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Abstract: In recent years, Near Infrared (NIR) spectroscopy has increased in popularity and usage
for different purposes, including the detection of particular substances, evaluation of food quality, etc.
Usually, mobile handheld NIR spectroscopy devices are used on the surfaces of different materials,
very often organic ones. The features of these materials change as they age, leading to changes in
their spectra. The ageing process often occurs only slowly, i.e., corresponding reflection spectra can
be analyzed each hour or at an even longer interval. This paper undertakes the problem of analyzing
surfaces of non-stable, rapidly changing materials such as waxes or adhesive materials. To obtain
their characteristic spectra, NIR spectroscopy using a Digital Light Projection (DLP) spectrometer was
used. Based on earlier experiences and the current state of the art, Artificial Neural Networks (ANNs)
were used to process spectral sequences to proceed with an enormous value of spectra gathered
during measurements.

Keywords: NIR DLP spectroscopy; reflectance time-non-stable spectra; artificial neural network

1. Introduction

Nowadays, Near Infrared (NIR) spectroscopy has become very popular. Modern
computers with more and more computing power and appropriate data analysis software
make it possible to obtain a powerful tool that enables efficient processing of thousands of
data points to obtain useful information about a tested sample. NIR spectroscopy has many
significant advantages: the non-destructive nature of the test, no need to prepare a sample,
simplicity and speed of measurements, and low cost. Some disadvantages bring limitations:
the useful information is not directly available, and the sample may be described by
thousands of variables. It often turns out that the spectra obtained are not repeatable [1].

Today, there are several examples of using NIR spectroscopy being used for various
purposes, including the evaluation of food quality. One of them is to use a portable NIR
spectrometer working in the range of 1396–2396 [nm] to collect the spectra of breast milk
samples for quality evaluation [2], which is an essential matter for newborn children. The
authors use different chemometrics to calculate and then develop 18 calibration models
with and without using derivatives and the standard normal variate. Once the calibration
models were developed, the best treatments were selected according to the correlation
coefficients and prediction errors. The other example of using NIR to estimate food quality is
included in [3]. The authors examined Visible (VS) and NIR spectroscopy usage to monitor
grape composition within a vineyard to facilitate the decision-making process with regards
to grape quality sorting and harvest scheduling. Measurements of grape clusters were
acquired in the field using a VS/NIR spectrometer, operating in the 570–990 [nm] spectral
range, from a motorised platform moving at 5 km/h. To analyse the obtained spectra, they
used classical methods, e.g., a correlation function. In [4], the authors examined a novel
prototype NIR instrument designed to measure dry matter content in single potatoes. The
instrument is based on interaction measurements to measure deeper into the potatoes. It
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measures rapidly, up to 50 sizes per second. The device also enables several distances to be
recorded for each measurement. The instrument was calibrated based on three different
potato varieties, and the calibration measurements were done in a process plant, making
the calibration model suitable for production line use.

The other type of NIR spectroscopy usage is connected with the need to detect un-
desired substances. One of the examples is non-destructive detection of tomato pesticide
residues using VS/NIR spectroscopy and prediction models such as ANNs [5]. The authors
used VS/NIR spectral data from 180 samples of non-pesticide tomatoes (used as a control
treatment) and samples impregnated with a pesticide with a concentration of 2/1000 [L],
recorded by a spectroradiometer working in the range 350–1100 [nm], to train and then
verify ANNs. The other example is included in [6]. The authors used NIR spectroscopy
and characteristic variables selection methods to develop a quick way of determining
cellulose, hemicellulose, and lignin contents in Sargassum horneri, i.e., the species of brown
macroalgae that is common along the coast of Japan and Korea. Calibration models for
cellulose, hemicellulose, and lignin in Sargassum horneri were established using partial
least square regression methods with full variables. The last example showed the detection
of measuring vitamin C and ellagic acid in wild-harvested Kakadu plum fruit samples [7].
The results of this study demonstrated the ability to predict vitamin C and ellagic acid in
whole and pureed Kakadu plum fruit samples using a handheld NIR spectrophotometer.
In the next paper [8], the NIR spectroscopy method was developed to analyze the oil
and moisture contents of the plant Camellia gauchowensis Chang and C. semiserrata Chi
seeds kernels. The authors used principal component analysis (PCA) and partial least
squares (PLS) regression methods for calibration and validation. Finally, they obtained
correlation coefficients of 0.98 and 0.95 for oil, and 0.92 and 0.89 for moisture, respectively,
for calibration and validation.

More often, NIR spectroscopy is used with other methods to obtain the expected
solution. One example is presented in [9]. The authors used NIR spectroscopy coupled
with chemometric tools and obtained a fast and low-cost alternative solution for evaluating
wood properties and quality categories. The obtained results of research showed that
NIR spectroscopic data combined with powerful multivariate statistic tools and artificial
intelligence solutions provided a fast and reliable tool, helpful in the decision-making
process. The other opportunities are connected with NIR-absorbing organic semiconductors,
especially for organic photovoltaic cells (OPV) [10]. OPV has increased its popularity in
the field of renewable energy due to its lightweight, flexibility, and relatively low cost.
To find new OPV materials, experiments with different types of NIR materials as active
layers were conducted. Good results have also been achieved using NIR spectroscopy in
conjunction with machine learning methods [11]. In this study, the authors used VIS/NIR
spectroscopy for the effective discrimination of genetically modified (GM) and non-GM
Brassica napus, B. rapa, and F1 hybrids (B. rapa X GM B. napus). As a classification method,
the convolutional ANNs were used with success. More references to the advances in NIR
spectroscopy and related computational methods can be found in [12,13].

Progress in the development of spectroscopy has led to the creation of a class of minia-
turized spectrometers, including the VS and NIR [14,15]. The miniaturization of devices
and systems is related to the tendency to perform non-laboratory measurements, including
the adaptation of sizes to the in-line version [16,17]. An essential advantage of using smaller
instruments is the potential possibility of implementing distributed measurement schemes
and approaches to “remote” monitoring of environmental and “field” measurements.

As can be seen over a dozen different examples, the use of NIR spectroscopy, often
supported by other classical methods and artificial intelligence methods, has been analyzed.
This proves the great potential of NIR spectroscopy supported by other methods for data
analysis. The factor connecting the above examples of NIR spectroscopy applications are
the relatively slow processes of change taking place in the tested materials and substances,
usually demanding monitoring every hour or at even longer intervals. Therefore, in this
article the problem of using NIR spectroscopy supported by ANNs for the analysis of
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rapidly changing processes of the transition from liquid to solid is discussed. The authors of
this article did not find any other article dealing with this subject using the commonly used
NIR spectroscopy. Waxes and adhesives commonly used in everyday life were selected as
test objects. As shown in [18], features of the materials change in different environment
conditions, e.g., ambient temperature. In this paper, the method of analyzing optical
reflection spectra of objects whose properties change quickly over time using the Digital
Light Projection (DLP) measurement technique was proposed. The surfaces of several
different materials were selected as test objects, the optical properties of which can vary
even within a few seconds and which can be first approximated as prototypes of materials
used in electron technology. At the current stage, these test objects were: quick-drying
glue, two-component epoxy glue, and natural beeswax. Spectroscopic measurements were
carried out using the DLP NIRSCAN Nano EVM Spectrometer by Texas Instruments. To
process the obtained spectra, ANNs were used. The earlier results of the research with the
ANNs are included in [19,20].

The test measurements were carried out to estimate the possibilities and effectiveness
of further mobile spectroscopic measurements of the surface of materials, emphasising
mobility and the possibility of carrying out measurements in various conditions, especially
apart from stationary laboratories presented.

A method of measuring reflectance with the spectrometer window positioned practi-
cally in direct contact with the tested surface was chosen. In-line measurement results were
saved in .dat or .xlms files for processing with Matlab. The recording time of one reflectance
spectrum in the 900–1700 nm range was 2.67 s, while the spectrum was recorded six times
and averaged.

The kit version of DLP NIRSCAN NANO and the primary measurement schemes were
used in the same way as included in [21,22]. The modernisation of the device allowed it to
work more efficiently after using its own housing design. The test object in the configuration
is typically placed on the windows at the top of the monochromator.

In the next section, the applied measurement method and stand were described. Then,
the results of measurements were presented. At the end, the discussion on received results
and final conclusions were included.

2. Methods

The spectra were recorded using DLP NIRSCAN NANO, i.e., a small-size Texas
Instrument spectrometer operating in the light wavelength range from 900 to 1700 nm with
optical resolution equal to 10 nm [23]. The measurements were carried out several times at
a given measuring point, depending on the selected option. The dimensions of the device,
equal to 58 × 62 × 36 mm allowed us to perform mobile studies of reflectance spectra. The
device can work in the reflective mode. In Figure 1, the general view and data flow in the
measurement stand are visualised. The hardware part of the stand consists of the DLP NIR
EVM spectrometer connected with a PC using USB. The spectrometer produces light of
a specific wavelength illuminating the examined sample and then measures the intensity
of light that passes through the sample. The software part of the stand includes the DLP
NIRscan Nano GUI (used to control the device, simple visualisation of measurements,
collecting and saving of data in the appropriate format) and the Matlab program (used for
data processing employing ANNs). The spectra obtained from the first software can be
displayed and saved in two formats: CSV and DAT. Matlab accepts both file formats.
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Figure 1. The measurement stand based on the DLP NIR EVM spectrometer: (A)—a scheme of the
data flow, (B)—a general view of the stand.

3. Results

The research results were divided into two groups, depending on the type of
examined materials:

1. Wax materials,
2. Adhesive materials.

Both types of materials changing from liquid to solid (solidification time) at different
rates. Therefore, the research was conducted with different time scales to observe the
essential parts of the processes.

The measurements results of both material groups are presented in the two following
subsections. In the next subsection, the results of research using Artificial Neural Networks
(ANNs) are included.

3.1. Wax Materials

Paraffin and beeswax were selected as representatives of the first group of materials.
These materials are characterised by a quick transition from liquid to solid phase of approx.
30 [s]. Therefore, the time interval between consecutive measurements equal to 2.67 [s] was
chosen. In Figure 2, the obtained results of seizing reflectance R for paraffin and natural
beeswax for subsequent time steps and different wavelengths of light are illustrated. The
reflectance is given without a physical unit. If R achieves 1, it means that all the light was
reflected. At first glance, the transition of the paraffin is similar to beeswax. However, as it
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turned out, the spectra of these two substances differed significantly in reflectance levels
during the change of the state of aggregation. Still, the characteristics are very similar. Both
materials have characteristic peaks around 1200 [nm] and 1400 [nm]. Some differences
between the materials may be because due to their different colours, i.e., the tested beeswax
is yellow while the paraffin is white. The total observation time ranged from 0 to 28.6 s,
during which time the materials changed from liquid to solid. The value t1 is equal to 0 [s],
and t11 is equal to 28.6 [s].

(A)

(B)

Figure 2. Reflectance spectra of two wax materials: (A)—paraffin, (B)—beeswax.

3.2. Adhesive Materials

The next group of tested materials were adhesives. General-purpose adhesives avail-
able on the commercial market and used in households. The two following kinds of such
adhesives were selected and then investigated using DLP NIR spectrometry:
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1. Cyanoacrylate glue, so called “superglue”,
2. Two-component epoxy glue.

Due to the longer time of transition from liquid to solid phase of the second group of
materials, a longer time interval between successive measurements was selected, i.e., 60 [s].
All the measurements took 10 [min]. In Figure 3, the results of changes in reflection spectra
over time were illustrated, i.e., over the course of the solidification process. The changes
during the superglue test turned out to be not very expressive. Even after hardening, the
glue was characterised by high transparency, and no apparent changes over time could
be observed. Significant differences were observed only at the edge of the measurement
ranges. A considerable fluctuation can be seen in the long-wave region. It may be due to
the operating range of the device. A more extensive measuring range would allow a more
precise material analysis.

Considering the reflectance spectrum of epoxy glue (Figure 3), similar to wax materials,
characteristic peaks around 1200 [nm] and 1400 [nm] can be observed. After a detailed
comparison, it should be stated that the characteristics peaks are more distant from each
other than for the wax materials, i.e., the first peak can be seen below a wavelength of
1200 [nm] and the second at wavelengths higher than 1400 [nm].

(A)

(B)

Figure 3. Reflectance spectra of two adhesive materials: (A)—superglue, (B)—epoxy glue.
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Moreover, it is tough to differentiate the lines corresponding to the successive time
steps. The lines are overlapped, and their order changes for various wavelength ranges,
e.g., the range from 900 [nm] to 1430 [nm] and the range from 1430 [nm] to 1700 [nm].
It is possible that analysis of the adhesive materials requires a spectrometer offering a
broader wavelength.

The obtained in the following time steps reflectance spectra of selected waxes and
adhesives showed that the spectra course and their change over time are unique for each
material. It can be used for determining relationships between specific spectra and the
progress of the solidification process of the particular material. However, the measurement
of adhesives needs to use a spectrometer offering a wider wavelength than used in research.
It results from the observations that it is tough to differentiate the lines corresponding to
the successive time steps. Moreover, the lines are overlapped and their order changes for
various wavelength ranges.

3.3. Different Variants of ANNs

The obtained results (reflection spectra of individual materials) were uploaded to the
Matlab program (Figure 4) to train the neural networks based on the obtained series of
measurements, which can be used to identify the solidification stage (stage) of the material
observed. However, in the first place, it was necessary to check the efficiency of the available
learning methods and the correct minimum number of hidden neurons nh to minimise the
Mean Square Error (MSE). This is essential because the level of this error tells us about the
degree of network training (the ability to recognise objects with a relatively low time error).

Figure 4. Matlab toolbox for ANN training and verification.

Different training methods for ANNs available in Matlab were also compared to find
the method which reduces the MSE error to a minimum with the lowest possible number
of hidden neurons. For example, the analysis for a network containing 200 neurons using
a typical PC (4 GB operating memory, 3.30 GHz processor) takes about 2 h. During the
tests, eleven methods of learning the network were tested based on up to 80 measurement
spectra for each of the selected test objects.

The general structure of ANNs is illustrated in Figure 5. ANNs consists of three inputs,
a hidden layer including the specific number of neurons, and one output layer. As can be
seen, the number of neurons in the hidden layer was changed from 10 to 200 at step 10 of
the research.
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Figure 5. General structure of ANNs.

4. Discussion

In Figure 6, the ANNs verification results have been presented. The ANNs were
trained by different learning methods on two measurement series for beeswax and paraffin
materials. For the appropriate methods, the network in the first case achieves a satisfactory
level of MSE with about 40 hidden neurons, which directly translates into a short analysis
time. However, when analysing paraffin, the course of the MSE change is quite different,
despite their being similar materials. A satisfactorily low error rate is obtained with about
20 hidden neurons. The mathematical description of the learning methods, using abbrevi-
ated names from Matlab, is included in [24]. In Table 1, the abbreviated names are presented
with the corresponding full name of the methods.

(A)

(B)

Figure 6. MSE for ANN’s verification for different learning methods and number on neurons in the
hidden layer for wax materials: (A)—beeswax, (B)—paraffin.
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Table 1. The abbreviated and full names of the learning methods for ANNs.

No Abbreviated Full
of Method Name Name

1 trainbr Bayesian regularization backpropagation
2 trainlm Levenberg–Marquardt backpropagation
3 trainbfg BFGS quasi-Newton backpropagation
4 traincgb Conjugate gradient backpropagation

with Powell–Beale restarts
5 traincgf Conjugate gradient backpropagation

with Fletcher–Reeves updates
6 traincgp Conjugate gradient backpropagation

with Polak–Ribiére updates
7 traingda Gradient descent with adaptive learning

rate backpropagation
8 traingdm Gradient descent with momentum backpropagation
9 traingdx Gradient descent with momentum and adaptive

learning rate backpropagation
10 trainrp Resilient backpropagation
11 trainscg Scaled conjugate gradient backpropagation

The trangdm method (Gradient descent with momentum backpropagation) achieved
a lower error rate with about 50 hidden neurons (Table 2). Nevertheless, the course of MSE
changes as a function of the number of neurons is chaotic. The network learning method
that achieves a significantly lower MSE rate for the value of around 110 hidden neurons is
traingdx (gradient descent with momentum and adaptive learning rate backpropagation)
method. An essential piece of information resulting from comparing these two allegedly
similar materials is that, as can be observed, increasing the number of hidden neurons
does not significantly improve the MSE value. It only causes a significant extension of
the analysis time. In addition, it turns out that the bottom learning method optimal for
a given material (measurement series of reflection spectra) will not be suitable for an-
other measurement series of a different material, even for materials supposedly similar to
each other.

Table 2. The obtained minimum MSE and corresponding number of neurons nh in the hidden layer
for the selected learning methods and the wax materials.

No Beeswax: Beeswax: Paraffin: Paraffin:
of Method MSE nh MSE nh

1 0.016 50 0.027 120
2 0.003 50 0.027 200
3 0.005 140 0.028 80
4 0.006 170 0.029 60
5 0.007 100 0.028 180
6 0.001 90 0.028 100
7 0.007 40 0.026 70
8 0.012 170 0.022 50
9 0.012 80 0.023 110

10 0.006 40 0.028 90
11 0.010 180 0.028 140

The idea for the further development of the research is presented in Figure 7. The use
of the statistical Principal Component Analysis (PCA) method is also considered, which
would allow for a reduction in the statistical data set and speed up the analysis time. The
idea behind the algorithm is to monitor and save the most significant variances in the data
set. Elements with low or zero variance of the set are ignored [25]. However, as already
mentioned, for a given measurement series of a specific material, it will be necessary to
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select a particular method and determine the optimal number of hidden neurons to shorten
the analysis time as much as possible.

Figure 7. Conception of future development of software in Matlab.

5. Conclusions

Measurements of optical properties of materials whose aggregate state is unstable
can be effectively carried out using the DLP method using DPL NIR Scan equipment.
To increase the certainty of analysis of rapidly changing spectra, the method of spectra
analysis using neural networks was tested. Four materials were tested in the study: epoxy,
cyanoacrylate glue, paraffin, and beeswax. The first two materials are adhesives, while the
second two are waxes. Based on the results of the research, the following conclusions can
be stated:

1. Samples from the adhesive materials showed almost no changes in the optical spec-
trum in the range from 900 to 1700 nm during the solidification process. Therefore,
their further analysis using neural networks is pointless. The lack of visible changes
will not allow determining of the characteristic features for a given moment of the
solidification process. A spectrometer with a wider wavelength range would possibly
give better results.

2. The results of measurement of waxes showed significant changes in optical properties
in the measurement range mentioned above. Along with the solidification process,
the reflectance level changes slightly and the characteristic shape changes.

3. ANN analysis showed MSE values for individual learning methods with a relatively
small number of 40–50 neurons at satisfactory levels. It is possible to describe sets
of spectra using ANNs with appropriate learning methods, reducing the number
of hidden neurons to a minimum. This is vital because it significantly affects the
analysis time.

Thanks to the DLP NIRSCAN Nano device, it is possible to monitor the reflection
spectra and thus the changes taking place in various types of materials. Analysing the
spectra makes it possible to observe the course and dynamics of changes, which may be
helpful information during technological processes where the given materials are used.
The analysis of the spectra of objects with variable optical parameters using ANNs tells
us that the described learning methods implemented in Matlab can learn entire series of
measurements without significant problems and then recognise specific measures while
maintaining a relatively small error (the described learning methods used about 80% of
the measurement series for learning and about 20% of the series were used for network
verification and MSE determination). During the analysis, it turned out that there is no
universal method of training the networks, even for similar materials. The method and the
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optimal number of neurons should be matched to a given material, which in the future may
allow for the recognition of materials or determining their condition. The next planned
stage of the study is the modification of the program. After reading the given measuring
series of the spectra of a given object, it will be possible to determine the time and stage of
setting of a random measured adhesive sample. Thanks to this solution, it will be possible
to determine the time (solidification stage) with a small error in any technological processes
where wax is used. Such information can be beneficial in solidifying glues, resins, and
other materials.
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ANN Artificial Neural Network
CSV Comma-Separated Values
DAT generic DATa file
DLP Digital Light Projection
DMD Digital Micromirror Device
EVM Evaluation Module
MSE Mean Square Error
NIR Near Infrared Spectroscopy
PC Personal Computer
USB Universal Serial Bus
VS Visible
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