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Abstract: Breast cancer includes genetic and environmental factors and is the most prevalent malig-
nancy in women contributing to the pathogenesis and progression of cancer. Breast cancer prognosis
metastasizes towards bones, the liver, brain, and lungs, and is the main cause of death in patients.
Furthermore, the selection of features and classification is significant in microarray data analysis,
which suffers from huge time consumption. To address these issues, this research uniquely integrates
machine learning and microarrays to identify secondary breast cancer in vital organs. This work
firstly imputes the missing values using K-nearest neighbors and improves the recursive feature
elimination with cross-validation (RFECV) using the random forest method. Secondly, the class
imbalance is handled by employing K-means synthetic object oversampling technique (SMOTE) to
balance minority class and prevent noise. We successfully identified the 16 most essential Entrez gene
ids responsible for predicting metastatic locations in the bones, brain, liver, and lungs. Extensive ex-
periments are conducted on NCBI Gene Expression Omnibus GSE14020 and GSE54323 datasets. The
proposed methods have handled class imbalance, prevented noise, and appropriately reduced time
consumption. Reliable results were obtained on four classification models: decision tree; K-nearest
neighbors; random forest; and support vector machine. Results are presented having considered
confusion matrices, accuracy, ROC-AUC and PR-AUC, and F1-score.

Keywords: metastasis; microarray; gene expression omnibus; decision trees; random forest; K-nearest
neighbours; support vector machine; K-means SMOTE

1. Introduction

Breast cancer (BC) is the most pervasive cancer in women. Globally, an approximate
19.3 million new cases of cancer were recorded (18.1 million except non-melanoma skin
cancer), with nearly 10.0 million deaths from cancer (9.9 million excluding skin cancer
non-melanoma) in 2020. BC in women has overtaken lung cancer as the most frequently
diagnosed with 2.3 million new cases (11.7%), followed by lung cancer (11.4%), colorectal
cancer (10.0%), prostate cancer (7.3%), and stomach cancer (5.6%). BC has been a more
significant burden in developing countries due to lifestyle-related risk factors. However,
BC incidence rates have recently risen in developed countries due to improvements in
health facilities and the acceptance of a westernized lifestyle [1]. About 90% of the deaths
caused by BC are due to complications linked to metastasis [2].

BC in Pakistan alone is higher than in any other Asian region with an annual diagnosis
of approximately 90,000 new cases and 40,000 of them resulting in death [3]. Approximately
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one in nine women are likely to suffer from this type of cancer at some point in their lives.
In women over 50 years of age, about 77% of invasive BC occurred but, if diagnosed early,
survival rates exceed 90% as presented by the authors in [3]. Young women can also have
advanced breast cancer that has a detrimental impact on prognosis. Rural women develop
several breast cancers every year in rural areas as it is inherited from mother to daughter. In
the number of BC patients worldwide, Pakistan ranks 58th. [4]. According to a recent report,
incidence rates of BC are highest in women aged 60–64, however, significant increases in
BC rates among women aged 50 to 64 years are projected from 2016 to 2025. In Pakistan
alone, the overall estimated BC risk will rise from approximately 23.1% in 2020 to 60.7% in
2025. BC cases diagnosed in younger women aged 30–34 will grow from 70.7% in 2020 to
130.6% in 2025 to [5].

The metastasis in BC patients usually starts with disseminating tumor cells from
the primary tumor and their penetration into the bloodstream as a rarely understood
process. Circular tumor cells (CTCs) gradually arrest and extravasate through the vascular
wall in the capillary beds of distant organs. CTCs inevitably end in the parenchyma
leading to secondary site metastatic populations [6]. Furthermore, BC, defined as organ
tropism, attacks the bones, lungs, liver, and brain [7]. Metastasized patients with BC have
30–60% bone lesions, 21-32% lung lesions, 4–10% brain lesions, and 15–32% liver lesions [8].
In particular, lung metastases typically appear within five years of BC’s primary diagnosis
and significantly affects mortality and morbidity. Such metastases interfere with normal
lung function leading to coughing, hemoptysis, trouble breathing, and imminent death.
An approximate 60–70% of patients who die from BC’s lung metastases remain challenging
to treat [9]. The prognosis is particularly low for patients with only lung metastases with a
median survival of only 25 months [10].

There is much research available identified with cancer genomes. However, most
of these have used UCI-free datasets for breast cancer. Moreover, no research has been
conducted to accurately reduce microarray gene expression to such a low dimension that
features space and highly accurate predictions using the ML and metastatic location, as
far as the authors’ are aware. This study aims to improve BC patients’ life expectancy and
quality by identifying the genes responsible for metastasis and the prognosis of metastatic
location in vital human organs.

The research work in this paper successfully predicts metastasis’s location employing
different machine learning algorithms using a dataset that is publicly available named NCBI
Gene Expression Omnibus (GEO) GSE14020 [11] and GSE54323 [12]. These microarray
datasets are merged to produce a combined dataset with a dimension of 86 × 20, 486.
Microarray technology is a genetic disorder research tool that includes several thousand
genetic expressions (features) and hundreds of samples. Each genetic expression calculates
the activity level of the genes in a given tissue. Thus, comparing the abnormal cancerous
tissue genes offers valuable insights into the disease’s pathology and makes it possible
to better diagnose future sample estimates as described in [13]. The missing values, high
dimensionality, and imbalance class of the gene expression in the dataset are significant
when building an accurate breast cancer prediction classifier.

Missing values are imputed using K-nearest neighbors, while the dataset is normalized
before proceeding. To overcome the curse of dimensionality, highly correlated features
with Pearson correlation r ≥ +0.8 or r ≤ −0.8 are removed. The reduced dimensions of
the dataset after removing the correlated variables were 86× 6602.

To deal with gene expression data and to further reduce the features considered by (a)
feature selection methods to determine the most crucial discrimination features and delete
irrelevant dependent features, and (b) the feature creation method, which generates new
features (low dimensional features) representing the original high dimensional feature in
the best possible way.

Recursive Feature Elimination with Cross-Validation (RFECV) using Random Forest for
dimension reduction is employed resulting in reduced dimensions of 86× 16 (Appendix E).
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Whereas class imbalance is handled using a synthetic object oversampling technique
(SMOTE) in a novel way by employing K-means SMOTE to balance minority class and
prevent noise generation in oversampling.

Lastly, the identification of the 16 most essential Entrez Gene IDs responsible for
predicting four different metastatic locations (bones, brain, liver, lungs) on the merged
dataset, as mentioned above, with reliable evaluation metrics using classification models
such as decision trees, random forest, K-nearest neighbors, and support vector machines.

The rest of the paper is organized as follows: Section 2 describes the material, methods
background of the problem under study and Section 3 presents the experimental results
and interpretation and methodology. At the same time, Section 4 discusses the research
results, inferences, the conclusion obtained, and future work relevant to the study.

2. Materials and Methods
2.1. Background

Cancer treatment needs to recognize metastasis-related molecules and genes and explain
these molecules’ contribution to the metastatic process. Identifying the genes and molecules
related to metastasis and clarifying these molecules’ contribution to the metastatic process is
vital for cancer treatment [14]. Metastasis transmits tumor cells through the lymph nodes or
blood cells from one organ to a remote organ. In the 19th century, Paget questioned whether
metastasis development in distant organs was merely a random chance. He reviewed the
anatomization of women with BC and discovered a structure of metastatic colonization.
He suggested that tumor cells (seed) may have a particular attraction for specific organ
microenvironments (soil). This compelling manifestation is known as organotropism. The
hypothesis of Paget has now been persistently supported and the significance of tumor
cell co-ordination to the microenvironment in promoting the development of metastases is
widely recognized. There is a belief that the initial tumor could initiate a pre-metastatic
niche before micro metastases are formed, and thus influence the tropism of the organ.
However, pre-metastatic niche formation processes are not entirely known [15].

Different subtypes of cellular BC in tissue from the primary breast cancer metastasize
the target organ. The metastasis pathway is created by interacting with these subtype
cells; the tumor’s microenvironment and organ are called the organotrophic metastasis.
To achieve remote metastasis, the cancerous cells must first disengage from the primary
location and survive as circulating tumor cells (CTCs) without the microenvironment. Most
CTCs are removed in a few days from early trapping sites. CTCs that survive and exhaust
at a distant organ that forms a micro metastasis may extravasate, generating clinically
substantial lesions following a somewhat unforeseeable dormant period that fulfils the
division requirements cells in the new microenvironment.

The behavior of organ tropism (lungs, liver, brain and bones) is similar in BC and lung
cancer. Nevertheless, they have surprisingly contrasting development times with remote
recurrence diagnosed relatively late in BC and early development in lung cancer. In their
genetic environment, metastasis is increasingly evident and manifests vital markers of
disease. Future clinical outcome is also likely to depend on the characteristics of the metas-
tases [15]. Clinically identified organ-specific metastases indicate that the distant organ site
of cancer is not random but somewhat affected by the secondary organ microenvironment.
Research has shown that BC cells exhibit organ-specific behaviors for proliferation and
migration in the context-specific metastasis locations for BC (brain, lungs, lymph nodes,
bones, and liver) [16].

Metastasis is the leading cause of death associated with BC. While the latest treatments
have improved significantly, 30–40% of BC patients may ultimately suffer from distant
deterioration and surrender to the disease. More than 90% of these patients die from
metastasis. These metastasis lesions infiltrate crucial organs and degrade the patient’s
health, forming several focuses that are challenging to remove surgically and establish
resistance to the standard treatments currently available. Therefore, the battle against
metastasis is of great importance to winning the war against BC. Therefore, a thorough
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understanding of metastasis biology is essential to discover better treatment strategies and
achieve long-term therapeutic efficiency [17].

2.2. Breast Cancer Bone Metastasis (BCBoM)

BCBoM is the third most prevalent metastasis location following metastasis in the
liver and lungs and usually suggests a provisional diagnosis in cancer patients. If cancer
has proliferated to the bones, it can seldom be cured and often delays its progression:
BC and prostate cancer cause most skeletal metastases. BCBoM is much more prevalent
than primary bone cancers, specifically in adults. After the first BC metastasis, the me-
dian survival of patients is 20 months. BCBoMs are significant causes of extreme pain,
reduced mobility, pathological fractures, and spinal cord compression. In 10–30% of all
cancer patients, pathological fractures occur. BC accounts for 60% of pathological frac-
tures. BCBoM’s relative frequency by tumor type is 65–75% in BC patients with advanced
metastatic disease. BCBoM is classified into three groups: osteolytic; osteoblastic; and
mixed groups. Osteolytic is characterized by average bone loss. The vast majority of BC
produces osteolytic metastases. This degradation of the bone is primarily due to osteoclasts
and not the direct result of tumor cells. Osteoblastic (or sclerotic) is characterized by new
bone deposition or is mixed if a patient has osteolytic and osteoblastic lacerations, or if the
metastatic components of a particular individual are osteolytic and osteoblastic, gastroin-
testinal and squamous cancer are present in BC. While BC mainly gives rise to osteolytic
lesions, 15–20% of women suffer from osteoblastic lacerations or both [17].

2.3. Breast Cancer Liver Metastasis (BCLiM)

The liver is a typical metastatic site for cancer. Studies have shown that BCLiM is a
complex operation. Factors related not only to BC cells but also to liver microenvironmental
factors are involved in this process. Most early metastatic targets in the liver contain few cells,
even 12 days after injection of the BC cells. Only a few cells developed into micro-metastatic
lesions with patent blood vessels suggesting that lesions that use existing patient blood vessels
can thrive in the liver microenvironment while the remaining cells remain dormant in the
liver without vascular supplies. However, no clear link has been found between BC subtypes
and BCLiM. BCLiM is BC’s third most common remote metastatic site compared to the
bones, lungs, and brain. As a metastatic site, the liver is observed with clinical and autopsy
incidences of 40–50% and 50–62% of all metastatic BCs. Asymptomatic or abdominal distress,
ascites, jaundice, abnormal function tests, abdominal pain, and other complications such as
sudden liver failure may occur in BCLiM. The median survival period for BCLiM patients is
4–8 months if BCLiM is left untreated. Due to its poor prognosis and limited responsiveness
to systemic treatment, BCLiM remains a significant clinical issue [18,19].

2.4. Breast Cancer Brain Metastasis (BCBrM)

A significant series of pathological analyses have shown that breast, colon, lung,
and renal cancers are the most commonly identified tumors metastasizing to the brain.
The development of tumor cells in the brain’s microenvironment stems from cellular
transformation processes and genetic propensity, which relies mainly on the interaction
between tumor cells and brain-resident cells. This interaction between metastatic tumor
cells and the brain’s microenvironment expedites colonization [20]. The development of
BCBrM is one of the most feared complications after diagnosing advanced BC. BCBrM
evolves after the pervasive appearance of metastases in the bones, liver, and lungs. This
diagnosis can impact physical function, autonomy, relationships, quality of life, personality
and, eventually, self-conception. The tendency to grow BrM for BC varies by subtype. After
a BCBrM diagnosis in triple-negative BC, median survival can be as short as five months
and 10 to 18 months in other subtypes. Overall, 10–30% of metastatic breast cancer patients
experience brain metastases during their illness. However, as with primary BC, the subtype
is primordial to metastatic behavior and overall survival. The prevalence of BCBrM for BC
is 14% with a median survival of 9–10 months following the occurrence of BCBrM [21].
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2.5. Breast Cancer Lung Metastasis (BCLuM)

The lungs are the second most common location for metastatic development with
20–54% pulmonary secondary tumor. BC, colorectal, and renal cancer are the most common
predominant laceration leading to BCLuM in adults. In some instances, the cause remains
unclear and could be listed as the unknown primary cancer. Pulmonary metastatic disease
may have heterogeneous clinical features and may have signs or symptoms with or without
them. The BCLuMs are most often associated with endovascular distribution in the distal
arterial pulmonary circulation of tumor cells [22]. The lungs would be the first sizeable
capillary bed a BC cell faces after it has escaped into the bloodstream. As a CTC in the
lungs, they can contact blood vessels of up to 100 m2. Since these CTCs are five times bigger
than the tiny pulmonary capillaries in these capillary beds, the risk of BC cell detention
and eventual extravasation into the lungs is high [1]. In reality, about 60% of metastatic BC
patients eventually suffer metastases of the bones or lungs in their lives. BC patients are
highly vulnerable to BCLuM. Life expectancy is poor with median survival just 22 months
after BCLuM treatment. In particular, BCLuM was diagnosed for 60–70% of metastatic BC
patients who finally died [23].

2.6. Methodology

In this work, datasets were transformed into a readable format. The selected dataset
contains gene expression microarrays of different dimensions that need to be merged
based on a common platform (GPL570) and a unique gene identifier (Entrez ID). Data
were imputed for missing values and normalized. Gene expression data is known to have
the curse of high dimensions. First, highly correlated features were removed and then
two-dimensionality reduction techniques were employed to reduce dimensions to cater to
this issue. Various classification models were employed with different tests and training
split ratios to determine the best accuracy model. In the process, a handful of unique genes
that can identify the metastasis location, i.e., brain, bones, lungs, and liver, were able to
be identified in a BC patient. The authors of this research have not come across any study
that has achieved the said objective. Figure 1 shows the proposed architecture for the
identification of breast cancer in vital organs using microarrays.

Figure 1. Proposed architecture for identification of breast cancer in vital organs using microarrays.
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2.7. Dataset (Dataset Availability)

Two datasets, NCBI-PubMed Gene Expression Omnibus (GEO) GSE14020 [11] and
GSE54323 [12], are used in this research. The Gene Expressions Omnibus (GEO) project was
launched to increase demands for a public repository of high-performance gene expression
data. GEO provides a scalable and open architecture that allows the submission, processing,
and testing of heterogeneous data sets from high-performance gene expression and genome
hybridization studies. GEO does not plan to substitute internal gene expression databases,
which gain from systematic data sets and are structured to simplify a specific analytical
approach to function as a tertiary central data delivery center. GEO has three main data
entities: samples; platforms; and series. These entities are designed for gene expression
and studies on genomic hybridization.

In essence, a platform is a collection of samples that determine what molecules can
be identified. A sample defines the collection of examined molecules and refers to a single
molecular abundance data platform. A series organizes samples into coherent data sets. The
GEO repository is publicly available in [24]. Dataset GSE14020 contains 65 samples collected
using two platforms, GPL96 (36 samples with 22,283 gene probe ID) and GPL570 (29 samples
with 54,675 gene probe ID) (Appendix A) whereas in dataset GSE54323 29 samples were
collected using GPL570 (54675 gene probe ID) (Appendix B) summary in Table 1.

Table 1. Selected Data Sets and Number of Samples.

Dataset Platform No. of Samples

GSE14020 GPL96 36
GPL570 29

GSE54323 GPL570 29

GPL96 is [HG-U133A] an Affymetrix Human Genome U133A array. Human Genome
U133 (HG-U133) arrays allow the examination of gene expression across the genome or
concentrating on a subset of well-defined genes using single or multi-array plate cartridges.
HGU133 is based on the same gene information and identical sample technique to measure
the gene expression thoroughly and reliably. GPL570 is [HG-U133_Plus_2] an Affymetrix
Human Genome U133 plus 2.0 array. A systematic study of genome-wide expression in a
single array, U133 plus 2.0 Array, analyses the relative expression above 47,000 transcript
versions with over 38,500 well-known uni-genes and genes. It offers 9900 more samples,
representing 6500 more new genes than the previous HG-U133 set with over 54,000 samples
and 1,300,000 special features of oligonucleotides [25].

• Entrez Gene

Entrez Gene is a gene-specific database (NCBI National Center for Biotechnology Infor-
mation) located on the US National Institutes of Health Campus in Bethesda, MD, USA. Entrez
Gene produces unique Gene ID (integers) as stable identifiers for a subset of model organisms
for genes. It detects and uses such identifiers to incorporate various information including
summary descriptions, nomenclature, gene-specific and gene product-specific sequence ac-
cessions, pathway and protein interaction reports, chromosomal localization, and related
markers phenotypes. Since Gene ID is used in other NCBI databases to describe gene-specific
information, the complete Entrez Gene report contains a wealth of links to citations, sequences,
variants, homologs, and databases of gene-specific literature beyond NCBI [26].

2.8. Data Pre-Processing

Merging of datasets is inevitable, but the raw data (SOFT files, i.e., simple omnibus
format in text) must go through pre-processing before that. The GEOParse package was
used in this study to facilitate the researchers in genome studies and download and load
the SOFT files from the Gene Expression Omnibus database.
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• SOFT Files

The Simple Omnibus Text Format (SOFT) is designed to submit and download data
quickly. SOFT is a simple line-based, plain text format that allows SOFT files from regular
spreadsheet and database applications. A single SOFT file may contain data tables and
descriptive information for samples, series records, and multiple platforms [27].

• GEOParse

GEOParse is a python package used to query and retrieve data from the Gene Expres-
sion Omnibus database (GEO) [28]. Salient features of this library are:

Download GEO series datasets as SOFT files.

1. Download supplementary files for the GEO series to use locally.
2. Load GEO SOFT as easy to use and manipulate objects.
3. Prepare data for GEO upload.

In this study, datasets are GSE14020 and GSE54323. All the respective samples from each
dataset are downloaded in a data frame (data arranged in tabular format as rows and columns).

2.9. Data Transformation

Dataset GSE14020 contains 65 samples collected using two platforms, GPL96 (36 samples
with 22,283 gene probe ID) and GPL570 (29 samples with 54,675 gene probe ID), whereas
dataset GSE54323 29 samples were collected using GPL570 (54,675 gene probe ID).
Samples are collected using different platforms with different numbers of gene probe IDs.
To induce uniformity across the dataset, samples were merged based on the common
platform GPL570 (22,283 gene probe ids) and Entrez Gene ID (Unique Gene record
identifier), thus reducing the number of features/gene probes IDs to 20,486. The dataset
shape achieved after transformation is 86× 20, 486 and X = {x 1, x2, x3, x4, . . . . . .xn} where
x1, x2, x3, x4, . . . . . .xn are the features/independent variables and y ≡ prognosis location
of metastasis (lungs, brain, bones, liver). The distribution of four controlled samples is
shown below in Figure 2. The histogram’s careful analysis shows that samples are not
normally distributed; instead, it is right-skewed. The data, therefore, needs transforming
for further processing.

Figure 2. Four Controlled Samples distribution.

• Missing value imputation

The gene expression details from microarray experiments are usually in large matrices
of rows (gene expression level) and columns (various experimental environments). Al-
though microarray technology is widely used, the information obtained mostly suffers
from missing values. Microarray data may include missing values of up to 10%, and (in
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some cases) 90% of genes have one or more missing value in some data sets. Missing
values exist for numerous reasons including microarray artifacts, inadequate resolution,
hybridization, image noise, and corruption.

Furthermore, suspicious values are also sometimes reported as missing values. The
presence of missing values in gene expression may harm subsequent research. Missing
values are found to give specific algorithms a non-trivial negative effect. Repetition of
experiments can be avoided by imputing missing values. Different algorithms are available
for imputing the missing values in gene expression [29].

The imputation process for missing values exploits two data types from the data matrix.
The first type is an existing correlation in the data matrix. Since the gene is involved in
similar cellular functions, the gene expression data matrix has an identical gene expression
profile. A correlation exists in rows and columns under the same genes—similar behavior
under similar conditions. The second type is domain expertise of data or the process itself.
The experience in the domain is highly beneficial to estimate missing values. Algorithms
used for missing value imputation can be categorized as global and local approaches. The
global correlation information is extracted based on the entire data matrix, whereas in a
local approach only a subset of genes is used to show a gene with a missing value and high
correlation value. K-nearest neighbor imputation (KNN impute), the earliest and most
well-known imputation algorithm, has been used in this study. KNN impute falls under
the category of local approach. Missing values in the dataset are shown in Appendix A,
highlighted in red.

• KNN (K-nearest neighbors) impute

This differs from other approaches as it does not work with an actual mathematical
model. On the contrary, the inference is performed by comparing new samples with
existing ones (defined as instances). KNN is an approach that can be easily employed to
solve clustering, classification, missing value imputation, and regression problems. The
main idea behind the clustering algorithm is straightforward. Consider a data generating
process pdata and a finite dataset is drawn from this distribution:

X = {x1, x2, x3, x4. . . . . .xn} (1)

where xi ∈ RN

dp = ( x1, x2) =
(

ΣN
j=1

∣∣∣ x(j)1 − x(j)2

∣∣∣p )1/p
(2)

where p = 2, dp represents the classical Euclidean distance, which is usually the default
choice. In particular cases, it can be helpful to employ other variants such as p = 1 (the
Manhattan distance) or p > 2. Even if all the properties of a metric function remain
unchanged, different values of p yield results can be semantically diverse. The KNN
algorithm determines the K closest samples of each training point. When a new sample is
presented, the procedure is repeated with two possible variants:

1. With a predefined value of K, the KNN is computed.
2. With a predefined radius/threshold r, all the neighbors whose distance is less than or

equal to the radius are computed.

The philosophy of KNN is that similar samples can share their features. For example,
a recommendation system can cluster users using this algorithm and, given a new user,
find the most similar ones (based, for example, on the products they bought) to recommend
the same category of items. In general, a similarity function is defined as reciprocal of
distance (there are some exceptions, such as the cosine similarity):

s =(x1, x2)= f
(
dp(x1, x2)

)
=

1
dp(x1, x2)

for dp(x1, x2) 6= 0 (3)

Two different users (A and B), who are classified as neighbors, will differ under some
viewpoints, but at the same time, they will share some peculiar features. This statement
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authorizes one to increase the homogeneity by suggesting the differences. For example, if A
liked the book b1 and B liked b2, we can recommend b1 to B and b2 to A. If this hypothesis
were correct, the similarity between A would be increased; otherwise, the two users will
move towards other clusters that better represent their behavior [30]. The missing data
is used as the test case for the imputation of the missing value. Available and missing
features represent input feature space and class label (output). Its K-nearest neighbors from
exclusive features are identified whose label imputes the missing attribute [31].

• The KNN-based method

The KNN approach chooses gene expressions identical to the gene, in which missing
values can be imputed. In experiment 1, assume gene A has one missing value. This method
will classify K additional genes with a value obtained in experiment 1, with an expression
identical to A in experiments 2-N (N is total experiments). The missing value in gene A is
estimated from the weighted average values of K closest genes. Each gene’s contribution
is weighted on a weighted average by the gene expression similarity to gene A. After
evaluating several matrices for gene similarities such as the Euclidean distance, Pearson
correlation, and variance minimization, the Euclidean distance was reasonably accurate. It
is pretty surprising provided that the Euclidean distance is sensitive primarily to outliers.
Outliers are most likely to exist in microarray data, however, log base2-transformation
significantly reduces the outlier’s effect on gene similarity [32].

As shown in Figure 3, in this study, K-nearest neighbors are used to input missing
values. Each sample’s missing values are changed using K = 10.

Figure 3. KNN impute Methodology.

(K = 5− 10 is a good choice for gene expression arrays missing value imputation in
human tumors) [33]. Adjacent neighbors’ mean values, the closest neighbor in the training
set, and weights by inverse distance. The distance here is the Euclidean distance. More
immediate neighbors to a point under query would have a more significant effect than the
farthest neighbors in this scenario. The two samples are close if the features that neither is
missing are close [34].

• Data Normalization

Generally, the feature values range varies widely in various databases. When feature
values vary, several training algorithms’ objective function does not operate correctly.
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Assume that the algorithm’s objective function uses the distance between two features; the
feature controls the distance with an extensive range of values that deceive the objective
function. Similarly, the gradient-based back-propagation algorithm performs better if the
attribute values are of the same range. The features are scaled to a specified range to
eliminate one factor’s influence over another and faster convergence. Data normalization
is the process by which feature values are scaled to a specified range. In microarray
data, the value of the attributes ranges from a low to an enormous value. This paper has
already shown the sample distribution in Figure 2, which indicates that the data needs to
be normalized. Therefore, data normalization is unavoidable for the microarray dataset
before applying any training algorithm. Here, the standard scaler normalization method is
applied to scale the data [35]. Independent variables or features are standardized to zero
mean and scaling to unit variance. The standard score is calculated as:

Zi =
xi−µ
σ

(4)

• Where mean: µ = 1
N ΣN

i=1(xi) and standard deviation:

σ =

√
1
N

ΣN
i=1(xi−µ)2 (5)

The normalized dataset after merging is shown in Appendix C.

• Removal of Correlated Variable

A multivariable analysis is a widely used statistical tool in medical research if the
correlation of several predictive variables with study measurements is calculated. However,
the multivariable efficiency of analysis depends on the correlation structure between
predictive variables. Moreover, the multivariable efficiency of analysis also depends on
the correlation structure between predictive variables. The multivariate analysis assumes
that all predictive variables are not correlated. Multi-collinearity or issues arise when the
model’s covariate is not independent. Consequently, it leads to biased coefficient estimation
and loss of power in genomics and medicine studies. Statistically, correlation assesses a
linear association among two continuous variables.

Correlation is measured by the correlation coefficient, representing the strength of
linear association between the variables. A correlation coefficient of zero means that two
continuous variables have no linear relationship and a correlation coefficient of −1 or +1
reveals an entirely linear relationship. The higher the correlation, the closer the correlation
coefficient gets to ±1. The variables are positively related if the coefficient is a positive
number and the variables are inversely related if the coefficient is a negative number.
There are two key correlation coefficients, i.e., Pearson’s correlation and Spearman’s rank
correlation coefficient. The proper application of the correlation coefficient form depends on
the type of variables under study [36]. In the study, only Pearson’s Correlation coefficient
is being considered. Pearson’s correlation coefficient is denoted as $ for a population
parameter and as r for a sample statistic. Pearson’s correlation between variables x and y is
given by:

r =
Σn

i=1(xi−x)(yi−y)√[
Σn

i=1(xi−x)2
][

Σn
i=1(yi − y)2

] (6)

Before proceeding further, the highly correlated features were removed. All the
independent variables having a Pearson correlation coefficient greater than 0.8 or less than
−0.8 were removed. 13,884 features were removed, thus reducing the reduced dimension
of the dataset to 86 × 6602 Appendix D.

• Dimensionality Reduction

Even after removing highly correlated features, the dimensions of the dataset were
still too large to handle. Next, the recursive feature elimination technique was used to
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reduce the dataset’s dimension further. Moreover, RFE (Recursive Feature Elimination)
will identify the most robust predictor/features.

• Recursive Feature Elimination (RFE)

Random forest (RF) is a supervised machine learning algorithm. It generally works
well with high dimensional datasets and can recognize a given result’s strong predictors
without making any basic model assumptions. However, correlated predictors are a
common problem with high-dimensional data sets. RF’s efficiency in recognizing the most
potent predictors decreases the significant calculated scores of correlated variables. Highly
correlated variables were already removed in the last step. The Random-Forest-Recursive
Feature Elimination (RF-RFE) algorithm is a proposed solution. RFE performs the selection
of features by iteratively training a model, classifying features, and eliminating the lowest
ranking attributes [37]. RFE needs a range of features to be preserved. However, the
number of features that are authentic is also not decided in advance. Cross-validation
is used with RFE to score specific feature subsets and select the best scoring collection
of possible features or attributes. In this experimental study, the Stratified K-fold cross-
validation was used for recursive feature elimination. Stratified K-Fold shuffles the data
split into n_splits parts. Each split is used as a test set. It constantly shuffles data once
before splitting and does not overlap test sets.

Recursive Feature Elimination with Random forest with stratified K-fold cross-validation
reduced the optimal number of features from 6602 to 16. The optimal number of features
and their importance is shown in Figures 4 and 5 below.

Figure 4. RFECV-Random Forest.

• Class imbalance

The critical problem in microarray data analysis is a limited sample size with high
dimensionality. Class imbalances compound this situation. Data imbalance concerning
multiclass classification has been recognized as a challenging problem for machine learning
techniques as it directly impacts the classification model’s performance. Most of the
machine learning classification algorithms assume the classes to be balanced. As a result,
the algorithm would favor the majority class and ignore the minority classes leading
to poor classification models, leading instantiation, and poor performance metrics. The
class imbalance will reduce the credibility of the accuracy of classification. In addition,
notable features with an imbalanced data set are often problematic as they are not evenly
distributed in the training set [38].
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Figure 5. Feature Importance.

In the following datasets is the status of class imbalance in two datasets, GSE14020
and GSE54323. Figures 6 and 7 show the imbalanced nature of the two datasets.

Figure 6. GSE14020 Class imbalance.
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Figure 7. GSE54323 Class imbalance.

After the merging of two datasets, The overall class imbalance situation of a dataset is
shown in Figure 8.

Figure 8. Merged Dataset Class imbalance.

The number of observations for site (sub-cutaneous site) and node (Lymph Node) were
not significant. These samples were dropped before proceeding further, as shown in Figure 7.

• SMOTE

Over time, various resampling techniques have emerged to cater to the class imbalance
problem. Frequently used methods are over-sampling and under-sampling. The underlying
principle of these methods is to randomly remove samples or randomly pick samples from
the minority and replicate them, causing either information loss or overfitting. SMOTE is a
prevalent resampling technique used in imbalance classification datasets. SMOTE (synthetic
minority oversampling technique) is an approach that oversamples the minority class by
creating synthetic examples rather than creating over-sampling with replacement. Synthetic
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samples are explicitly generated by acting in the feature space instead of the data space.
The minority classes are oversampled by selecting each minority class sample and inducing
synthetic samples along the line, joining any minority class nearest neighbors. Nearest
neighbors are randomly chosen based on the aggregate of over-sampling required. For
example, suppose the aggregate of over-sampling needed is 300%. In that case, only three
neighbors are selected (based on five nearest neighbors) and only one sample is created
synthetically in each direction. New synthesized samples are created as the difference
between the feature vectors, i.e., the sample being considered, and the nearest neighbor
associated with it. This difference is multiplied by an arbitrary value between zero and
one and then added to the feature vector considered. Consequently, it causes the arbitrary
point to be selected along the line segment between two specific features. Therefore, this
method dictates the decision region of the minority class towards more generalization [39].

The SMOTE samples are two similar linearly combined samples of minority class(
x and xR) and are defined as:

S = x + µ·
(

xR−x
)

(7)

0 ≤ µ ≤ 1; xR is randomly chosen among the five-minority class nearest neighbors of
x. In this study, K-means SMOTE [40] has been used. K-means SMOTE assists classification
by generating minority class samples in safe and crucial areas of the input space. The
technique prevents noise generation and overcomes imbalances between and within classes
effectively. K-means SMOTE works in the following steps:

• Use the K-means cluster algorithm to cluster entire data.
• Choose clusters with a significant number of minority class samples.
• Assign more synthetic samples to clusters with sparse distribution of minority class samples.

Figure 9 depicts the balanced data samples in each class after applying the K-means
SMOTE oversampling technique.

Figure 9. Balanced Dataset (KMeans-Smote).

Since the data from 86× 16 to 129× 16 has been oversampled, the dataset’s final shape
is shown in Appendix F [41].

• Sampling

In this study, the Stratified shuffle split was sued for sampling. Stratified sampling
tends to split a data set so that each split is identical to something. A classification setting is
always chosen to ensure that training and test sets have roughly the same samples for each
target class as the complete set. A 70/30 ratio was employed, i.e., splitting the dataset such
that 70% of the samples are reserved for training the model and 30% of the samples for
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model validation. The dimension of the training dataset was 90 × 16 and the test dataset
was 39 × 16.

2.10. Classification Models

Four different models have been trained based on different classification techniques
used for multiclass classification. A brief description of these algorithms is shown below.

• K-nearest neighbor (KNN)

KNN is used for both regression and classification problems. It belongs to the family
of supervised learning algorithms. It uses feature similarity to predict the class y for a new
set of observations x. It has extensive pattern recognition and classification application and
uses information about the neighboring points to classify output labels. KNN classifier
is an example-based learning and non-parametric algorithm. It performs well even if
the data is non-Gaussian. This algorithm does not learn the model, instead, it learns the
training instances that are the foundation of information during the prediction phase. This
algorithm uses k distance estimates based on input features. The optimal value of k = 3
is used in this research. However, non-relevant features significantly reduce the accuracy
or precision of KNN, even with highly efficient classification. KNN has the downside
of not being computationally efficient since it stores the whole training data in memory.
Prediction of every new set of observations is required to run down through the full dataset,
making it a lazy learning algorithm [42,43].

• Decision Trees (DTs)

DTs are supervised learning and non-parametric methods used extensively for re-
gression and classification. DTs predict the target variable y by learning straightforward
decision rules inferred from input features x. A DT is a piecewise constant approximation
that breaks down the training dataset into smaller sets with simple if-then-else decision
rules. The outcome is a tree with decision nodes. DT classifiers build decision trees for a set
of training data. The classifier frequently visits all decision nodes and chooses active splits
until a leaf is pure and no further splits are obtainable. Several methods are available to
quantify the purity of decision nodes, but the Gini impurity criterion has been employed
in this research. DTs can create complex trees that do not generalize well, resulting in an
over-fitted model. This problem can be avoided using the maximum depth of the tree. In
this research max_depth = 3 [44] has been used.

• Random Forests (RF)

RF is a supervised and non-parametric learning algorithm. RF is suitable for both
regression and classification. However, its main application is in classification. RF is an
ensemble learning method that is superior to a DT as it mitigates the over-fitting and
minimizes the influence of outliers on predictions. Random forests are merely a collection
of DTs. In RF, each tree is different from one another. A single tree might be good at
predicting, but most likely be overfitting on another part of data. The overfitting can be
reduced by averaging the results of multiple decision trees, while retaining the predictive
power. Random forest employs the same strategy by inducing randomness to ensure that
each tree is different and distinct. In order to build a tree, a bootstrap sample of data is
taken. This process is repeated, thus creating a dataset as extensive as the original training
dataset. However, RF selects a subset of random features and looks for the best possible
test involving those features. These subsets of features are repeated on each node so that
each node in a tree can be decided using a different subset of features. In this study, the
maximum depth of the tree, max_depth = 2, has been used and the criterion to determine
the purity of the node is Gini. In regression tasks, results are the average for prediction. A
voting mechanism is used in classification making a soft prediction with the probability
for each possible output label. The probabilities predicted by all the trees are averaged,
predicting the label with the highest predicted probability [45,46].
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• Support Vector Machine (SVM)

SVM is the most popular and extensively used machine learning algorithm for classifi-
cation problems. SVM predicts the target labels by creating a decision boundary between
classes using single or multiple feature vectors. A decision boundary or hyperplane is a
line that splits the input variable space by its class. The margin is the distance between
the points that lie closest to the line. The hyperplane with maximal-margin is an opti-
mum line that separates the classes with the most significant margin. The vertical (i.e.,
perpendicular) distance from these closest points to the hyperplane is the most relevant
point in defining the classifier’s hyperplane and construction. These points are the sup-
port vectors that define the hyperplane. SVM was initially proposed to construct a linear
classifier, however, a brilliant trick for SVM is a kernel function that enhances the capa-
bility to model non-linear higher dimension models. Kernel function adds dimension to
input data and makes a non-linear problem to a linear problem in a higher dimension; it
calculates the scalar product between two data points in a higher dimension space without
explicit mapping from the input data to higher dimensions. There are three types of kernel
functions used in SVM: polynomial; linear; and radial. This research study uses Grid
Search CV (Grid Search Cross Validation) to find the optimal hyperparameter for its model.
Kernel = Linear, C = 1, and gamma = 0.1, where C is the L2 regularization parameter
and gamma the kernel coefficient [47]. The above models were trained (70% data) and
validated on the test (30% data) dataset.

A comprehensive summary of each classification model is presented in Table 2.

Table 2. Pros and Cons summary of Proposed Classification Models.

Algorithm Pros Cons

KNN

Very easy to understand and implement. Lazy learning algorithm.
Does not make any assumption about data. Poor performance with high dimension dataset.

It changes to accommodate the new data points when exposed to
new data. Data scaling is required.

DT

Data scaling or normalization is not required. Prone to overfitting the model.
Missing values does not have considerable impact. Training time is higher.

Easy to interpret and visualize. Sensitivity to data changes is quite high. A small change can
affect the result significantly.

RF

Random Forest is an ensemble based on decision trees. It ensures
the reduction in overall variance and error. Not easy to interpret.

Performs well with higher dimensions. Tuning of hyperparameters is required to improve performance.
Missing values and outliers do not have considerable impact. Training time is lower but prediction time is higher.

Not prone to overfitting.

SVM

Provides high accuracy and performance in higher
dimensional data. Execution time is higher for larger dataset.

Most suitable algorithm when classes are separable either linear
or non-linear. Performance degrades in case of non-separable classes.

Susceptibility to outliers is low. Hyperparameter optimization is required for better
generalized performance.

2.11. Classification Evaluation Metrics

In this study a multiclass classification problem is being dealt with. In classification
problems, accuracy alone is not an excellent metric to validate a classifier. There are different
performance metrics available for classifier evaluation. Classification model performance
measures used in the study are:

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Precision =
TP

TP + FP
(9)

Recall/Sensitivity =
TP

TP + FN
(10)
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Specificity =
TN

TN + FP
(11)

F1 score =
2×(precision× recall)
(precision + recall)

(12)

True Positive Rate (TPR) = Sensitivity (13)

False Positive Rate (FPR) = 1− Sensitivity (14)

All the classifier models have been evaluated based on each classification model’s
matrices and respective performance. Moreover, the models were compared based on
ROC–AUC (receiver operator characteristic–curve area under the curve) and PR–AUC
(precisionrecall—area under the curve) using Yellowbrick. AUC is the degree of separability,
signifying the ability of the classifier to classify correctly.

3. Results and Discussion

Dataset GSE14020 contains 65 samples collected using two platforms, GPL96 (36 samples
with 22,283 gene probe ID) and GPL570 (29 samples with 54,675 gene probe ID) whereas for
dataset GSE54323 29 samples were collected using GPL570 (54,675 gene probe ID). Samples
were collected using different platforms with different numbers of gene probe IDs. To
induce uniformity across the dataset, samples were merged based on common platform
GPL96 (22,283 gene probe IDs) and Entrez_Gene_ID (Unique Gene record identifier), thus
reducing the number of features or genes probes IDs to 20,486. The dataset shape achieved
after transformation was 86 × 20, 486.

Furthermore, after removing highly correlated variables/features and reducing the
dimensionality of the dataset to 86 × 16, the dataset was oversampled using K-means
SMOTE to balance class distribution. The final dimensions of the dataset were 129× 16.
Pearson correlation was calculated for each independent variable concerning each other
as denoted in Figure 10. All the features with negative correlation values are marked red,
whereas positive correlations are black.

Figure 10. Pearson Correlation among features. All the features with negative correlation values are
marked red, whereas positive correlations are black.

A heatmap of positive and negative correlated features is shown in Figures 11 and 12.
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Figure 11. Positive Feature Correlation Heat Map.

Figure 12. Negative Feature Correlation Heat Map.

This clearly shows that most features exhibit positive correlation but a few are neg-
atively correlated. Analysis of the correlation table in the figures above reveals that
18% of values are strongly correlated (±0.5→ ±1.0), 34% are moderately correlated
(±0.3 → ±0.49) and 48% are in weak correlation (±0.29).

Four different classifiers were trained on 70% train, 30% test ratio and evaluated each
classifier concerning the accuracy, precision, recall, ROC–AUC, PR–AUC, and F1score. The
experiments were evaluated on a virtual machine (VM) with an Intel Xeon CPU ES-2690V4
@2.60 GHz having 12 vCPU and 24 GB of RAM.
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3.1. Decision Tree Classifier

Decision tree classifier had a training accuracy of 92% and validation/test accuracy of
87%. Confusion matrix is shown in Figure 13, which indicates the misclassified samples in
lungs, brain, and bones class.

Figure 13. Confusion Matrix (Decision Tree Classifier).

Out of 39 total samples, this classifier has misclassified five samples across all four
classes. One lungs sample is classified as bone and two as liver, one brain sample is
classified as lungs, and one bone sample as liver. The DT classification report is shown in
Figure 14. Class liver and lung have low precision of 0.77 and 0.87, respectively, whereas
lung has poor recall of 0.78, thus reducing the overall F1 Score for the liver and lungs class.

Figure 14. Classification Report (Decision Tree Classifier).

The precision-recall curve for DT classifier is depicted in Figure 15. Precision-recall
curve is a metric to evaluate the quality of a classifier. It shows the trade-off between
precision and recalls for each class. A larger area under the curve represents the classifier
with high precision and recalls the best case scenario with an average precision of the
classifier model.
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Figure 15. Precision-Recall Curve (Decision Tree Classifier).

The DT classifier had an average precision of 0.77, showing brain class with the
highest PR–AUC = 1.0, and bones with the lowest PR–AUC = 0.54. The Receiver Operator
Characteristic (ROC) is shown for the DT classifier in Figure 16.

Figure 16. ROC Curves (Decision Tree Classifier).

Higher TPR at low FPR indicates that it is a good model, whereas area under curve
(AUC) is the separability of a classifier. The greater the AUC, the better the model is.
AUC = 0.92, indicating an excellent overall classifier.

3.2. Random Forest Classifier

Random forest classifier had an overall training accuracy of 98% and validation /test
accuracy of 90%. The confusion matrix of the classifier is shown in Figure 17. RF Classifier
has misclassified only four samples out of a total of 39. One of the lung samples is classified
as liver and two of the bone samples are classified as brain and liver, respectively. At the
same time, one liver sample is classified as bone.
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Figure 17. Confusion Matrix (Random Forest Classifier).

The classification report for RF classifier is shown in Figure 18. Class liver has a
precision of 0.81 and bone with recall has a precision 0.80, thus reducing the overall F1
score for the liver and bone class to 0.85 and 0.84, respectively.

Figure 18. Classification Report (Random Forest Classifier).

The precision-recall curve for the RF classifier is shown below in Figure 19.



Electronics 2022, 11, 1879 22 of 36

Figure 19. Precision-Recall Curve (Random Forest Classifier).

The RF classifier had an average precision of 0.96, whereas all classes have PR–AUC ≥ 0.90,
exhibiting a good classifier model. The Receiver Operator Characteristic (ROC) is shown
for RF Classifier in Figure 20.

Figure 20. ROC Curves (Random Forest Classifier).

The average AUC = 1.0 for the RF classifier model where each class has an AUC ≥ 0.98.
The classifier is showing better separability among all classes and prediction power.

3.3. K-Nearest Neighbour Classifier

K-nearest neighbor classifier reported a training accuracy of 92% and validation or
test accuracy of 87%. The confusion matrix depicted in Figure 21 indicates the misclassified
samples. Out of 39 samples, five were misclassified with two samples from the lung class
misclassified as liver and three samples from the bone class misclassified with one sample
in each lung, brain, and liver class.



Electronics 2022, 11, 1879 23 of 36

Figure 21. Confusion Matrix (K-Nearest Neighbor Classifier).

The classification report for the KNN classifier depicted in Figure 22 reveals the classifier’s
overall performance. Class liver has low precision of 0.77 with low recall parameters of 0.7 and
0.8 for bone and lung classes, thus affecting the overall F1 score of these classes.

Figure 22. Classification Report (K-Nearest Neighbor Classifier).

The precision-recall curve for the KNN classifier is calculated using one-vs-rest method
as shown in Figure 23.
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Figure 23. Precision-Recall Curve (K Nearest Neighbor Classifier).

The KNN classifier had an average precision of 0.96, whereas all classes have
PR–AUC ≥ 0.95, exhibiting a good classifier model. The Receiver Operator Characteristic
(ROC) is shown below for the KNN classifier in Figure 24 using the one-vs-all method.

Figure 24. ROC Curves (K-Nearest Neighbor Classifier.

The average AUC = 1.0 for the KNN classifier model where all classes have an
AUC ≥ 0.99, the greater the value of AUC better is the separability among all classes.

3.4. Support Vector Machines

The support vector machines classifier has shown excellent results with training
accuracy of 100% and validation or test accuracy of 97%. The confusion matrix is depicted
in Figure 25. Only one sample out of 39 samples is misclassified with one sample from the
liver class reported under bone class.
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Figure 25. Confusion Matrix (Support Vector Machines Classifier).

The classification report for the SVM classifier visualized in Figure 26 revealed the ex-
cellent performance of the classifier. Precision and recall for all classes are ≥ 0.99→≤ 1.0
and thus has a very high F1 score for each class.

Figure 26. Classification Report (Support Vector Machines).

The precision-recall curve for the SVM classifier applying the one-vs-rest method is
shown in Figure 27.
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Figure 27. Precision-Recall Curve (Support Vector Machines).

The SVM classifier has an excellent average precision of 0.99, whereas all classes
have PR–AUC ≥ 0.97, exhibiting an outstanding classifier model. The Receiver Operator
Characteristic (ROC) is shown below for SVM Classifier in Figure 28 using the one-vs-all method.

Figure 28. ROC Curves (Support Vector Machines).

The average for the SVM classifier model is AUC = 1.0 where the bone class has an
AUC = 0.99, while all other classes have an AUC = 1.0. SVM is the best classifier with
maximum separability among all classes. A tabular comparison is shown in Table 3. All
four different classifiers have been compared based on precision, recall, F1 score, PR–AUC,
ROC–AUC, and the number of misclassified samples. The SVM Classifier has outperformed
all other classifiers as it has high accuracy, low variance, higher precision, recall, and F1
score. Moreover, this classifier has the least misclassified samples and the highest PR–AUC
ROC–AUC values per class. All the AUC presented for different classifiers have been
calculated with 95% confidence interval and p > 0.05.
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Table 3. Evaluation Metrics for Comparative Analysis of Proposed Methods.

Classifier Class Precision Recall F1 Score PR-AUC ROC-AUC

DT

Lung 0.88 0.70 0.78 0.76 0.87
Brain 1.00 0.89 0.94 1.00 0.90
Bone 0.90 0.90 0.90 0.54 0.96
Liver 0.77 1.00 0.87 0.70 0.95

AVG Precision = 0.77 AVG ROC-AUC = 0.92

RF

Lung 1.00 0.90 0.95 0.98 1.00
Brain 0.90 0.80 0.95 1.00 1.00
Bone 0.89 1.00 0.84 0.90 0.98
Liver 0.82 0.90 0.86 1.00 1.00

AVG Precision = 0.96 AVG ROC-AUC = 1.00

KNN

Lung 0.89 0.80 0.84 0.98 1.00
Brain 0.90 1.00 0.95 1.00 1.00
Bone 1.00 0.70 0.82 0.95 0.99
Liver 0.76 1.00 0.87 0.98 0.99

AVG Precision = 0.96 AVG ROC-AUC = 1.00

SVM

Lung 1.00 1.00 1.00 1.00 1.00
Brain 1.00 1.00 1.00 1.00 1.00
Bone 0.91 1.00 0.95 0.97 0.99
Liver 1.00 0.99 0.99 0.97 1.00

AVG Precision = 0.99 AVG ROC-AUC = 1.00

Nevertheless, significant results have been achieved. Further research is required to
validate these models on diverse datasets. However, computation power is one of the most
significant constraints in handling gene expression microarray datasets.

4. Conclusions

This paper concluded that breast cancer prognosis often metastasizes towards bones,
liver, brain, and lungs; a leading cause of death in women. It uniquely integrated machine
learning and microarrays for the identification of breast cancer using K-nearest neighbors,
missing values are imputed, recursive feature elimination with cross-validation, and class
imbalance is handled by employing K-means SMOTE. This work successfully identified the
16 most essential Entrez Gene IDs responsible for predicting metastatic locations in the bones,
brain, liver, and lungs. Extensive experiments were conducted on NCBI Gene Expression
Omnibus GSE14020 and GSE54323 datasets. Multiple classification models were considered,
and results were presented by considering reliable matrices such as ROC–AUC and PR–AUC,
and F1-score. In the future, the authors aim to extend this work using more advanced learning
approaches on multiple large datasets to identify the different metastasis stages.
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Abbreviations

AUC Area under the curve
BC Breast Cancer
BCBoM Breast Cancer Bone Metastasis
BCBrM Breast Cancer Brain Metastasis
BCLiM Breast Cancer Liver Metastasis
BCLuM Breast Cancer Lung Metastasis
CTCs Circulating Tumor cells
CV Cross validation
DT Decision Tree supervised learning algorithm
FN False Negative
FP False Positive
GEO Gene expression omnibus
K-Means Unsupervised learning algorithm that partition dataset into K number of clusters
KNN K-Nearest Neighbors supervised learning algorithm
NCBI National Center for Biotechnology Information
NRF National Research Foundation
PR Precision Recall
RF Random Forrest supervised learning algorithm
RFECV Recursive Feature Elimination with cross validation
ROC Receiver operating characteristic curve
SMOTE Synthetic object oversampling technique
SVM Support Vector Machine supervised learning algorithm
TN True Negative
TP True Positive
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Appendix A. GSE14020

ENTREZ_GENE_ID Index 1 10 100 1000 10,000 100,009,676 . . . 9990 9991 9992 9993 9994 9997 Metastasis

0 GSM352095 8.2339 6.0683 7.8848 6.8721 6.6923 5.1057 . . . 5.2606 7.9440 6.4849 9.3538 6.5735 10.7023 Lung

1 GSM352097 6.9053 6.8495 7.0798 9.1682 6.9491 5.3145 . . . 6.3746 7.6820 6.6459 8.7531 7.0091 8.8169 Brain

2 GSM352098 7.7113 7.2329 6.5495 7.2243 6.2732 5.5823 . . . 5.9297 8.2616 6.5661 9.7786 7.6423 10.8695 Brain

3 GSM352100 7.3770 6.7069 7.8392 7.3133 7.1324 5.1022 . . . 5.8855 7.6461 6.5335 8.9864 6.8501 9.6639 Bone

4 GSM352101 7.4527 6.8992 6.4535 10.0303 6.4948 5.1645 . . . 5.7241 7.4800 6.7075 9.0687 7.0794 9.8207 Brain

5 GSM352103 7.4528 6.8274 6.3866 10.8126 7.1971 5.4020 . . . 5.8136 7.3723 6.8072 8.3742 7.3350 9.8820 Bone

6 GSM352105 7.8187 6.6937 9.4577 10.7817 6.6365 5.1032 . . . 6.1665 7.1127 6.6030 8.4056 7.4552 10.1645 Bone

7 GSM352107 6.9245 6.4157 7.1858 7.8156 8.3712 5.0686 . . . 5.8752 7.5597 6.3730 8.8120 8.5782 10.5591 Brain

8 GSM352109 7.3767 6.4297 7.1149 7.5414 6.6557 5.1151 . . . 5.7456 7.4064 6.3695 8.5874 6.9917 9.9465 Bone

9 GSM352110 6.9355 6.8455 7.2018 8.0589 6.5079 5.2703 . . . 5.8681 9.3738 6.6825 9.0142 7.1229 9.2914 Brain

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

55 GSM352159 NaN 7.1089 6.6904 6.7784 5.1182 NaN . . . 5.9607 7.0477 6.8578 7.4886 6.9233 8.5203 Bone

56 GSM352160 NaN 6.5573 7.5134 6.8305 5.4619 NaN . . . 6.1137 6.7245 6.8011 7.8224 6.6020 9.0305 Lung

57 GSM352161 NaN 7.1461 6.9137 6.6266 5.0809 NaN . . . 5.8923 6.5635 7.1701 8.3298 7.2257 9.5441 Lung

58 GSM352162 NaN 7.6670 6.4741 7.0452 5.1741 NaN . . . 5.7948 6.6691 6.7381 7.5607 7.8597 7.8423 Liver

59 GSM352163 NaN 6.9949 7.4864 6.6844 5.5261 NaN . . . 6.2890 6.7573 7.0070 7.5590 6.2727 9.0151 Bone

60 GSM352164 NaN 6.5512 7.3306 7.4419 5.4275 NaN . . . 5.8670 6.2873 6.7903 8.0515 7.1116 8.6275 Lung

61 GSM352165 NaN 6.5440 7.3335 6.6873 5.9610 NaN . . . 5.6563 6.9762 6.7983 8.1609 6.1113 9.2522 Lung

62 GSM352166 NaN 6.9497 6.6913 6.6506 6.2395 NaN . . . 5.9061 6.2398 7.0367 7.8028 6.8671 8.4663 Lung

63 GSM352167 NaN 6.7676 7.1345 7.6319 6.5522 NaN . . . 5.9233 6.5831 6.9459 8.0467 6.3893 8.5806 Bone

64 GSM352168 NaN 7.4883 6.9053 6.8512 5.6716 NaN . . . 6.5621 6.0487 7.0821 7.7147 6.9370 9.2354 Lung

65 rows × 20,488 columns.
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Appendix B. GSE54323

ENTREZ_GENE_ID Index 1 10 100 1000 10,000 100,009,676 . . . 9990 9991 9992 9993 9994 9997 Metastasis

0 GSM13129287.5602 6.4469 7.3371 5.7804 4.4252 4.9310 . . . 6.4865 8.2751 5.9836 8.2346 6.8023 9.9452 Liver

1 GSM131292910.3885 8.2872 7.8423 7.3761 4.6025 5.1180 . . . 6.0557 6.9495 6.7754 8.0115 5.8184 9.1237 Liver

2 GSM13129306.7133 5.8366 5.7955 6.9065 4.6457 4.8781 . . . 5.4504 8.9469 6.3186 8.3371 6.3372 9.3204 Site

3 GSM13129316.2121 6.3439 5.7062 5.9918 4.3514 4.8626 . . . 6.3488 9.0194 6.4219 8.1964 6.2462 10.2259 Site

4 GSM13129325.8098 4.9986 6.9900 5.3402 4.6099 4.9493 . . . 5.2374 7.8907 6.1864 8.0367 6.0154 10.5537 Bone

5 GSM13129335.6922 5.0370 6.0000 5.3512 4.2550 4.9094 . . . 6.7374 8.4135 6.1085 8.2670 5.8228 9.6436 Bone

6 GSM13129346.2121 5.4978 7.2723 5.3844 4.3429 5.7149 . . . 5.9428 9.2940 6.2257 8.3165 6.6325 9.7894 Node

7 GSM13129356.4032 4.8821 7.3576 5.5975 5.3479 4.9806 . . . 6.1142 7.3487 6.1657 8.0086 6.4750 9.3352 Node

8 GSM13129366.5354 5.3353 6.2503 5.4279 4.3448 5.2540 . . . 5.5127 8.1144 6.2992 8.4049 6.3864 9.6644 Node

9 GSM13129376.1965 5.0868 7.0903 5.2549 4.9637 4.9261 . . . 6.8642 7.6783 7.0730 8.4742 5.4469 10.6389 Node

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19 GSM13129476.0102 4.8673 7.4504 5.0322 5.0102 4.9572 . . . 8.3811 8.8105 6.2732 8.1065 6.2530 10.7216 Bone

20 GSM13129486.0744 5.0904 6.7679 5.7245 4.4632 4.7979 . . . 6.8297 8.1070 6.5280 8.1100 5.9623 8.9717 Bone

21 GSM13129496.7086 4.8407 6.6089 5.5950 4.3482 5.0114 . . . 6.9696 7.1899 6.3186 8.2858 5.6671 8.6960 Bone

22 GSM13129505.7694 5.5062 7.2207 5.2119 5.0936 5.3236 . . . 5.5929 8.3197 6.0860 8.1592 6.9327 9.4827 Node

23 GSM13129516.1343 5.4438 6.6683 5.5099 6.1355 5.5816 . . . 5.9490 8.3783 6.4996 8.3447 6.4786 9.3974 Node

24 GSM13129525.8563 4.8592 5.6757 5.3235 4.4993 5.2810 . . . 5.6794 8.8107 6.2094 8.1863 5.8603 8.3529 Liver

25 GSM13129538.8499 6.0498 5.9915 6.1030 4.3604 5.0026 . . . 5.3545 8.1970 6.2779 8.2310 5.9560 9.5760 Bone

26 GSM13129546.3137 4.7653 5.1842 5.2177 4.2325 5.7308 . . . 5.2766 9.3691 6.1371 8.0164 6.1084 8.2146 Bone

27 GSM13129555.9951 5.0517 6.4163 5.2682 4.3745 4.8983 . . . 6.2287 8.7048 6.0669 8.4942 5.6814 9.5736 Bone

28 GSM13129566.0545 4.7172 6.9508 5.1912 4.3765 4.8779 . . . 7.6965 8.8376 6.4431 8.2028 6.5684 9.2403 Bone

29 rows × 20,488 columns.
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Appendix C. Merged and Normalized Dataset

1 10 100 1000 10000 1 × 108 10001 ... 999 9990 9991 9992 9993 9994 9997

0 1.1073 −0.5584 1.4254 −0.1679 0.968 −0.7103 0.3433 ... 0.235 −1.4055 0.6487 −0.7894 1.7514 −0.47 1.4987

1 −0.4006 0.3714 0.2092 1.7604 1.2383 0.2766 0.7643 ... 0.5823 0.5341 0.3564 −0.2172 0.7292 0.1851 −0.5383

2 0.5142 0.8277 −0.5921 0.1279 0.527 1.5429 0.784 ... 1.3263 −0.2405 1.0032 −0.5009 2.4741 1.1371 1.6794

3 0.1348 0.2017 1.3565 0.2027 1.4312 −0.7269 1.0486 ... 0.8783 −0.3174 0.3164 −0.6167 1.1261 −0.0541 0.3768

4 0.2206 0.4306 −0.7371 2.4844 0.7602 −0.4321 1.08 ... 0.8878 −0.5984 0.131 0.002 1.2663 0.2907 0.5462

5 0.2208 0.3451 −0.8381 3.1413 1.4992 0.6906 1.4515 ... −3.5736 −0.4426 0.0108 0.3564 0.0845 0.6751 0.6125

6 0.6361 0.186 3.8018 3.1154 0.9093 −0.7219 2.3365 ... −3.1912 0.1717 −0.2788 −0.3698 0.138 0.8558 0.9176

7 −0.3789 −0.145 0.3693 0.6245 2.7348 −0.8856 1.0825 ... 1.0557 −0.3354 0.2199 −1.1873 0.8295 2.5444 1.3439

8 0.1344 −0.1282 0.2622 0.3942 0.9295 −0.666 1.3149 ... 0.9476 −0.561 0.0489 −1.1998 0.4473 0.1588 0.6821

9 −0.3664 0.3666 0.3935 0.8288 0.774 0.0678 0.6543 ... 2.0178 −0.3477 2.2444 −0.087 1.1735 0.3561 −0.0257

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

76 −1.6765 −2.1117 0.5075 −1.1132 −0.8302 −2.4271 −1.1618 ... −0.8085 2.8795 −0.3754 −1.3423 −0.3784 −1.3842 1.1868

77 −1.7519 −1.7871 −0.2358 −1.4794 −0.1956 −0.0349 −1.4196 ... −0.6919 2.6152 1.5135 −1.5502 −0.057 −0.3818 0.9789

78 −1.4165 −1.9877 0.7691 −1.713 −0.8021 −1.4121 −0.6681 ... −1.1026 4.0275 1.6157 −1.5423 −0.371 −0.952 1.5195

79 −1.3437 −1.7222 −0.2621 −1.1316 −1.3777 −2.1654 −1.7002 ... −0.9386 1.3265 0.8307 −0.6363 −0.365 −1.389 −0.3711

80 −0.6238 −2.0195 −0.5024 −1.2403 −1.4987 −1.1558 −1.9665 ... −0.7943 1.5701 −0.1927 −1.3807 −0.0658 −1.8329 −0.6689

81 −1.5912 −1.9974 −1.9121 −1.4683 −1.3397 0.1184 −1.0834 ... 0.0965 −0.6762 1.616 −1.7688 −0.2352 −1.5423 −1.0397

82 1.8065 −0.5804 −1.4351 −0.8137 −1.4859 −1.1977 −1.0668 ... 0.8924 −1.2419 0.9312 −1.5253 −0.1591 −1.3984 0.2818

83 −1.0721 −2.1091 −2.6548 −1.5571 −1.6205 2.2447 −0.0992 ... 0.7633 −1.3775 2.2391 −2.0259 −0.5243 −1.1693 −1.1891

84 −1.4337 −1.7683 −0.7933 −1.5147 −1.4711 −1.6908 −1.2391 ... 0.1758 0.2801 1.4978 −2.2756 0.2887 −1.8114 0.2792

85 −1.3663 −2.1664 0.0143 −1.5794 −1.4689 −1.7872 −1.4259 ... −1.3731 2.8356 1.646 −0.938 −0.207 −0.4777 −0.0809

86 rows × 20,486 columns.
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Appendix D. Dataset after Removing Correlated Features

1 10 100 1000 10,000 1 × 108 10,001 . . . 9961 9962 997 9973 9984 999 9997

0 1.1073 −0.5584 1.4254 −0.1679 0.968 −0.7103 0.3433 . . . 0.2706 0.4551 1.6566 1.1436 −0.4051 0.235 1.4987

1 −0.4006 0.3714 0.2092 1.7604 1.2383 0.2766 0.7643 . . . 0.4908 0.4133 1.3221 0.6164 −0.2804 0.5823 −0.5383

2 0.5142 0.8277 −0.5921 0.1279 0.527 1.5429 0.784 . . . 1.1641 0.4141 0.6974 0.9285 0.2504 1.3263 1.6794

3 0.1348 0.2017 1.3565 0.2027 1.4312 −0.7269 1.0486 . . . 1.7457 −0.3479 0.0111 0.5555 −1.3193 0.8783 0.3768

4 0.2206 0.4306 −0.7371 2.4844 0.7602 −0.4321 1.08 . . . 1.4034 −0.6757 0.8695 0.2926 3.6107 0.8878 0.5462

5 0.2208 0.3451 −0.8381 3.1413 1.4992 0.6906 1.4515 . . . 0.1724 0.5311 −0.276 0.4835 0.33 −3.5736 0.6125

6 0.6361 0.186 3.8018 3.1154 0.9093 −0.7219 2.3365 . . . 0.3219 0.6182 −0.4591 0.0423 −0.6683 −3.1912 0.9176

7 −0.3789 −0.145 0.3693 0.6245 2.7348 −0.8856 1.0825 . . . 0.0195 −0.1824 −0.3309 2.046 −0.0084 1.0557 1.3439

8 0.1344 −0.1282 0.2622 0.3942 0.9295 −0.666 1.3149 . . . 0.9737 −0.5723 −0.6066 0.7488 −0.1313 0.9476 0.6821

9 −0.3664 0.3666 0.3935 0.8288 0.774 0.0678 0.6543 . . . 0.3707 0.221 0.2925 0.1104 −0.2957 2.0178 −0.0257

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

76 −1.6765 −2.1117 0.5075 −1.1132 −0.8302 −2.4271 −1.1618 . . . −0.1819 −1.9179 2.44 0.735 −0.7166 −0.8085 1.1868

77 −1.7519 −1.7871 −0.2358 −1.4794 −0.1956 −0.0349 −1.4196 . . . 0.0729 −0.4649 −2.2167 −2.4931 1.0378 −0.6919 0.9789

78 −1.4165 −1.9877 0.7691 −1.713 −0.8021 −1.4121 −0.6681 . . . 0.9578 −0.3947 −1.3783 −1.6917 0.2525 −1.1026 1.5195

79 −1.3437 −1.7222 −0.2621 −1.1316 −1.3777 −2.1654 −1.7002 . . . 0.1721 −1.5257 1.3317 −1.0251 0.5284 −0.9386 −0.3711

80 −0.6238 −2.0195 −0.5024 −1.2403 −1.4987 −1.1558 −1.9665 . . . 0.5117 −1.6121 2.2701 −0.6082 0.2498 −0.7943 −0.6689

81 −1.5912 −1.9974 −1.9121 −1.4683 −1.3397 0.1184 −1.0834 . . . −0.0482 −1.9324 −0.947 −1.6412 0.3456 0.0965 −1.0397

82 1.8065 −0.5804 −1.4351 −0.8137 −1.4859 −1.1977 −1.0668 . . . 0.2392 0.4666 −0.4142 2.4051 0.4809 0.8924 0.2818

83 −1.0721 −2.1091 −2.6548 −1.5571 −1.6205 2.2447 −0.0992 . . . −0.4106 −1.118 −2.1279 −1.5875 0.4401 0.7633 −1.1891

84 −1.4337 −1.7683 −0.7933 −1.5147 −1.4711 −1.6908 −1.2391 . . . −1.3745 −2.1706 −0.6876 −0.8633 1.3487 0.1758 0.2792

85 −1.3663 −2.1664 0.0143 −1.5794 −1.4689 −1.7872 −1.4259 . . . 0.2409 −2.3795 0.45 −0.2579 0.5958 −1.3731 −0.0809

86 rows × 6602 columns.
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Appendix E. Reduced Dimensions after RFECV

222,865 25,973 2670 347,733 4131 4283 4318 441,150 51,011 6439 729,887 81,035 8120 81,575 8817 90,865

0 0.198 0.9758 0.3665 −0.2696 1.0458 0.9783 −0.6444 3.782 3.171 0.3832 4.6323 −0.4311 −0.2163 −0.1137 −0.1295 0.7515

1 −0.0865 1.1 0.7864 3.312 1.2416 0.5305 0.9294 0.6143 0.9198 0.1937 −0.1079 −0.3811 4.3088 1.2101 −0.2767 −0.4483

2 1.9646 1.1233 1.0511 −0.0854 0.9364 −0.79 −1.2065 0.9356 0.1308 −0.0736 2.1 −0.71 0.2795 0.9134 −0.3304 −0.142

3 −1.192 −0.6367 0.2691 −0.4562 1.7566 −0.7846 1.4329 −0.7015 0.4727 −0.1349 −0.7771 1.5955 −0.3288 2.6731 3.8883 1.3303

4 0.1266 −0.0604 1.7196 0.0398 1.8735 −0.659 0.0221 0.1035 0.4401 −0.0272 2.0996 −0.2556 −0.4302 −0.0581 0.8987 −0.5004

5 −0.5906 0.3491 1.4248 0.2006 2.0667 −0.7052 −0.5249 −0.2215 −0.3393 0.1466 −0.8944 0.6907 −0.2445 −0.2771 −0.0903 −0.4262

6 −0.8871 0.1041 0.1751 −0.7043 1.6466 −0.3017 0.1538 −0.4897 0.4002 0.0265 −0.4333 0.4794 −0.0686 1.0238 −0.2101 −0.2477

7 0.4481 0.0621 0.9934 1.1176 1.0911 −0.7203 0.0915 1.7954 1.4472 −0.0197 2.5998 −0.3057 −0.5338 1.8907 0.3507 −0.4034

8 −0.2063 1.0118 0.0792 −0.7138 1.0369 1.4341 1.8265 −0.2083 0.2059 −0.0171 −0.8552 1.9019 −0.5076 0.847 0.2876 0.1463

9 −0.2731 1.155 2.0704 1.0202 2.5062 −0.6621 −0.5338 −0.1218 0.7685 0.1553 0.1663 −0.5509 −0.2045 1.5289 0.1918 −0.2485

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

76 −1.012 −1.9397 −1.1871 −0.9757 −1.8074 −0.5485 1.1886 −1.6693 −1.1848 −0.9253 −0.8543 −0.6911 −0.4686 −0.2061 −1.3553 −0.7851

77 −1.9576 −0.0641 −1.302 −0.7803 0.1777 0.6541 1.6583 −1.4042 −0.9199 −0.9623 −1.659 0.5504 −0.8571 −0.2125 −1.4715 −1.1276

78 −1.786 −1.2262 −1.3476 −0.3278 −0.4901 0.5951 1.933 −1.0345 −1.1996 −0.9378 −1.8962 1.3793 −0.8242 −0.7745 −1.7589 −0.9362

79 −0.2186 −1.1662 −1.15 −0.7646 −0.3131 −1.3009 1.7065 −2.237 −1.5943 −0.9207 −0.9506 0.7116 −0.9004 0.2218 −1.887 −1.096

80 1.0808 −0.597 −0.8584 −0.8226 −1.4641 −1.2374 0.7571 −1.4812 −2.0239 −0.7141 −1.4048 0.3666 −0.9214 −1.3547 0.2259 −1.0798

81 −1.3624 0.1524 −1.1858 −0.8277 −1.4117 −1.2232 −1.2171 −0.8709 −0.8319 −0.8716 −0.6282 1.7031 −1.7363 −0.7022 −1.9667 −1.0593

82 −1.2753 −0.6617 −1.2841 −0.6723 0.2354 0.0003 −1.3449 −0.3184 −0.8008 −0.8581 0.298 −1.1678 −0.6246 −0.3164 1.769 −0.4109

83 −1.0755 0.189 −1.3647 −0.902 −1.5986 −1.9597 −0.8797 −1.0385 −0.5315 −0.7335 −0.8141 1.275 −1.888 −0.2927 −1.5776 −1.1293

84 −1.8085 −1.0142 −1.2811 −0.9334 −1.0717 −0.4323 0.9235 −2.1046 −1.0034 −0.9462 −0.8141 −1.2629 −0.9565 −0.2507 −1.7703 −0.6834

85 −0.6364 −1.8746 −0.8828 −0.8022 −1.9914 0.1244 1.8855 −1.3999 −1.2799 −0.7505 −0.6868 −1.4617 −0.0416 −1.7382 −1.2005 −0.5755

86 rows × 16 columns.
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Appendix F. Oversampled Dataset after Applying K-Mean Smote

222,865 25,973 2670 347,733 4131 4283 4318 441,150 51,011 6439 729,887 81,035 8120 81,575 8817 90,865 Metastasis

0 0.198 0.9758 0.3665 −0.2696 1.0458 0.9783 −0.6444 3.782 3.171 0.3832 4.6323 −0.4311 −0.2163 −0.1137 −0.1295 0.7515 Lung

1 −0.0865 1.1 0.7864 3.312 1.2416 0.5305 0.9294 0.6143 0.9198 0.1937 −0.1079 −0.3811 4.3088 1.2101 −0.2767 −0.4483 Brain

2 1.9646 1.1233 1.0511 −0.0854 0.9364 −0.79 −1.2065 0.9356 0.1308 −0.0736 2.1 −0.71 0.2795 0.9134 −0.3304 −0.142 Brain

3 −1.192 −0.6367 0.2691 −0.4562 1.7566 −0.7846 1.4329 −0.7015 0.4727 −0.1349 −0.7771 1.5955 −0.3288 2.6731 3.8883 1.3303 Bone

4 0.1266 −0.0604 1.7196 0.0398 1.8735 −0.659 0.0221 0.1035 0.4401 −0.0272 2.0996 −0.2556 −0.4302 −0.0581 0.8987 −0.5004 Brain

5 −0.5906 0.3491 1.4248 0.2006 2.0667 −0.7052 −0.5249 −0.2215 −0.3393 0.1466 −0.8944 0.6907 −0.2445 −0.2771 −0.0903 −0.4262 Bone

6 −0.8871 0.1041 0.1751 −0.7043 1.6466 −0.3017 0.1538 −0.4897 0.4002 0.0265 −0.4333 0.4794 −0.0686 1.0238 −0.2101 −0.2477 Bone

7 0.4481 0.0621 0.9934 1.1176 1.0911 −0.7203 0.0915 1.7954 1.4472 −0.0197 2.5998 −0.3057 −0.5338 1.8907 0.3507 −0.4034 Brain

8 −0.2063 1.0118 0.0792 −0.7138 1.0369 1.4341 1.8265 −0.2083 0.2059 −0.0171 −0.8552 1.9019 −0.5076 0.847 0.2876 0.1463 Bone

9 −0.2731 1.155 2.0704 1.0202 2.5062 −0.6621 −0.5338 −0.1218 0.7685 0.1553 0.1663 −0.5509 −0.2045 1.5289 0.1918 −0.2485 Brain

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

119 −1.2187 −2.5334 −1.328 1.6502 −0.1868 2.3117 −0.7413 −1.161 −0.9107 −0.8275 −0.8525 −0.9858 −1.3184 −1.3744 −1.9571 0.8591 Liver

120 −0.9832 −1.4084 −1.022 0.3152 −1.2142 1.989 −0.7787 −1.2526 −0.7445 −0.5679 −0.9831 −1.2853 −1.8635 −1.9452 −1.5483 3.7285 Liver

121 −1.4467 −1.1812 −1.3396 0.4043 −0.9398 1.6933 −1.1969 −1.693 −0.9057 −0.8883 −1.0399 −1.4553 −1.4607 −2.0827 −2.2189 0.1661 Liver

122 −0.5328 −1.365 −0.9757 1.0245 −0.9261 2.2429 −0.9658 −1.1536 −0.8336 −0.5485 −0.9617 −1.2656 −1.912 −2.0633 −1.2153 3.7183 Liver

123 −0.7801 −1.3888 −1.0011 0.6352 −1.0842 2.1035 −0.8631 −1.2079 −0.7847 −0.5592 −0.9735 −1.2764 −1.8854 −1.9984 −1.398 3.7239 Liver

124 −1.1877 −0.5688 −1.1857 −0.0131 −1.3437 1.6019 −1.3146 −1.7328 −0.8642 −0.7686 −1.1032 −1.614 −1.7331 −2.4309 −1.9283 1.4033 Liver

125 −1.331 −2.2994 −1.2769 1.0944 −0.5203 2.1472 −0.6812 −1.2176 −0.8412 −0.7769 −0.8893 −1.0595 −1.4218 −1.458 −1.988 1.5002 Liver

126 −1.0673 −2.7155 −1.3628 2.193 0.1203 2.4782 −0.815 −1.1022 −0.9786 −0.8655 −0.8199 −0.9239 −1.2419 −1.3232 −1.8872 0.3424 Liver

127 −1.5902 −0.5177 −1.3223 −0.3542 −1.3972 1.3651 −1.3603 −1.9386 −0.8735 −0.8917 −1.1338 −1.6824 −1.5646 −2.4134 −2.3412 0.1555 Liver

128 −1.7172 −1.307 −1.126 −0.8419 −1.6835 1.5209 −0.5981 −1.5013 −0.6315 −0.638 −1.0401 −1.3814 −1.7628 −1.8607 −2.1368 3.2783 Liver

129 rows × 17 columns.
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