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Abstract: In the prognosis of radar transmitter degradation malfunction, there are some restrictions,
such as the fact that it is difficult to obtain fault samples and the monitoring data cannot reach
the fault threshold. For these restrictions, a novel data-driven prognostic method is proposed
to predict the radar transmitter degradation malfunction, in which the dynamic updated-auto-
regressive integrated moving average is proposed to be used to predict the subsequent time-step of
the microwave measurement historical data, and the multivariate isolation forest established without
fault samples is used to detect the degradation malfunction. The validity and portability of the model
are verified using two-type of degradation malfunction prognostic experiments. The experimental
results show that the degradation malfunction can be predicted at least 10 time-steps (100 min)
before the occurrence of a degradation malfunction. Compared with the existing radar degradation
malfunction prediction methods, the proposed method needs less historical data, no fault samples, no
artificial thresholds, and no extracting features. This method can complete a degradation malfunction
prognosis when there are relevant restrictions.

Keywords: fault prognosis; degradation malfunction; radar transmitter; artificial intelligence

1. Introduction

For marine radar, the radar transmitter is regarded as the heart of the radar and is
a component with frequent failures. The degradation of the transmitter’s performance
will weaken its radar detection capabilities and seriously affect the quality of navigation
and related tasks. Once the transmitter undergoes the degradation malfunction during
sailing, it will cause unpredictable consequences. However, the current prognosis of radar
degradation malfunction mainly relies on manual routine maintenance before fault and
built-in test (BIT) warnings when a fault occurs. However, the former requires a lot of
manpower and time, and the latter cannot meet the actual demand for early warning of
degradation malfunctions. In recent years, with the rapid development of sensors and
microwave measurement technology, the historical working data of the system can be
collected using sensors or microwave measurement technology, and the working status of
the system can be predicted or managed by various intelligent algorithms and data models.
Although these technologies can effectively solve the abovementioned problems, as the
complexity of marine radar systems continues to increase, there are more and more restric-
tions for the prognosis of radar transmitter degradation malfunctions based on microwave
measurements. On the one hand, the monitoring data fluctuate within the normal range
before the occurrence of the degradation malfunction, and the data do not obey a specific
mathematical distribution, so they are unable to effectively set the degradation malfunction
threshold. On the other hand, the correlation between the historical data collected by each
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microwave measurement point is unknown, and the number of fault samples that can be
monitored is extremely limited (or even zero). Therefore, how to realize the prognosis of the
degradation malfunction of the radar transmitter in the face of the mentioned restrictions
has become an urgent problem to be solved.

The research to date has tended to focus on prognostic methods based on measurement
and data-driven models, which have been widely used in transportation [1–3], biology [4,5],
machinery [6–8], energy [9–11], market [12–14], radar [15–24], and other applications.
Among them, the research results of malfunction prognoses in radar-related fields continue
to emerge. Zhang et al. [15] established the relationship between the signal subspace to
identify the fault of the antenna. Khan et al. [16] proposed a simple method to diagnose
the position of the damaged sensors for a linear array antenna using the symmetrical
sensor damaged technique and the radiation pattern. Chen et al. [17] adopted the fault-
prediction method based on entropy values to predict the array antenna fault of bistatic
multiple-input–multiple-output (MIMO) radar. Finchera et al. [18] realized the online
failure detection of large massive MIMO linear arrays utilizing numerical optimization
of the position of a few near-field probes. Liu et al. [19] established the function between
predicted data and historical data to calculate the radar’s remaining useful life using
the prediction method of the non-parametric regression kernel function. Li et al. [20]
used a diagnosis model with a dynamic threshold based on deep learning to predict the
meteorological radar fault. Zhai et al. [21] proposed a prediction model combining the
multivariate long short-term memory (LSTM) networks with a multivariate Gaussian
distribution to predict the transmitter degradation fault. Wang et al. [22] developed a data-
driven fault-detection method using principal component analysis to detect the fault of the
fans in a radar cooling system. Li et al. [23] achieved the classification of radar equipment
faults utilizing a data-augmentation method based on TF-IDF features. Zhao et al. [24]
presented a testable radar system design and demonstration approach based on fault
modes and software control actions for improving the self-diagnosis ability of a radar
system and reducing the fault rate. Unfortunately, there are many limitations in the above
radar-malfunction prognosis methods. These are shown in Table 1. It can be seen from the
table, References [15–18,22,23] needed to extract the effective feature or radiation pattern
of the degradation fault. In [19,22], an artificial threshold needed to be set to judge the
fault. Reference [19,20,23,24] also needed extensive historical data and fault samples for
its training sets. Although reference [21] solves the two restrictions of radar transmitter
degradation fault, this method is not accurate enough for data prediction, and at least one
fault sample is still needed.

Table 1. The limitations in the existing radar malfunction prognosis methods.

The Limitations Reference

Feature extraction required [15–18,22,23]
Artificial threshold required [19,22]

Extensive historical data and fault samples
required [19,20,23,24]

By analyzing the constraints of the fault-prediction model in Table 1, it can be seen
that the need for building a radar transmitter degradation malfunction prognosis model
that using less historical data, no artificial thresholds, no features extraction, and no fault
samples is urgent. To meet the above requirements, a novel prognostic model combined
with dynamic updated-auto-regressive integrated moving average (DU-ARIMA) and mul-
tiple isolation forest (M-iForest) is proposed for radar transmitter degradation malfunction.
The main contributions of this article can be summarized as follows:

(1) A novel radar transmitter degradation malfunction prognosis model is proposed.
(2) The accuracy of the future time-step for monitoring data prediction is improved.
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(3) Radar transmitter degradation malfunction detection is realized when there are small
samples, no fault samples, no feature extractions, and no artificial thresholds.

The paper is organized as follows: Section 2 analyzes the proposed prognostic model
theoretically. The experiment in Section 3 verifies the feasibility and portability of the
model. Section 4 provides the conclusions.

2. Prognostic Model of Radar Transmitter Degradation Malfunction

The proposed radar transmitter degradation fault prognosis model combines the
advantages of DU-ARIMA and M-iForest. A flow chart of the model is shown in Figure 1.
The model consists of three steps. Step 1: microwave measurement and data pre-processing.
Step 2: the adoption of DU-ARIMA for data forecasting. Step 3: the M-iForest model to
detect the degradation malfunction.

Stationary? Stationary? Stationary? Stationary?

DU-ARIMA DU-ARIMA DU-ARIMA DU-ARIMA
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value 1

Predictive 

value 2

Predictive 

value 3
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Figure 1. The flow chart of the degradation malfunction prognosis model.

2.1. Microwave Measurement and Data Pre-Processing

The experimental data is collected by microwave measurement performed on a certain
type of marine radar transmitter. There is noise in the measurement data, and, therefore, it
is necessary to pre-process the measurement data. The classic wavelet threshold denoising
method [25] is selected in the proposed model. The parameter settings include: the
threshold function is a soft threshold, the threshold is a heuristic threshold, the wavelet
decomposition level is 1, and the wavelet base is Daubechies (db4).

The next pre-processing step is the stationarity test. It is used to test the stability of the
measured data at each microwave-measuring point. The model chooses two commonly
used and complementary stationarity test methods, Augmented Dickey–Fuller (ADF) [26]
and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) [27]. Among them, only when the return
value of ADF is 1 and the KPSS is 0, is the historical measurement data a stationary
series, while the rest of the return values are judged to be non-stationary series. If the
historical data of each microwave measurement point is a stationary series, it indicates that
the transmitter has no degradation malfunction. Otherwise, it is necessary to predict the
subsequent time-steps of the measurement data to determine whether there is a degradation
malfunction.
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2.2. Dynamically Updated-Auto-Regressive Integrated Moving Average

After data pre-processing, it is necessary to predict the subsequent time-step of the
historical data. To improve the accuracy of the data prediction, the DU-ARIMA method is
proposed. DU-ARIMA is an improved auto-regressive integrated moving average (ARIMA)
designed to improve the prediction accuracy of ARIMA [28]. The DU-ARIMA(p, d, q) model
can be expressed as

Φ(B)(1− B)dxt = Θ(B)εt,
s.t. E(εt) = 0, Var(εt) = σ2

ε , E(εtεs) = 0, s 6= t,
E(xsεt) = 0, ∀s < t, d > 0,
xt+1 can be dynamically updated,

(1)

where xt is the current time-series, εt is the random interference of the time-series, and B is
the delay operator. For a time-series, xt−1 = Bxt, xt−2 = B2xt, · · · , xt−p = Bpxt, for random
interference, εt−1 = Bεt, εt−2 = B2εt, · · · , εt−q = Bqεt. Φ(B) = 1− φ1B− φ2B2− · · · − φpBp.
Θ(B) = 1− θ1B− θ2B2 − · · · − θqBq, p is the order of the auto-regressive model, q is the
order of the moving average model, and d is the order of the difference.

The essence of DU-ARIMA model is the combination of the difference operation and
dynamic updated-auto-regressive moving average (DU-ARMA) models. This means that
any non-stationary series is stationary after one or more difference operations. There-
fore, when using the DU-ARIMA model to predict the non-stationary sequence, firstly,
the non-stationary sequence is transformed into a stationary sequence after a difference
operation. Secondly, the DU-ARMA model is used to predict the stationary sequence.
Finally, the non-stationary sequence-prediction value can be obtained by recovering the
difference operation.

We let yt = (1− B)dxt = ∇dxt = ∇d−1xt −∇d−1xt−1 = ∑d
i=0 (−1)dCi

dxt−i, where
Ci

d = n!
i!(d−i)! . After applying the above difference operation, Equation (1) can be trans-

formed into the auto-regressive moving average (ARMA) model without considering the
condition that xt+1 can be dynamically updated, which is expressed as

Φ(B)yt = Θ(B)εt. (2)

According to the stationarity and reversibility of the ARMA model, the ARMA process
has both the infinite moving average representation yt = [Φ(B)]−1Θ(B)εt = Ψ(B)εt, and
the infinite auto-regressive representation εt = [Θ(B)]−1Φ(B)yt = Π(B)yt. For the infinite
moving average representation, the time-series yt can be represented by a linear function
of random interference terms, see Equation (3). Then, the true value of the subsequent l
time-steps of the time-series can be expressed by Equation (4).

yt = [Φ(B)]−1Θ(B)εt = Ψ(B)εt = ∑∞
i=0 ϕiεt−i. (3)

yt+l = ∑∞
i=0 ϕiεt+l−i

= ϕ0εt+l + ϕ1εt+l−1 + · · ·+ ϕlεt + ϕl+1εt−1 + · · ·

= ∑l−1
i=0 ϕiεt+l−i + ∑∞

i=0 ϕl+iεt−i.

(4)

Since εt+l ,εt+l−1,· · · ,εt+1 cannot be obtained, yt+l can only be estimated by the linear
combination of εt, εt−1,εt−2,· · · , denoted by ŷt+l , which is recorded as Equation (5). From
this, the prediction error value of the ARMA model’s infinite moving average representation
can be obtained, see Equation (6) for details. Equation (7) is the variance of the prediction
error for the ARMA model’s infinite moving average representation.

ŷt+l = ∑∞
i=0 Diεt−i. (5)
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et+l = yt+l − ŷt+l

= ∑l−1
i=0 ϕiεt+l−i + ∑∞

i=0 ϕl+iεt−i −∑∞
i=0 Diεt−i

= ∑l−1
i=0 ϕiεt+l−i + ∑∞

i=0(ϕl+i − Di)εt−i.

(6)

Var(et+l) = ∑l−1
i=0 ϕ2

i σ2
ε + ∑∞

i=0 (ϕl+i − Di)
2σ2

ε . (7)

Only when ϕl+i = Di, is the value of the prediction error the smallest. At this time,
ŷt+l , et+l and Var(et+l) can be expressed by Equation (8), Equation (9), and Equation (10),
respectively.

ŷt+l = ∑∞
i=0 ϕl+iεt−i. (8)

et+l = ∑l−1
i=0 ϕiεt+l−i. (9)

Var(et+l) = ∑l−1
i=0 ϕ2

i σ2
ε . (10)

For the dynamic updated-infinite moving average representation, considering the fact
that the condition xt+1 can be dynamically updated to obtain (yt+1 also can be obtained by
difference operation), εt+1 = yt+1− ŷt+1 is known. The estimated value of the subsequent l
time-steps after the dynamic update can be expressed by Equation (11). The prediction error
value after the dynamic update is shown in Equation (12). Equation (13) is the variance of
the prediction error for the dynamic updated-infinite moving average representation.

ŷ′t+l = ∑∞
i=0 ϕl+i−1εt−i+1. (11)

e′t+l = yt+l − ŷ′t+l

= ∑l−2
i=0 ϕiεt+l−i + ∑∞

i=0 ϕl+i−1εt−i+1 −∑∞
i=0 ϕl+i−1εt−i+1

= ∑l−2
i=0 ϕiεt+l−i.

(12)

Var(e′t+l) = ∑l−2
i=0 ϕ2

i σ2
ε . (13)

It is clear that the variance of the prediction error for a dynamic updated-infinite
moving average representation Equation (13) is smaller than that of an ARMA’s infinite
moving average representation (Equation (10)) by ϕ2

l−1σ2
ε .

The infinite auto-regressive representation εt = [Θ(B)]−1Φ(B)yt = Π(B)yt can be also
expressed as

εt = [Θ(B)]−1Φ(B)yt = Π(B)yt = ∑∞
j=0 πjyt−j (14)

or
yt = εt + ∑∞

j=1 πjyt−j. (15)

It can be seen from Equation (15) that the essence of infinite auto-regressive represen-
tation is to predict yt+l by the known historical data, yt, yt−1,yt−2,· · · . It is easy to draw
the conclusions that: if the predicted time-step l is longer, the more unknown data there
will be, and the lower the accuracy of data prediction will be. However, for the dynamic
updated-infinite auto-regressive representation, it can continuously obtain new monitoring
data, yt+1, yt+2,· · · , based on the original historical data yt, yt−1,yt−2,· · · . This means that
the number of unknown data is reduced, which can improve the prediction accuracy of yt+l .
The variance of the prediction error for a dynamic updated-infinite auto-regressive repre-
sentation is smaller than that of an infinite auto-regressive representation by π2

l−1Var(yt+1)
(similar to the variance of the prediction error for a dynamic updated-infinite moving
average representation, see Appendix A for details).



Electronics 2022, 11, 1921 6 of 16

The DU-ARMA model can be seen as a combination of the dynamic updated-infinite
moving average representation and the dynamic updated-infinite auto-regressive represen-
tation, so the variance of the prediction error of the DU-ARMA model is smaller than that
of the ARMA model. According to the difference relationship between DU-ARMA and
DU-ARIMA, the DU-ARIMA model obtained after the recovery difference operation can
predict the non-stationary sequence, and the variance of the prediction error of DU-ARIMA
model is also smaller than that of the ARIMA model. The essence of the DU-ARIMA model
is to input the current monitoring data into the ARIMA model in real time to realize the
dynamic update of historical data. The term “dynamic updated” in DU-ARIMA means
that the user can access the real value of the current time-step to update the model before
predicting the next time-step. Therefore, DU-ARIMA can effectively improve the accuracy
of data prediction. The quality of the DU-ARIMA prediction result can be measured by the
root mean square error (RMSE). The smaller the RMSE value, the better the DU-ARIMA
prediction result.

2.3. Multiple Isolation Forest

For the difficulty of obtaining degradation malfunction samples, the multiple isolation
forest (M-iForest) model is selected to predict the degradation malfunction of historical
monitoring data and predicted data. To know what M-iForest is, it is necessary to start with
isolation forest. Isolation forest is an effective unsupervised outlier detection model [29].
Its main idea is that outliers are few and different.

If isolation forest alone is used to predict the degradation malfunction, there are two
main processes. Firstly, the historical monitoring data and predicted data are randomly
sampled to construct an isolation binary tree. Secondly, the malfunction score of each data
point is obtained through the isolation forest established by the isolation binary tree. The
specific process is shown in part 1 inside the dashed box of Figure 2. To solve the problems
of swamping (normal samples are recognized as outliers) and masking (too many outliers
to cover up the existence of abnormality) caused by too much data, multiple isolation binary
trees are constructed by random sub-sampling. However, the formation of binary trees is
random, which makes it unreliable for a single isolation binary tree to find outliers using
shorter paths. Therefore, multiple isolation binary trees are formed into an isolation forest
to improve reliability. For any sample, x, the malfunction score can be calculated using
Equations (16)–(18), where s(x, n) is the malfunction score, E[h(x)] is the average value of
the sample x path length h(x) in a set of isolation trees, c(n) is the average path length of the
unsuccessful search in the isolation binary tree for the given n samples, H(k) is the number
of harmonics, and ζ is Euler’s constant. The calculated malfunction score, s, is in the range
of [0, 1]. If s is closer to 1, it means that the sample is more likely to be a degradation
malfunction sample. Conversely, if s is closer to 0, it indicates that the sample is more likely
to be a normal sample.

s(x, n) = 2−
E[h(x)]

c(n) . (16)

c(n) = 2H(n− 1)− 2(n− 1)
n

. (17)

H(k) = ln(k) + ζ. (18)

To further improve the reliability and stability of isolation forest, an M-iForest model
is proposed, which aims to construct many isolation forests to ensure the stability of the
malfunction prediction and evaluate the model, as shown in Figure 2 for a whole model.
The generalizability and stability of the model can be evaluated by the area under curve
(AUC). The model will obtain multiple AUC values, because of the construction of multiple
rounds of isolation forests. If the average of AUC is closer to 1, the better the model effect
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and the stronger the generalization ability, while the smaller the variance of AUC, the better
the stability of the model.
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Figure 2. M-iForest flow chart.

3. Experiment and Analysis
3.1. Experimental Conditions and Experimental Design

The experimental platform is a certain type of marine radar transmitter, and multiple
microwave measurement points can be set on the transmitter to monitor the historical
working data of the radar transmitter before any degradation malfunction. To achieve the
purpose of visualization of the experimental results, the experiment collected historical
data of two microwave measurement points (peak power and operating frequency) to
verify the feasibility and portability of the model. The data-sampling frequency of the two
monitoring points is 1 time per 10 min. The hard-wired settings of the experiment are
shown in Figure 3.

Spectrum analyzer Radar transmitter cabinet

Attenuator

Double directional coupler
PC

Figure 3. The hard-wired settings of the experiment.

To verify the feasibility and portability of the proposed prognostic model, the ex-
periment collects two different historical monitoring data concerning the degradation
malfunction of the radar transmitter. Each monitoring point of the first type of degradation
malfunction provides 192 historical data, and the degradation malfunction occurs at the
193rd time-step. The monitoring data of the first type of degradation malfunction after
wavelet denoising is shown in Figure 4. A total of 253 historical data were recorded for the
second type of degradation malfunction, and the second type of degradation malfunction
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occurred at the 254th time-step. The monitoring data after denoising are shown in Figure 5.
Experimental data processing and prognostic algorithms were conducted on the MATLAB
2019b platform.
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Figure 4. The monitoring data after denoising of the first type of degradation malfunction. (a) Peak
power. (b) Working frequency.
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Figure 5. The monitoring data after denoising of the second type of degradation malfunction.
(a) Peak power. (b) Working frequency.

3.2. Feasibility Experiment and Result Analysis

To verify the feasibility and validity of the proposed model, the first type of degrada-
tion malfunction data is selected for the experiment. The first 90% (173) of the denoising
data is selected as the historical data. ADF and KPSS are used for the stationarity test. The
return value and stationarity results of the test are shown in Table 2. It can be seen from
the table that the two historical data are non-stationary series, so DU-ARIMA needs to be
used to predict the data of the next 10% (19). The DU-ARIMA(1,1,10) model should be
used for the data prediction of peak power and the DU-ARIMA(3,1,13) model for operating
frequency. To obtain more accurate data prediction results, we set the prediction time-step
l = 1. The prediction results are shown in Figure 6. The predicted data are compared with
the real monitoring data, and the RMSE is calculated to evaluate the DU-ARIMA model.
Partial magnifications of the prediction result and RMSE are shown in Figure 7. It can be
seen from the figure that the RMSE of the two microwave measurement points predicted
by DU-ARIMA are 0.068333 and 0.0077417, respectively, which are much lower than the
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0.15848 and 0.028292 in [21]. The experiment results show that the DU-ARIMA has higher
a prediction accuracy.

Table 2. Test results of stationarity for measurement data of the first type of degradation malfunction.

The Historical Data ADF KPSS Stationarity

Peak power 0 1 Non-stationarity
Operating frequency 0 1 Non-stationarity
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Figure 6. Monitoring data after denoising and prediction results of the first type of degradation
malfunction. (a) Peak power. (b) Working frequency.
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Figure 7. Partial magnification of prediction results and RMSE of the first type of degradation
malfunction. (a) Peak power. (b) Working frequency.

It can be considered that the predicted data can represent the actual data on the
basis of DU-ARIMA’s accurate prediction of the data. At this time, the unsupervised
M-iForest model is used to detect the degradation malfunction for the historical data and
the prediction data of the two measurement points (peak power and operating frequency).
In the experiment, the number of random sub-sampling is 256, the number of isolated
binary trees is 100, and the number of isolation forests is 10. The model provides the
alarm time-step for the degradation malfunction and uses AUC to evaluate the model. The
experimental results are shown in Table 3. It can be seen from the table that the average of
the AUC is 0.9895 (close to 1), which means that the model has a strong generalizability. The
variance of AUC is 0, that is, the model is stable. The earliest alarm time-step is 183. This
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indicates that the M-iForest model can predict the degradation malfunction 10 time-steps
(100 min) in advance. Since the two-dimensional data has the characteristic of visualization,
the visualization results of the experiment are shown in Figure 8. The samples marked by
the green circles in the Figure 8 are the malfunction alarm samples detected by M-iForest.
Obviously, these samples are more alienated from other samples, so they are more likely to
be detected as malfunction samples.

Table 3. M-iForest model evaluation results and malfunction alarm time-step of the first type of
degradation malfunction.

The Evaluation Results Values

AUC Average 0.9895
AUC Variance 0

Alarm time-step 183, 184, 188, 189, 190, 191, 192
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Figure 8. The visualization results of the first type of degradation malfunction prognosis experiment.

The result of the M-iForest degradation malfunction detection without prediction by
DU-ARIMA are shown in Table 4 and Figure 9. Compared with Table 3, we find that the
alarm time-step is not much different, but the alarm time differs by one data-sampling time
interval. For example, a malfunction alarm will occur at the time-step 183 identically, and
the M-iForest alarm time with prediction by DU-ARIMA will be one data-sampling interval
earlier than that of the alarm time without prediction by DU-ARIMA (10 min). Specifically,
the M-iForest malfunction detection with prediction by DU-ARIMA is to predict and
alarm for the 183rd time-step when the 182nd monitoring data point is obtained, while
the M-iForest malfunction detection without DU-ARIMA will sound an alarm after 10 min
(after obtaining the 183rd monitoring data). For a large and complex electronic device
such as radar, this precious 10 min will avoid a lot of unnecessary losses. Therefore, if
the data-sampling time interval is longer, the malfunction alarm time with prediction by
DU-ARIMA will be earlier than the alarm time without prediction by DU-ARIMA.

Table 4. M-iForest model evaluation results and malfunction alarm time-step without prediction by
DU-ARIMA.

The Evaluation Results Values

AUC Average 0.9906
AUC Variance 0.0022

Alarm time-step 183, 184, 185, 188, 189, 190, 191, 192
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Figure 9. The visualization results of the degradation malfunction prognosis experiment without
prediction by DU-ARIMA.

The experimental results for the first type of degradation malfunction show that the
novel prognostic model for radar transmitter degradation malfunction combined with
DU-ARIMA and M-iForest proposed in this paper is reasonable and feasible.

3.3. Portability Experiment and Result Analysis

To verify the portability of the proposed model, the second type of degradation
malfunction data is selected for the same experiment with the same method. Among them,
the first 90% (229) of the denoising data was used for testing the stationarity by ADF and
KPSS. As expected, the data of the two microwave measurement points are non-stationary
series. So, the next 10% (25) of the data can be predicted by DU-ARIMA, the DU-ARIMA(13,
1, 14) model for the data prediction of peak power , and the DU-ARIMA(6, 1, 14) model
for operating frequency. The partial magnification of the prediction result and RMSE are
shown in Figure 10. At the same time, the unsupervised M-iForest model completes the
degradation malfunction detection for the 229 historical data and 25 predicted data. The
M-iForest model evaluation results and malfunction alarm time-step of the second type of
degradation malfunction are shown in Table 5. The visualization results of the second type
of degradation malfunction prognosis experiment are shown in Figure 11.

Table 5. M-iForest model evaluation results and malfunction alarm time-step of the second type of
degradation malfunction.

The Evaluation Results Values

AUC Average 0.9944
AUC Variance 0.0028

Alarm time-step 244, 245, 246, 247, 248, 249, 250, 251, 252, 253

It can be seen from the results of the portability experiment that the RMSE of the pre-
diction results for the peak power and the operating frequency in Figure 10 are 0.12995 and
0.0079966, respectively. The earliest alarm time-step in Table 5 is 244, that is, the proposed
method can predict the degradation malfunction 10 time-steps (100 min) in advance. The
visualization results in Figure 11 are similar to those in Figure 8. The samples marked with
green circles are alienated from other samples and are the degradation fault alarm samples
detected by M-iForest. It is clear that the proposed model has good portability and can be
applied to the prediction of different types of degradation malfunction.
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Table 6 compares the proposed degradation malfunction prognostic model with the
previous method. It can be seen from the table that, compared with [19–21], the method
proposed in this paper has a smaller sample size. It also does not need to set the artificial
threshold, extract the feature, and use the fault samples for training.
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Figure 10. Partial magnification of prediction results and RMSE of the second type of degradation
malfunction. (a) Peak power. (b) Working frequency.
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Figure 11. Visualization results of the second type of degradation malfunction prognosis experiment.

Table 6. Comparison between the proposed method and the existing method.

Reference [19] [20] [21] This Work

Artificial threshold Yes No No No
Feature extraction Yes No No No
The historical data 1120 5500 <300 <300
The fault sample Not mentioned Not mentioned >1 No need

4. Conclusions

This paper proposed a novel radar transmitter degradation malfunction prognosis
model that combined with DU-ARIMA and M-iForest. This method considers the re-
strictions of the difficulty in obtaining fault samples and the fact that monitoring data
cannot reach the fault threshold. This paper discusses the workflow and basic theory of
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the proposed prognostic model for radar transmitter degradation fault. We set up two
microwave measurement points and different types of degradation malfunction experi-
ments to verify the feasibility and portability of the model. The degradation malfunction
can be predicted at least 10 time-steps (100 min) before its occurrence. Compared with
existing radar degradation malfunction prediction methods, the proposed method can
complete the degradation malfunction prognosis using less historical data, no artificial
thresholds, no features extraction, and no fault samples. The experimental results show that
the model can effectively and feasibly realize the prediction of degradation malfunctions for
radar transmitters.
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Appendix A

The infinite auto-regressive representation εt = [Θ(B)]−1Φ(B)yt = Π(B)yt, can be
also expressed as

εt = [Θ(B)]−1Φ(B)yt = Π(B)yt = ∑∞
j=0 πjyt−j (A1)

or
yt = εt + ∑∞

j=1 πjyt−j. (A2)

The true value of the subsequent l time-steps of the time-series can be expressed by

yt+l = εt+1 + ∑∞
j=1 πjyt+l−j

= εt+1 + ∑l−1
j=1 πjyt+l−j + ∑∞

j=0 πl+jyt−j

= εt+1 + ∑l
j=1 πjyt+l−j + ∑∞

j=1 πl+jyt−j.

(A3)



Electronics 2022, 11, 1921 14 of 16

Since yt+l can only be estimated by the linear combination of yt, yt−1,yt−2,· · · , denoted
by ŷt+l , which is recorded as

ŷt+l = εt + ∑∞
j=0 Ejyt−j. (A4)

From this, the prediction error value of the ARMA’s infinite auto-regressive represen-
tation can be obtained by

ft+l = yt+l − ŷt+l

= εt+1 − εt + ∑l−1
j=1 πjyt+l−j + ∑∞

j=0 (πl+j − Ej)yt−j,
(A5)

only when πl+j = Ej, the value of the prediction error is the smallest. So, ŷt+l , ft+l and
Var( ft+l) can, respectively, be expressed by

ŷt+l = εt + ∑∞
j=0 πl+jyt−j. (A6)

ft+l = εt+1 − εt + ∑l−1
j=1 πjyt+l−j. (A7)

Var( ft+l) = Var(εt+1)−Var(εt) + Var(∑l−1
j=1 πjyt+l−j)

= σ2
ε − σ2

ε + ∑l−1
j=1 π2

j Var(yt+l−j)

= ∑l−1
j=1 π2

j Var(yt+l−j).

(A8)

For the dynamic updated infinite auto-regressive representation, considering the fact
that the condition xt+1 can be dynamically updated to obtain yt+1, i.e., it can also be
obtained by a difference operation. The estimated value of the subsequent l time-steps after
the dynamic update can be expressed by

ŷ′t+l = εt + ∑∞
j=0 πl+j−1yt−j+1

= εt + ∑l
j=l−1 πjyt+l−j + ∑∞

j=1 πl+jyt−j.
(A9)

The prediction error value of ARMA’s dynamic updated infinite auto-regressive
representation can be obtained by

f ′t+l = yt+l − ŷ′t+l

= εt+1 − εt + ∑l
j=1 πjyt+l−j −∑l

j=l−1 πjyt+l−j

= εt+1 − εt + ∑l−2
j=1 πjyt+l−j.

(A10)

The variance of the prediction error for the dynamic updated infinite auto-regressive
representation can be expressed as

Var( f ′t+l) = Var(εt+1)−Var(εt) + Var(∑l−2
j=1 πjyt+l−j)

= σ2
ε − σ2

ε + ∑l−2
j=1 π2

j Var(yt+l−j)

= ∑l−2
j=1 π2

j Var(yt+l−j).

(A11)

It is clear that the variance of the prediction error for a dynamic updated infinite auto-
regressive representation is smaller than that of an infinite auto-regressive representation
by π2

l−1Var(yt+1).
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