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Abstract: In this work, conventional and drain offset junctionless (JL) finlike thin-film transistors
(FinTFTs) with and without extended gate field plate (E-GFP) are fabricated. Drain offset JL FinTFTs
showed a higher breakdown voltage than that of the conventional one. By extending the GFP
over the drain offset region, holes were generated on the surface of the drain offset region that
reduce drain resistance. Therefore, the drain offset JL FinTFT with E-GFP exhibited better on-current,
breakdown, and high-frequency characteristics than the one without E-GFP. Results also show that all
the noise spectral densities of various JL FinTFTs follow a 1/f trend and were similar in the studied
frequency range.

Keywords: drain offset; gate field plate; junctionless FinTFT; RF; system-on panel

1. Introduction

Polycrystalline silicon thin-film transistors (poly-Si TFTs) are possible candidates for
radio frequency (RF) applications owing to their higher electron mobility and driving
current than those of amorphous silicon TFTs [1–3]. In recent years, the RF integrated
circuit (IC) has been embedded in display panels as, for example, a frequency divider [4],
phase-locked loop (PLL) [5], and amplitude-shift-keying demodulator for RF identification
tags (RFID) [6], to realize system-on-panels (SOPs). To overcome the short-channel effects
(SCEs) caused by the shrinking of the conventional MOSFET, junctionless (JL) field-effect
transistors without metallurgical junction were adopted. In this study, we present the drain
offset JL poly-Si finlike thin-film transistors (FinTFTs) with and without an extended gate
field plate (E-GFP) in comparison with the conventional one. The effect of drain offset and E-
GFP on the DC, breakdown, and RF characteristics of JL poly-Si FinTFT are investigated. In
addition, the low-frequency noise (LFN) of JL FinTFTs with various structures is compared.
The DC and RF characteristics of various JL poly-Si FinTFTs after postmetal annealing
(PMA) in forming gas (FG) are discussed.

2. Experiments

JL FinTFTs were fabricated on a 6-silicon wafer with a 1 µm thick silicon dioxide layer
as the substrate. First, a 50 nm thick undoped amorphous silicon layer was deposited
and then crystallized by solid-phase crystallization at 600 ◦C for 24 h. The silicon layer
was implanted by 49BF+2 at 15 keV at doses of 1 × 1014 cm−2. The trench structure with
30 nm channel thickness and the active region with multiple nanowires were defined by
electron-beam lithography and anisotropic etched by reactive ion etching, respectively.
After the active region had been defined, a 10 nm Al2O3 layer was deposited by atomic
layer deposition as a gate insulator, and a 50 nm TiN was deposited and patterned to form
a gate electrode. Subsequently, the source and drain were implanted with 49BF+2 at 8 keV
at doses of 1 × 1015 cm−2, and then subjected to 300 s of low-temperature microwave
annealing at a power of 2400 W. For the drain offset sample, a mask was used, so that on
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the right side of the gate, part of the drain area remained p−. Lastly, a 300 nm thick TEOS
oxide was deposited, followed by Al–Si–Cu metallization. For the device with E-GFP, the
Al–Si–Cu metal above the gate extended towards the drain region and covered the p−/p+

junctions as a GFP. Figure 1 shows the process flow of JL FinTFTs.
On-wafer two-port measurements were taken using an Agilent N5245A Network

Analyzer and then de-embedded by subtracting the OPEN dummy. Various control biases
were applied using an HP 4142B source measure unit.
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Figure 1. Process flow of JL FinTFTs.

3. Results

Figure 2a,c present the schematic top view of conventional and drain offset JL FinTFTs
with and without an extended GFP (E-GFP). The trench length (Lg) for all devices was
200 nm. Figure 2a shows a conventional structure with a drain offset length (LP

−) of 0 µm.
Only the poly-Si under the gate electrode was p−, and the rest was p+. Figure 2b shows the
drain offset JL FinTFT without E-GFP. When applying ion implantation doping to S/D, a
mask is used, and a part of the area next to the drain remains p−, so that the uncovered
part of the gate electrode also retains a small region as p−. This drain offset length (LP

−) is
0.25 µm. Figure 2c shows the drain offset JL FinTFT with E-GFP. A GFP extends towards
the drain region and covers the p−/p+ junctions. The cross-section for drain offset JL
FinTFT with E-GFP along B–B′ direction is shown in Figure 2d. Table 1 lists structures and
notations for the sample JL FinTFTs used in this study.

Figure 3a presents a top-view scanning electron microscope (SEM) image of the JL
FinTFT, and shows the gated raised S/D structure. The multiple nanowire structure was
adopted to improve gate controllability and suppress the short channel effects. Figure 3b
depicts the cross-sectional transmission electron microscopy (TEM) image of a single
nanowire (NW) along with the A–A′ direction in Figure 2a. The bottom side of each
channel wire (W0) was 50 nm, and the measured width of each channel wire (Wnw) was
approximately 100 nm. In this work, the total fin number was 160, and the effective channel
width (Weff) was 16 µm.

Table 1. JL FinTFT structures and notations.

JL FinTFTs Notations

Conventional JL FinTFTs Conv.
Drain offset JL FinTFT with E-GFP Drain offset w/E-GFP

Drain offset JL FinTFT without E-GFP Drain offset w/o E-GFP



Electronics 2022, 11, 1886 3 of 12

Electronics 2022, 11, x FOR PEER REVIEW 3 of 12 
 

 

 

 

 

      

Figure 2. Schematic top view of JL FinTFT for (a) conventional structure with drain offset length 
(LP−) of 0 μm. (b) Drain offset JL FinTFT without E–GFP and (c) drain offset JL FinTFT with E–GFP. 
(d) Cross–sectional view of drain offset JL FinTFT with E–GFP along B–B’ direction. 
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3.1. DC and Breakdown Characteristics

Figure 4 shows the transfer characteristic curves of JL FinTFTs with various structures.
Drain offset JL FinTFTs without E-GFP have a lower on-state current compared to that of
others due to its lower drain offset doping concentration. When negative voltage applies to
the gate, and the GFP extends towards the drain region and covers the p−/p+ junctions, a
hole accumulation layer is induced at the surface of the drain offset under the GFP. This
hole accumulation layer increases the on-state current. Table 2 lists the electrical parameters
of the JL FinTFTs with various structures. Vth is defined as the gate voltage required to
achieve a normalized drain current of Id = (W/L) × 10−8 A at Vd = 2 V. DIBL is defined
as ∆Vg/∆Vd at Id = 10−7 A. The subthreshold swing (SS) values of the conventional one,
drain offset without E-GFP, and drain offset with E-GFP were 397, 403, and 405 mv/dec,
respectively. The on-current at VGS = −3 V and VDS = −2 V, and the Ion/Ioff ratio of the
drain offset JL FinTFTs with E-GFP were improved compared to those of the one without
E-GFP due to the hole accumulation layer induced at the surface of the drain offset region
under the E-GFP.

Table 2. Electrical parameters of the JL FinTFTs with various structures.

Device Vth (V) DIBL
(mV/V) SS (mV/dec) Ion/Ioff (A/A) ION

(mA/mm)

Conventional 0.96 352 397 2.84 × 104 23.4
Drain offset w/o E-GFP 0.86 388 403 3.22 × 103 14.5
Drain offset w/E-GFP 0.95 370 405 6.27 × 103 17.8
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Figure 4. Transfer curves of JL FinTFT for conventional JL FinTFT, drain offset JL FinTFT without
E−GFP, and drain offset JL FinTFT with E−GFP.

Figure 5a plots the off-state and on-state breakdown voltage of JL FinTFTs. The off-
state and on-state breakdown characteristics were measured with VGS − Vth = 0 V and
VGS − Vth = −2 V, respectively. To define VBD more precisely, we plotted d (log (ID))/dVDS
as a function of the drain voltage (Figure 5b,c) and obtained the breakdown voltage from
the peak value [7]. Drain offset JL FinTFTs with E-GFP had a larger breakdown voltage than
that of the conventional one. To clearly understand the effect of structure on breakdown
voltage, the electric field distribution of various JL FinTFTs before breakdown was analyzed
and is shown in Figure 5d. For the conventional JL FinTFT, a high electric field peak was
observed at the right edge of the gate and the p−/p+ junction. When the LP

− was 0.25,
the p−/p+ junction moved to the right and suppressed the electric field peak at the p−/p+

junction, resulting in gradual field distribution. Therefore, the JL FinTFT with drain offset
rendered the electric field distribution more uniform and increased the device breakdown
voltage. However, the light doping concentration of the drain offset region increased the
specific-on resistance (Ron,sp) as shown in Figure 5. Drain offset JL FinTFTs without the
E-GFP had the largest Ron,sp value among all structures. Adding the E-GFP structure could
further increase the breakdown voltage and induce holes at the surface of the drain offset
under the E-GFP, thereby reducing the Ron,sp value for the drain offset JL FinTFT. This result
shows that drain offset JL FinTFTs with E-GFP can solve the tradeoff between specific-on
resistance and breakdown voltage.
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3.2. Low-Frequency Noise Characteristics

The conduction mechanism of JL field-effect transistors is bulk conduction instead of
surface channel conduction, which is different from the conduction mechanism of inversion
mode (IM) counterparts. Recent studies show that the LFN of JL nanowire transistors is
lower than that of IM nanowire transistors and LFN power spectral density also increases
with the dimensions shrinking [8,9]. In this part, the LFN of JL FinTFTs with various
structures are compared. The drain current noise spectral density (SId) of four samples
of the conventional JL FinTFT with VDS = −0.1 V and V−S − Vth = −0.6 V is shown in
Figure 6a. For the smallest transistors, the dispersion of noise spectra must be considered;
in this case, it was within one decade. The average over four samples, displayed as the
bold line, showed a typical 1/f trend. In the following discussion, we used the average
noise spectrum to analyze low-frequency noise. Figure 6b shows the average value of SId
for various JL FinTFTs. All noise spectral densities followed a 1/f trend and were similar
in the studied frequency range.
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3.3. AC Characteristics

Figure 7a plots the cutoff frequency (fT) and maximal oscillation frequency (f max)
versus drain current for the JL FinTFTs with various structures. After de-embedding, f T
and f max were determined by extrapolating the short circuit current gain (|H21|2) and the
unilateral power gain (U), respectively, to 0 dB along a line with a slope of 20 dB/decade.
The difference between the f T and f max values of various structures increased with the
increase in gate voltage and drain current. As the gate voltage increased, the hole accu-
mulation layer induced by the E-GFP was formed in the offset region, thereby reducing
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S/D resistance and boosting the drain current. For further analysis of the high-frequency
characteristics, the parameters of the small-signal equivalent circuit were extracted using
the method of Lovelace et al. [10]. Figure 7b,d plot the extracted small-signal parameters
as functions of the drain current. In this work, the effect of drain series resistance is very
important. The approximate for f T that takes drain series resistance can be expressed as
follows [11]:

fT ≈
gm

2π[Cgs + Cgd(1 + g mRd)]
(1)

where gm is the transconductance, Cgs is the gate-to-source capacitance, Cgd is the gate-to-
drain capacitance, and Rd represents the drain series resistance. The approximate expression
for f max is given by [12].

fmax ∼
fT√

4gdsRg + 8π fTCgd(Rg + αRd)
(2)

where gds is the output conductance, Rg is the gate series resistance, and Rd is the drain
series resistance. The transconductances of JL FinTFTs with various structures were similar,
with only a slight deviation in the transconductance values between the different structures
at high gate voltage (Figure 7b). Adding an E-GFP above the drain offset region could
increase the on-current, but it increased the parasitic capacitance at the drain side due to
a large overlap between E-GFP and the drain offset region (Figure 7c). As the structure
on the source side of these three JL FinTFTs remained unchanged, the values of Cgs, and
Rs (not shown here) were similar. Extracted Rd values are shown in Figure 7d. When the
LP
− length increased to 0.25 µm, because the doping concentration of the offset region was

lighter, the drain offset JL FinTFTs without E-GFP had the largest Rd value among the three
transistors. The Rd value of the drain offset JL FinTFTs with E-GFP was significantly lower
than that of the one without E-GFP. An induced hole accumulation layer at the surface
of the drain offset region under the E-GFP effectively decreased the Rd value. Hence, the
better f T and f max of the drain offset JL FinTFTs with E-GFP than those of the one without
E-GFP were mainly attributed to the change in Rd.
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3.4. Postmetal Annealing (PMA)

Postmetal annealing (PMA) in forming gas (FG) improves carrier mobility, threshold
voltage, subthreshold swing, and interface trap density [13,14]. Figure 8a,b show the
transfer characteristic curves and output characteristics curves of various JL FinTFTs after
low-temperature PMA in FG at 400 ◦C for 300 s. Table 3 lists the electrical parameters of
various JL FinTFTs after PMA in FG. FG-annealed JL FinTFTs exhibited significantly lower
Vth, DIBL, SS, and higher on-current than those of JL FinTFTs before FG being annealed.
For high-frequency characteristics, after FG annealing, the f T of various JL FinTFTs was
also greatly improved, and the f max even exceeded 1 GHz. Table 4 presents a comparison
with previously proposed JL poly-Si TFTs. For p-type JL poly-Si TFTs, a high f T value of
about 0.79 GHz at VDS = −2 V was obtained here.
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Table 3. Electrical parameters of the JL FinTFTs with various structures after PMA in FG at 400 ◦C for
300 s.

Device Vth (V) DIBL
(mV/V) SS (mV/dec) Ion/Ioff (A/A) ION

(mA/mm)

Conventional 0.33 186 275 6.69 × 103 111
Drain offset w/o E-GFP 0.25 201 298 1.42 × 103 103
Drain offset w/E-GFP 0.27 198 299 3.49 × 103 106

Table 4. Parameters in comparison with other reports.

This Work Ref. [15] Ref. [16]

Structure
p-type JL FinTFT

(drain offset
w/E-GFP)

p-type JL
stacked GAA

nanosheet TFT

n-type JL
planar TFT

Channel
material Poly-Si Poly-Si Poly-Si

W0/Weff/L
(nm/µm/µm) 50/16/0.2 30/21/0.08 NA/8/0.4

Vth (V) 0.27 −0.4 (single) −0.19
DIBL (mV/V) 198 400 (single) 161
SS ((mV/dec) 299 230 (single) 309
Ion/Ioff (A/A) 3.49 × 103 2.4 × 106 (single) 8 × 107

Peak f T (GHz) 0.79@VDS = −2 V 0.048@VDS = −4 V (single) 3.36@VDS = 2 V
Peak f max (GHz) 1.4@VDS = −2 V NA 7.37@VDS = 2 V

4. Conclusions

In this work, the drain offset structure was used to increase the breakdown voltage.
However, lower drain offset doping concentrations degraded DC and RF characteristics.
Drain offset JL FinTFTs with E-GFP not only present a higher on-state current, higher
breakdown voltage, and lower Ron,sp, but also a higher fT and fmax than those of the one
without E-GFP. The JL FinTFT with drain offset rendered the electric field distribution more
uniform and improved the breakdown voltage, but the drain offset region with low doping
concentration increased drain resistance. By extending the GFP above the p−/p+ junction, a
hole accumulation layer could be induced on the surface of the drain offset region, resulting
in lower drain resistance, and improved DC and high-frequency characteristics. Drain
offset JL FinTFTs with E-GFPF solve the tradeoff between breakdown voltage and Ron,sp.
Drain offset JL FinTFT with E-GFP exhibited higher breakdown voltage than that of the
conventional one, although the current capability slightly decreased. The tradeoff between
current and voltage capabilities can be improved through optimization in drain offset
length, p− concentration, and premetal dielectric thickness. In addition, LFNs were similar
for all three structures in the studied frequency range. Furthermore, the FG-annealed JL
FinTFTs exhibited great DC and high-frequency electrical properties, and the f max even
exceeded 1 GHz.
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