and redundant information, and choosing the feature band [27,28].
The variable selection principle of the SPA method is positive selection, the physical mean-
ing of the selected wavelength is clear, and the model has strong explanatory power. The
working principle of the SPA algorithm is divided into the following steps: Assuming that
the independent variable of the spectral matrix is X, the number of variables to be extracted
is N, and a variable Xi is randomly selected from X as the first variable. Calculating the
projection variables of Xi to the remaining spectral variables and recording the most signifi-
cant projection variables, each iteration adds new variables and stops working when the
maximum number of variables is reached. Therefore, the common SPA algorithm is used
to extract its features in this study. In this study, the maximum number of variables N was
set to 45 and the minimum to 5.

2.6. Partial Least Squares Regression (PLSR)

As one of the most widely used regression modeling methods in spectral data analysis,
the partial least squares regression (PLSR) can efficiently and reliably process complex
spectral data, solve collinearity problems, and improve the explanatory ability of dependent
variables. It belongs to the linear regression model [29]. The basic idea of PLSR assumes
that the independent variable of spectral data is X, and the dependent variable is Y. By
transforming the matrix data of the independent variable X into the latent variable (LV), the
latent variable can well represent the independent variable X (including more information
of the X spectral data), the calculated LV is independent and between Y has the most
remarkable correlation. In this study, by setting the maximum value of LV, the calculation
cycle is performed, and then the optimal number of LVs to meet the accuracy is selected.

2.7. Model Evaluation

Among many model evaluation indicators, the coefficient of determination (R2) (Equa-
tion (1)), root mean square error (RMSE) (Equation (2)), and the ratio of performance to
deviation (RPD) (Equation (3)) are the most widely used. Therefore, in this study, the
above three indicators were used as the evaluation indicators of the soil TN model. The
criteria for a model with better model performance are higher RPD and R2 values and
lower RMSE values [30,31]. Data preprocessing, feature extraction, and model construction
were performed in MATLAB 2018b (the MathWorks, Inc., Natick, USA).

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (1)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(2)

RPD =
SD

RMSE
(3)

where n represents the number of soil samples, yi, ŷi represents measured and pre-
dicted values of TN content, yi is the measured average value, and SD is the standard
deviation, respectively.
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3. Results
3.1. Soil Spectral Reflectance

Figure 2 is the spectral curve of rubber plantation soil samples in Danzhou City, Hainan.
We can see from it that the overall trend of the spectrum of the 91 latosol soil samples is
consistent, but the spectral reflectance is different due to the difference in soil composition
content. In the range of 979–1300 mm, the spectral reflectance increases with wavelength
increase, and a small peak appears around 1305 nm. In the range of 1305–1449 nm, the
spectral reflectance gradually decreased, and in the range of 1449–1670 nm, the spectral
reflectance gradually increased. The soil spectral curve has an apparent absorption valley
at 1449 nm. Studies have shown that this is related to free water hydroxide ions (OH) in
soil and the presence of Al-OH lattice structures in clay minerals [32].

Figure 2. Spectral curve of rubber plantation soil samples in Danzhou City, Hainan.

3.2. FOD Spectral Analysis

To better remove baselines and overlapping peaks, sharpen spectral features, and dig
deeper into spectral information, we used FOD to preprocess the spectra. Figure 3 shows
the spectral curves of rubber plantation soils under different FOD. With 0.2 as the interval,
11 orders of spectral curves are obtained in 0–2. Figure 3 shows the original spectral curve
with 0 order. When the order increases from 0 to 0.2, it can be seen that the reflectivity
does not change much, and the peak-valley separation begins to appear around 1449 nm.
When the order increases from 0.4 to 1, the peaks and valleys around 1449 nm are further
separated. There are four absorption valleys at 1394, 1417, 1430, and 1446 nm, respectively.
Four reflection peaks appear at 1407, 1423, 1436, and 1456 nm, respectively. The reflectance
value generally tends to be 0. As the order increases from 1 to 2, the spectral curve is
smoothed, and the reflectance value decreases to 0. This indicates that the baseline shift
effect and overlapping peaks are gradually eliminated as the fractional order increases.
Compared to the original spectrum, the FOD spectrum can slowly show changes in spectral
detail and improve the resolution of the spectral curve.
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Figure 3. Cont.
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Figure 3. Spectral curves of rubber plantation soils under different FOD.

3.3. Feature Variable Selection and Building Estimation Models

To reduce the redundant information of the spectral data and eliminate the collinearity
between the wavelength variables, the SPA algorithm is used to extract features from the
11 fractional-orders of soil spectral data with a range of 0–2 and an interval of 0.2. Figure 4
shows the feature variables selected by SPA under different FOD. It can be seen from
Figure 4 that the SPA algorithm extracts the 11 fractional-orders soil spectral data, the
number of selected variables is significantly reduced, and the number of bands is reduced
from 211 to seven variables, 3% of the total bands. This process reduces the dimension
of data and improves work efficiency. Comparing the selected characteristic variables
of different orders, it can be seen that the 0.6-order selects the most bands, 30 bands.
Additionally, the 1.2-order selects the least, seven bands. The characteristic variables of
the 11 fractional orders of soil TN spectrum data extracted by SPA are different. In the
0–1 order range, its characteristic variables are mainly concentrated in the vicinity of 1000
nm and 1400–1500 nm. In contrast, in the 1.2–2 order range, its characteristic variables
are mainly concentrated in the vicinity of 1564–1603 nm. The results show that different
orders of FOD can separate overlapping peaks and dig out deeper spectral features related
to soil TN.

To explore the effect of FOD spectral preprocessing and SPA feature extraction on
the prediction model, SPA-PLSR regression prediction models were established. In those
models, the spectrum extracted by FOD and SPA is set as the independent variable, and
the soil TN content is set as the dependent variable. As shown in Table 2, the modeling
results of PLSR and SPA-PLSR are compared. As shown in Table 2, compared with the full
spectral data, the SPA-PLSR model has improved the prediction performance of soil TN
content. The RPD increased from 1.35 to 1.49 gradually. The results show that the model
has developed from almost no estimation capabilities to accurate estimation capabilities.
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Figure 4. Feature variables selected by SPA under different FOD.

Table 2. Comparison of PLSR and SPA-PLSR modeling results.

Model Number of
Variables

Calibration Validation
R2c RMSEC R2v RMSEV RPD

PLSR 211 0.728 0.081 0.429 0.117 1.35
SPA-PLSR 13 0.387 0.121 0.535 0.105 1.49

Notes: R2c, determination coefficients of calibration; R2v, determination coefficients of validation.

Table 3 shows the modeling results of SPA-PLSR under different FOD. It can be seen
from Table 3 that the prediction performance of the original, first and second derivative
spectral models is not high, with R2v of 0.535, 0.568, and 0.513; RMSEV of 0.105, 0.102,
and 0.108; RPD of 1.49, 1.55 and 1.46, respectively. The RPD of the original and second
derivative spectra is less than 1.4, and the model prediction performance is poor. After the
FOD processing, the prediction performance of the FOD model is greatly improved, and
better results are obtained in the 0.6-order, 1.6-order, and 1.8-order, respectively. The R2v
is 0.633, 0.631 and 0.649, the RMSEV is 0.094, 0.094 and 0.092, and the RPD is 1.68, 1.67
and 1.72, and the best prediction results apparent at 1.8-order. The sensitive bands of soil
TN spectrum are 1037.7, 1112.1, 1149.0, 1165.8, 1195.9, 1219.2, 1235.8, 1298.7, 1361.1, 1400.3,
1419.8, 1478.1, 1487.8, 1510.4, 1529.6, 1564.8, 1571.2, 1584.0, 1599.9, 1615.8, 1628.5, 1653.8
and 1656.9 nm. The RPD of the estimated models at 0.2-order, 0.8-order and 1.2-order are
all worse than those established by the original spectra. Figure 5 shows the scatter plots of
true and predicted TN content for the calibration and validation set of original, first-order,
1.8-order and second-order derivatives. It is demonstrated that the model at 1.8-order can
better predict soil TN samples at low and high concentrations compared to the original and
integer derivatives. This indicates that the model established after FOD preprocessing can
predict samples with a broader range of TN content, and its model is more generalized.
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Table 3. SPA-PLSR modeling results under different FOD.

Order Number of
Variables

Calibration Validation
R2c RMSEC R2v RMSEV RPD

0 13 0.387 0.121 0.535 0.105 1.49
0.2 27 0.648 0.092 0.462 0.113 1.39
0.4 29 0.664 0.090 0.584 0.100 1.58
0.6 30 0.731 0.081 0.633 0.094 1.68
0.8 15 0.505 0.109 0.513 0.108 1.46
1.0 14 0.354 0.125 0.568 0.102 1.55
1.2 7 0.346 0.126 0.473 0.112 1.40
1.4 17 0.567 0.102 0.575 0.101 1.56
1.6 15 0.548 0.104 0.631 0.094 1.67
1.8 23 0.612 0.097 0.649 0.092 1.72
2.0 16 0.457 0.114 0.513 0.108 1.46

At the same time, to further compare the preprocessing methods, two classical pre-
processing methods, multiplicative scatter correction (MSC) and standard normal variate
(SNV), are used to preprocess the spectral data. After SPA feature extraction, a PLSR
model is established. The comparison results are shown in Table 4. It can be seen from
Tables 3 and 4 that compared with SPA-PLSR (order = 0), the prediction effect of the MSC
preprocessed model decreases with R2v = 0.5 < 0.535, and the prediction effect of the SNV
preprocessed model improves with R2v = 0.569 > 0.535. All results were worse than that of
the FOD preprocessed model. The comparison further proves the superiority of FOD for
pretreatment of the rubber plantation soil spectrum.

Figure 5. Cont.
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Figure 5. Scatter plots of true and predicted TN content for the calibration and validation set of
original, first-order, 1.8-order and second-order derivatives. The red line represents the 1:1 line
between the true and predicted TN content. (a,c,e,g) are scatter plots of calibration set results;
(b,d), (f,h) are scatter plots of validation set results.

Table 4. Modeling results under different preprocessing.

Model Number of
Variables

Calibration Validation
R2c RMSEC R2v RMSEV RPD

MSC-SPA-
PLSR 17 0.491 0.111 0.500 0.109 1.44

SNV-SPA-PLSR 23 0.631 0.094 0.569 0.102 1.55
1.8-order-SPA-

PLSR 23 0.612 0.097 0.649 0.092 1.72

4. Discussion

In this study, hyperspectral detection technology was used to obtain the TN spectrum
data of latosol soil in rubber plantations. It is expected that hyperspectral technology can
be used to establish a prediction model of TN in latosol soil, providing technical support
for guiding the fine fertilization of rubber plantations. The research results show that the
prediction effect of the full spectral model is not satisfactory for the diagnosis of TN content
in rubber plantations. Therefore, further analysis of the hyperspectral data is required to
improve the estimation ability of TN content. To this end, this study uses FOD to preprocess
soil spectra to dig deeper into hyperspectral information. SPA is used to extract features
from 11-order spectral data to eliminate redundant information, expecting to obtain spectral
information that is more sensitive than the original spectrum.

The research results show that compared with the original spectrum-based PLSR
model, the SPA-PLSR model established by the sensitive band after SPA feature extraction
through FOD preprocessing has a better prediction performance. The modeling effect of
the SPA-PLSR model under different FOD preprocessing is different. The difference is due
to the changes in spectral information after different FOD processing, resulting in different
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characteristic bands selected by SPA in the 11-order soil spectrum. The reason is that SPA
selects characteristic wavelengths from the full spectral data to form an optimal subset,
which is an optimized process that removes redundant information from spectral data
and extracts adequate information. Compared to using full spectral data as the input, SPA
reduces the number of bands selected at 11 fractional orders by a minimum of 86% and a
maximum of 97%, improving the predictive performance of the model [28,33]. It can be seen
from Table 3 that the prediction model of soil TN content established by the SPA method
has better performance in reducing redundancy, can better preserve adequate information,
and has an excellent response to the inversion parameters. This confirms that the SPA
method can effectively extract features from the rubber plantation soil spectral data.

Different orders of FOD impact the performance of soil TN content prediction model.
In this study, the interval is set as 0.2, and the 0–2 order range has been divided into 11-order
derivatives. The study found that after FOD preprocessing, the soil spectral reflectance
decreased and approached 0 gradually. Confidential information, including peaks and
valleys, was excavated. This shows that FOD can dig out confidential information and
provide richer variables for feature extraction. On the whole, the FOD preprocessed model
performs better than the original, first, and second derivative spectra. It was found that
the SPA-PLSR model based on the original spectrum (0-order) performed poorly with
RPD = 1.49. After the first-order derivative preprocessing, the model slightly improved
with RPD = 1.55, which indicates that the first-order derivative improves the modeling
accuracy [34]. On the other hand, the prediction performance of the second derivative-
based model was lower than that of the original and the first derivative, which may be due
to the amplification of spectral data noise or the loss of important spectral information [35].
After the introduction of FOD preprocessing, the prediction accuracy has been dramatically
improved. The results in this study were similar to other soil-related content estimation
models with FOD preprocessing [19,21]. Chen L et al. confirmed that FOD could better dig
out the correlation spectrum of heavy metals in soil than integer derivative, and improve
the model estimation ability [36]. The reason may be that although the integer-order (first-
order, second-order) spectrum enhances the spectral reflectance, the sensitive information is
gradually inclined or lacks sensitivity to the curvature [20], resulting in the loss of spectral
information or the amplification of noise. By contrast, FOD can fill up the deficiency. FOD
can separate overlapping peaks and baseline effects such as an integer-order. Since it
can control the interval, it can affect the change in order and then control the change in
slope or curvature. Therefore, the maximum signal-to-noise ratio of the rubber plantation
soil spectral data could be found, and the prediction performance of the model could
be improved. This study established 11 SPA-PLSR soil TN prediction models, and the
1.8-order-based model showed the best prediction effect. This finding is consistent with
the results of Xu X et al. [37] predicting Hg content in soil. It should be noted that some
FOD-based models have worse prediction performance than the original and integer-order
derivative spectra, including the 0.2-order, 0.8-order, and 1.2-order. The reason may be
that the spectral features cannot be amplified during preprocessing due to too large or
too small curvature and slope. Even the spectral information related to soil TN content
is lost, resulting in poor prediction performance. This also shows that the hyperspectral
detection technology combined with FOD to model and analyze the TN spectrum of rubber
plantation soil can predict the TN content, which is an effective and practical method. In
the future, we will collect more soil samples from different rubber plantation areas by
calibrating the model, in the hope of providing a universal model for detecting TN content
in rubber plantation soils in different places.

5. Conclusions

This paper discusses the potential of hyperspectral detection technology combined
with FOD in detecting TN content in rubber plantation soil. The obtained results show
that: (1) FOD can also reduce baseline drift and separate overlapping peaks and is better
than the first and second derivatives in finding the maximum signal-to-noise ratio. (2) In
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the 0–2 order range, the SPA-PLSR model established with 1.8-order has the best perfor-
mance in estimating soil TN content, with R2v of 0.649 and RPD of 1.72. (3) The sensitive
bands of the TN spectrum of rubber plantation soil were 1037.7, 1112.1, 1149.0, 1165.8,
1195.9, 1219.2, 1235.8, 1298.7, 1361.1, 1400.3, 1419.8, 1478.1, 1487.8, 1510.4, 1529.6, 1564.8,
1571.2, 1584.0, 1599.9, 1615.8, 1628.5, 1653.8 and 1656.9 nm. In summary, hyperspectral
detection technology can predict the TN content of rubber plantations. Combined with
the spectral pretreatment of FOD, it can improve the estimation performance of the model
and provide an important reference for the large-scale estimation of soil TN content and
nutrient management.
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