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Abstract: In the industrial environment, the data transmission of Wireless Sensor Networks (WSNs)
usually has strict deadline requirements. Improving the reliability and real-time performance of data
transmission has become one of the critical issues in WSNs research. One of the main methods to
improve the network performance of WSNs is to schedule the transmission process. An effective
scheduling algorithm can meet the requirements of a strict industrial environment for network
performance, which is of great research significance. Aiming at the problem of concurrent data
transmission in WSNs, a real-time data transmission scheduling algorithm based on deep Q-learning
is proposed. The algorithm comprehensively considers the influence of the remaining deadline,
remaining hops, and unassigned time-slot nodes in the data transmission process, defines the reward
function and action selection strategy of Q-learning, and guides the system state information transfer
process. At the same time, deep learning and Q-learning are combined to solve the problem of disaster
maintenance caused by the large scale of the system state. A multi-layer Stacked Auto Encoder (SAE)
network model establishes the state-action mapping relationship, and the Q-learning algorithm
updates it. Finally, according to the trained SAE network model, the data transmission scheduling
strategy of the system in different states is obtained. The network performance of the proposed
data transmission scheduling algorithm is analyzed and evaluated by simulation experiments. The
simulation results show that compared with the commonly used heuristic algorithms, the proposed
algorithm improves real-time performance and can better meet the data transmission requirements
of high reliability and real-time WSNs.

Keywords: real-time; data transmission; deep Q-learning; Wireless Sensor Networks

1. Introduction

Wireless Sensor Networks (WSNs) are wireless network systems composed of several
small autonomous devices called sensor nodes distributed in space according to specific
requirements. The function of the sensor node is to transmit the data to the base station
or the destination node through sensing and collecting the ambient information, such as
sound vibration, pressure, temperature, light intensity, and so on. With the development of
wireless communication technology and the progress made over time, WSNs have been
applied more and more widely in the field of information, involving many important
fields such as environmental monitoring, urban management, industrial and agricultural
automation, intelligent transportation, and military [1].

In recent years, WSNs have successfully replaced wired networks and been adopted in
the industrial field due to simple deployment, low maintenance cost, and high flexibility [2].
However, the characteristics of wireless communication determine that interference and
conflict inevitably exist in the process of data transmission, and data packets may be
lost or delayed beyond their expected deadline [3]. Due to the importance of timing,
packets produced in industrial environments often have strict deadlines. In order to
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achieve the reliability of data transmission, a feasible method is to use the Medium Access
Control (MAC) protocol based on Time Division Multiple Access (TDMA) to eliminate the
interference in the network. Furthermore, it can improve the probability of transmitting
the packet to the destination node before the deadline. TDMA is widely used in wireless
network communication because it is easy to implement and avoids data collision.

The application of WSNs in the industrial environment should ensure that strict timing
requirements are met and improve the reliability and real-time performance of message
forwarding between sensor nodes [4]. Therefore, how to improve the reliability and real-
time performance of data transmission in WSNs has become an important research topic
in WSNs. The scheduling algorithm is one of the main methods and key technologies
to improve wireless network reliability and real-time performance. Effective scheduling
algorithms can realize the improvement of network technology and make it meet the
requirements of WSNs environment with strict deadlines.

Traditional scheduling algorithms are mostly heuristic scheduling algorithms, such as
Earliest Deadline First (EDF) [5] or BSSA algorithm [6]. As the WSNs data transmission
scheduling problem is proven to be an NP hard problem [7,8], in recent years, researchers
have turned their attention to introducing Machine Learning (ML) methods into WSNs.
Many new algorithms were proposed in combination with ML methods in multiple aspects
of WSNs [9]. In the design and research of WSNs, the research on functional requirements
can be summarized into the following aspects according to the research direction of WSNs
and the association among all directions: energy sensing and real-time routing, node
clustering and data aggregation, event detection and query processing, localization and
object positioning, and media access control protocol.

(1) Routing protocol and energy perception

Research on routing protocols in WSNs is a hot field to solve quality-of-service (QoS)-
related problems. Therefore, routing protocols must consider various challenges, such as
energy consumption, fault tolerance, scalability, and data coverage. Traditionally, routing
problems in WSNs can be abstracted as graph G = (V, E), where V represents the set of all
nodes in the network and E represents the bidirectional communication edge connecting
nodes. The routing problem can be defined as the process of finding the least-cost path
from the source vertex to the destination vertex through the model graph G. Reinforcement
learning is used to propose a routing protocol based on the gradient to learn and find
routes that exhaust node energy in a balanced way [10]. Alternatively, learn from previous
routing decisions and adapt to the traffic importance of information transmission to cope
with unpredictable topology changes and challenges of energy constraints [11].

(2) Node clustering and data aggregation

In WSNs constrained by energy resources, it is ineffective to transmit all data directly
to the receiver. A practical solution is to pass the data to a local aggregator (called a cluster
head) that aggregates the data from all the sensors in its cluster and transmits it to the
receiver, often saving energy for the nodes. How to select the best node as the cluster head
among local sensors is always a trending research topic. In addition to the famous LEACH
clustering mechanism, the CHEF cluster head election mechanism of fuzzy logic is also
used to reduce the collection and calculation overhead and extend the life of the sensor
network. Recently, some researchers proposed a clustering protocol based on a support
vector, which can effectively allocate sensor nodes to the nearest cluster using machine
learning methods, reduce energy consumption, and make better use of resources [12].
Cluster head selection methods combined with machine learning algorithms can reduce
energy consumption and enhance the network life cycle. A role-free clustering algorithm
based on the Q-learning algorithm is proposed to make each node have the ability to act as
a cluster head node by combining the Q-learning algorithm with some dynamic network
parameters [13].

(3) Event detection and query processing
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Event detection and query processing in WSNs is considered a functional requirement
for any large-scale sensor network. Monitoring content in WSNs can be divided into three
categories: event-driven, continuous-driven, or query-driven. How to design effective
event detection and query processing solutions has been the focus of many researchers in
WSNs. The most straightforward technique is to provide strict thresholds for perceived
phenomena and alert system administrators to any violations. However, in the recent
use of WSNs, event and query processing units are often complex and require more than
predetermined thresholds. In this regard, many researchers have made improvements and
proposed their algorithms and solutions. For example, a new event detection algorithm is
proposed in the wireless network where sensor nodes are randomly deployed in space [14].
In an environment with strict execution time requirements, a WSNs data flow analysis
framework based on deep learning is proposed [15], which can obtain reasonable and
accurate query analysis results within the deadline. In recent years, the appearance of
wireless network physical systems needs to support the real-time query of the physical envi-
ronment through wireless sensor networks. To address this requirement, a real-time query
scheduling algorithm (RTQS) is proposed in [16], which is a new conflict-free transmission
scheduling method for real-time queries in wireless sensor networks.

(4) Localization and object positioning

Localization is the process of determining the geographic coordinates of network nodes
and components. Considering that the operation of most sensor networks is usually based
on location, the position perception of sensor nodes is an essential function [17]. While it is
possible to achieve position awareness of sensor nodes by using Global Positioning System
(GPS) hardware in each node, this approach is not economically feasible in most large
systems. In addition, GPS services may not be available in some observable environments.
Relative position measurement is sufficient in some scenarios. However, the position of
the sensor node can be sensed using the absolute position of the node because the relative
position can be converted to the absolute position [18]. To enhance the performance of
proximity-based positioning, additional measurements depending on distance, angle, or
a combination of them can be used. Distance measurements can be obtained by utilizing
various techniques such as RSSI, TOA, and TDOA. In addition, the angle of the received
signal can be measured using a compass or special smart antenna [19].

(5) Media access control protocol

In WSNs, many sensors work together to perform data transfer tasks efficiently. There-
fore, designing MAC protocols for WSNs presents different challenges than typical wireless
networks, as well as energy consumption and latency challenges [20]. In addition, WSNs
must control the duty cycle of nodes in data transmission scheduling, which is beneficial to
saving energy. Therefore, the MAC protocol used in WSNs must be modified to support
sensor nodes to carry out data transmission and receiving tasks effectively. MAC protocols
proposed in WSNs include TDMA-based MAC protocol [21], variable/burst traffic hybrid
CSMA/TDMA iQueue-MAC protocol [22], probabilistic polling MAC protocol (PP-MAC),
energy collection MAC protocol (EH-MAC), ERI-MAC protocol, etc. [23].

(6) Reinforcement learning

Reinforcement learning is a kind of effective decision-making method, which can
find the best or nearly the best strategy for an agent. However, reinforcement learning is
generally applicable to the case of small system space or limited network topology. When
the system complexity is high or the data latitude is high, reinforcement learning methods
have problems such as dimension disaster and insufficient memory. Starting from the
topology of WSNs, this paper considers the scheduling problem of data transmission in the
case of concurrent data, at which time the general reinforcement learning method has been
difficult to solve. At this point, the deep reinforcement learning method combining the
powerful information perception ability of deep learning and the decision-making ability
of reinforcement learning is a new research idea.
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This paper takes an industrial WSNs environment as the research object. The real-
time data transmission scheduling method is studied to improve the reliability and real-
time performance of WSNs. Based on the topology structure of WSNs, a real-time data
transmission scheduling algorithm based on deep Q-learning is proposed to solve the
problem of concurrent data transmission scheduling in WSNs. A Q-learning model was
established to comprehensively consider the influences of communication constraints and
interference between nodes in WSNs, remaining deadline of transmission data, remaining
hop count, and other factors on data transmission to the destination node. By using the
reinforcement learning method to determine the sensor nodes for data transmission in each
time slot, the deep learning method combined with experience playback is used to perceive
the mapping relationship between system state and behavior. Q-learning is used to update
the mapping relationship between state and behavior, so as to realize the learning of data
transmission scheduling strategy. An effective data transmission scheduling algorithm is
obtained. The network performance of this algorithm is simulated and compared with
other existing algorithms to verify its effectiveness.

The main contributions of this paper are listed as follows:
To solve the problem of concurrent data transmission in WSNs, a real-time data

transmission scheduling algorithm based on deep Q-learning is proposed in this paper.

(1) The algorithm comprehensively considers the influence of remaining cutoff time,
remaining hop count, and unallocated time slot nodes in data transmission, defines
the reward function and action selection strategy of Q-learning, and guides the process
of system state information transfer.

(2) To solve the disaster maintenance problem caused by large-scale system states, deep
learning and Q-learning are combined, and a multi-layer Stacked Auto Encoder
(SAE) network model is used to establish the state-action mapping relationship. The
mapping relationship is updated by the Q-learning algorithm.

(3) According to the trained SAE network model, the data transmission scheduling
strategy of the system in different states is obtained, and the simulation results show
that the strategy is effective.

The remainder of this paper is organized as follows. In Section 2, the system model of
WSNS is presented. The network model, Q-learning model, and deep-Q network (DQN)
model in this paper are given. In Section 3, the optimal action selection strategy, reward
mechanism, and state-behavior description network are described, and the proposed
algorithm is presented in detail. In Section 4, the simulation results are discussed. Finally,
Section 5 draws the conclusion.

2. System Model

At the beginning of this section, we first explain the definition of the symbols used
later in Table 1.

Table 1. Definition of the symbols.

Symbol Definition

V the set of vertices of all sensor nodes
E the set of all communication links
E′ the set of all interference edges
Pi data packet generated by i-th node
Ti data packet generation cycle
Di data packet transfer cutoff time
Hi the total hops from the source node to the sink node
Ci the node where the data packet resides
hi the number of hops remaining
ti the number of time slots contained in the remaining cutoff time
S the state space
A the action space
π the learning strategy of the agent
R the agent’s reward
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2.1. Network Model

M sensor nodes and one base station node form a wireless sensor network with a
known topology. As shown in Figure 1, BS is the base station or the destination node,
while others are sensor nodes. The sensor nodes periodically generate data with different
strict deadlines and send it to the base station node through data transmission between
nodes. The entire network topology can be represented by a directed graph G(V, E, E′). V
represents the set of vertices of all sensor nodes. E represents the set of all communication
links, ea represents node e sends data to node a, which is called the parent node of e. E′

represents the set of all interference edges. Interference edge ab means that the transmission
of node a will interfere with the transmission of b, and similarly, the transmission of node b
will also interfere with the transmission of a.
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Sensor nodes periodically generate data, and data transmission is carried out according
to a time slot. The data packet Pi generated by i-th node vi can be expressed as

Pi = (Ti, Hi, Di, φi) (1)

where Ti is the packet generation cycle, Di is the packet transfer cutoff time, φi is the routing
path of the packet, Hi represents the total hops from the source node to the sink node. The
unit of Ti and Di are represented by the number of time slots. Generally, Ti is greater than
Hi to ensure the transmission time required for packets. At any time slot t, the packet
contains three attributes, which are Ci, hi, ti. Ci indicates the node where the data packet
resides (Ci ∈ φi), hi indicates the number of hops remaining when data are transmitted
from the current node to the destination node (0 < hi ≤ Hi), ti indicates the number of
time slots contained in the remaining cutoff time of the packet (0 < ti ≤ Ti).

For the data in the process of transmission in WSNs, if the data state is ti > hi, it
means that the data can be transmitted to the destination theoretically. If the next time slot
is allocated by the system for data transfer, the remaining time of the current data transfer
status and the remaining hops are reduced by one and the data are transmitted to the next
node. Otherwise, the remaining time of the data transfer status is reduced by one. When
ti = 0, node vi will generate new data and start to wait for transmission scheduling. The
initial remaining time ti = Ti and the initial remaining hop number hi = Hi.

In order to consider the practical applications, the following assumptions are assumed:

(1) The sensor node cannot transmit and receive data at the same time or receive data
from more than one node at the same time;

(2) The node that receives multiple data selects at most one data packet for data transmis-
sion in each time slot;
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(3) The data generated periodically by the source node has a strict cut-off time limit, and
the cut-off time is equal to the data generation cycle;

(4) In the process of data transmission, if the deadline is exceeded, the data will be directly
discarded because it has become invalid;

(5) The probability of success of wireless communication transmission will be affected by
physical factors such as transmission power, encoding mode, and modulation scheme.
This paper assumes that if the data are arranged for transmission, the probability of
success is 1.

2.2. Q-Learning Model

The data transmission scheduling in WSNs mainly solves the problem of deciding
which nodes are scheduled for transmission in each time slot. The transmission status
and the location of data need to be considered. The Q-learning model of WSNs data
transmission scheduling problem can be represented by (S, A, π, R). S is the state space,
representing the state set of all data in WSNs. A is the action space, representing the action
set of WSNs. π is the learning strategy of the agent, and represents the slot allocation of
WSNs data transmission. R is the agent’s reward, indicating the feedback of the agent’s
action in the current time slot.

(1) System space model

The state space of the whole WSNs consists of the current state of data generated by all
nodes in the network, which can be expressed as S = {s1, s2, . . . . . . , sM−1, sM}. The current
state of data generated by any node is si = {Ci, ti, hi}. Thus, the size of the current state
space of data generated by any node is Ti(Hi)

2. The size of the state space of the entire

system can be expressed as
M
∏
i=1

Ti(Hi)
2.

In WSNs, all possible situations of nodes conducting data transmission scheduling
in each time slot constitute the action space of the system, which can be expressed as
A = {a1, a2, . . . , aM−1, aM}. For the data generated by any node in the current time slot, if
the data are transmitted, the corresponding action ai is 1; otherwise, it is 0. Regardless of
WSNs sensor node transmission constraints and assumptions, the maximum movement
space of the whole system is 2M in theory. Thus, the size of the system can be expressed
as the product of the size of the state space and the size of the action space. In such an
ample system space, reinforcement learning cannot get an effective scheduling strategy.
The introduction of deep reinforcement learning can be a good solution to the time slot
allocation and network control problems of large-scale systems.

(2) Value function model

The goal of reinforcement learning is to achieve mapping strategy from environment
state to action π : S→ A . The Q-learning algorithm can be regarded as a random expres-
sion of value iteration algorithm. Value iteration can be expressed by action value function.
Vπ(s) is used to represent the action value function of state s performing action a to the
next state s′ with probability P(s′|s, a) in the next time slot under strategy π.

Vπ(s) = max
a∈A

[R(s′|s, a) + γ ∑
s′∈s

P(s′
∣∣s, a)Vπ(s′) ] (2)

where P(s′|s, a) represents the transition probability that the system performs action a in
state s and turns to state s′. R(s′|s, a) represents the average reward for state transitions. γ
is the discount factor, γ ∈ (0, 1), which reflects the impact of future income on the current
state. The optimal strategy is to obtain the execution action that maximizes the value
function. The optimal strategy π∗(s) can be expressed as follows:

π∗(s) = argV∗(π)(s) = argmax
a∈A

[R(s′|s, a) + γ ∑
s′∈S

P(s′
∣∣s, a)Vπ(s′) ] (3)
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In the Q-learning model, the Q value update of the system is defined as follows:

Qt(st, a) = (1− ∂)Qt(st, a) + ∂[R(s′|s, a) + γ ∑
s′∈∈S

P(s′|s, a)max
a∈A

Qt(s′|s, a)] (4)

where ∂ ∈ (0, 1) is the learning rate factor. The larger ∂ is, the more the system learning
process depends on the reward function and the value function. The smaller ∂ is, the more
the system relies on the accumulated learning experience, and the slower the learning
rate. The Q-learning algorithm maximizes the system utility by calculating and updating
the Q value, but P(s′|s, a) is usually unknown, and in the Q-learning algorithm, R(s, a) +
∑

s′∈s
P(s′|s, a)max

a∈A
Qt(s′|s, a) can be directly replaced by an unbiased estimate constructed

from the current transformation Rt+1 + max
f∈A

Q(st+1, at), so as to obtain the final Q The

value function updates the formula as:

Qt(st, a)← (1− ∂)Qt(st, a) + ∂[R(s′|s, a) + γmax
a∈A

Qt(s′|s, a)] (5)

2.3. DQN Network Model

The role of the neural network in the DQN network model is to realize the supervised
learning of WSNs. The general method constructs two Q networks, in which the experience
pool provides training samples, the loss function is determined by the target Q value and
the calculated Q value, and then the gradient is calculated, using the stochastic gradient
descent method (SGD) updates the parameter W and the bias b. The DQN network model
is shown in Figure 2.
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Two networks with the same structure but different parameters are established in
Figure 2 [24]. One network uses the latest parameters to calculate and predict the Q value,
and the other network uses the parameters before a certain time to update the Q value. This
can ensure the stability of the target Q value for a period of time, reduce the correlation
between the current Q value and the target Q value to a certain extent, and make the
performance of the algorithm more stable.

The experience pool is also known as experience replay. Its role is not only to solve
the problem of data correlation but also to provide learning samples. A memory bank
is established at the beginning of the learning and training process. The state, action,
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reward, and the state of the next time slot after executing the current action are stored in
the experience pool. Each time a neural network is trained, a certain amount of memory
data is randomly sampled in batches from the experience pool. At the same time, when the
experience pool is full, the new memory will overwrite the old memory, thus disrupting
the order of the original data and further weakening the relevance of the data.

3. Proposed Algorithm

In this section, the algorithm is divided into three parts: optimal action selection
strategy, reward mechanism, and state-behavior description network. We describe the
above three parts in Sections 3.1–3.3, respectively. Finally, the overall flow of the algorithm
is given in Section 3.4.

3.1. Optimal Action Selection Strategy

The optimal action selection strategy is used to determine the node-set to send. Firstly,
the strategy selects the best action for the current time slot by exploring the development
strategy. Secondly, based on the node where the action is located, the most urgent and
non-conflicting node-set is constructed.

(1) Explore development strategies

In the process of systematic learning and trial and error, it is necessary to balance
the relationship between exploration and development. The general ε− greddy strategy
is prone to the problem of too fast convergence. Development under the condition of
insufficient exploration will cause the learning process to be too short and the learning
results to be seriously deviated. Based on the ε− greddy strategy, this algorithm introduces
the Metropolis criterion in the simulated annealing algorithm into the execution action
selection of the exploration and development strategy. Meanwhile, it can be seen from the
Q learning model that the state space of the whole system explosively expands with the
increase of the number of nodes, which requires relatively long learning times to achieve
the ideal training effect. Therefore, segmented exploration and development processes
are adopted to acquire state and behavior. In the early stages of DQN network learning,
actions are randomly selected and saved to the experience pool before the experience pool
is full. Then, based on the exploration probability εt, the action selection begins to gradually
balance the exploration and development process, which can better solve the problem of
too fast convergence. The exploration probability εt is defined as follows:

εp = exp[
−
∣∣∣∣max

a0∈A
a_value(s, a0)

∣∣∣∣
KTk

] (6)

εt = max
{

εmin, εp
}

(7)

εp is the exploration probability after the simulated annealing algorithm is introduced,
where maxa_value(s, a0) is the maximum output value after the state-action mapping in
the deep neural network, and a0 is the action corresponding to the maximum output. T is
a fixed value, K is a coefficient, satisfying K = λe, λ ∈ (0, 1). e is the number of learning
times. As the number of learning times increases, the value of KTk will become smaller and
smaller, and the value of εp will also become smaller and smaller, and the entire exploration
process will tend to be stable. εmin is the given minimum exploration probability, which
is the lower bound of exploration, εt is the final exploration probability of the current
time slot, and it is the maximum value of εp and εmin. When the best action is selected, to
utilize the network’s transmission capacity as much as possible, other nodes are selected
for concurrent transmission. The process is mainly based on the conflict interference matrix
and the urgency of the data.

(2) Concurrent node sets based on the most urgent data
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Although each time slot allows multiple nodes to transmit data, there are transmission
conflicts between child nodes with the same parent node, and two sensor nodes with
interference edges cannot perform transmission tasks simultaneously. In this algorithm, the
deep neural network mapping relation is used to determine the most urgent data, and the
node where the data resides is the most urgent node. Then, other transmission nodes are
dynamically selected to construct the most urgent non-conflicting node-set and transmit
the selected data from the node.

Definition 1. A conflict interference matrix is used to represent the matrix of the conflicted
relationship between nodes, where the row number and column number respectively represent the
number of the corresponding sensor node. If there is conflict or interference between nodes, the
corresponding matrix element is represented by 1; otherwise, it is represented by 0.

The conflict interference matrix MC is constructed based on the WSNs topology, as
shown in Figure 3 is the conflict interference matrix based on Figure 1.

Figure 3. Conflict interference matrix.

Definition 2. Data urgency indicates the urgency of data to be sent in a certain time slot, represented
by ui. It is related to the number of remaining hops hi and the remaining deadline ti. The data
urgency can be expressed as follows:

ui = hi/(ti ∗ (ti − hi)) (8)

The steps to determine the concurrent node set are as follows:
Step 1: Construct the conflict interference matrix, determine the most urgent node N

by the best action, and add this node to the concurrent node-set;
Step 2: Add the node (excluding node N) with column coordinates corresponding to

the value of 0 in the n-th row of matrix MC to the list to be transmitted;
Step 3: Calculate the urgency of other data on the network. If the node with the highest

urgency is in the list to be transmitted, add the node to the concurrent node-set. Then,
remove the node from the list to transfer. If the data are not in the list to be transmitted,
ignore the data and repeat Step 3.

Step 4: If the list to be transmitted is not empty, continue step 3 until the list to be
transmitted is empty and obtain the final concurrent node-set based on the most urgent
data.

Taking Figures 1 and 3 as an example, assuming the current time slot, the data data_g
generated by node g are selected as the most urgent data through the exploration and
development strategy, and the node where the data data_g are currently located is b. In
step 1, it is determined that node b is added to the concurrent node-set. In step 2 and the
conflict interference matrix, nodes d, e, i, j, k, l, and m are added to the list to be transmitted.
In step 3, calculate the data state urgency evaluation ct generated by other nodes except
the data generated by node g, select the data with the highest evaluation value and the
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node where the data are currently located in the transmission list, and add the node to
the concurrent node-set. Assuming that the node is j, update the transmission queue and
remove nodes e, i, j, and m. Continue to select the node with the most urgent data in the
list to be transmitted to join the concurrent node-set and update the list to be transmitted.
Repeat step 3 until the list to be transmitted is empty, then the final of concurrent node-set
{b, d, j, k, l} can be obtained.

3.2. Reward Mechanism

The establishment of the reward function in this section considers two factors: the
immediate reward of real-time data allocated to the time slot and the influence of other
data not allocated to the time slot. Instant reward r reflects the current priority of the data
by considering the remaining time of the node and the number of hops remaining for all
the data allocated by the time slot. The function RL is defined to represent the impact of
other data flows that are not allocated to time slots at the current time. When the current
time slots are allocated, the more packets of other data flows are lost, the closer the data
distance to the discarded state is, and the greater RL is. The reward function is shown as

R = r + RL (9)

where r represents the instant reward value of all packets allocated to time slots. The instant
reward value of each data packet allocated to time slots consists of the remaining time
of the packet and the remaining hops. The smaller the remaining time is, the longer the
remaining hops are, and the larger the r is, the higher the priority of the current packet is.
Immediate rewards are defined as follows:

r =
n

∑
i=1

βi · (k1 ·
hi
ti
+ k2 ·

1
ti − hi + 1

) (10)

where ti ≥ hi, and n represents the number of packets to obtain slot assignments. If data
i are transmitted in the current time slot and arrives at the destination node, the reward
is enhanced, βi ∈ [1, 1.5), otherwise βi = 1. k1, k2 satisfies k1 > 0, k2 < 1, and k1 + k2 = 1.
Obviously, r is inversely proportional to the remaining packet cutoff time ti and is directly
proportional to the remaining hop number hi of the packet. Both hi/ti and ti − hi can reflect
the degree of urgency of data. hi/ti reflects the degree of urgency of data through ratio
relationship without considering the influence of actual remaining time slots. ti − hi reflects
the influence of actual remaining time slots.

RL is the reward function of behavior, which reflects the negative reward. When
the system is in state si and performs an action to enter the next state si+1, it is assumed
that among all data packets in the system, Li0 data packets meet the transmission state
of ti − hi = −1, Li1 data packets meet the transmission state of ti − hi = 0, and Li2 data
packets meet the transmission state of ti − hi = 1.

RL = −(ρ1Li0 + ρ2Li1 + ρ3Li2) (11)

where Li0, Li1, and Li2 are defined as above, ρ1, ρ2, and ρ3 are relevant discount parameters,
satisfying 0 < ρ1, ρ2, ρ3 < 1, ρ1 > ρ2 > ρ3, and ρ1 + ρ2 + ρ3 = 1. The final reward function
is expressed as follows:

R =
n

∑
i=1

βi · (k1 ·
hi
ti
+ k2 ·

1
ti − hi + 1

)− (ρ1Li0 + ρ2Li1 + ρ3Li2) (12)

The partial separation and combination of reward parameters and reward factors
allow the reward function to adjust the external weight. The behavior of the whole system
is determined by the initial state of the data flow and the reward function of the behavior.
The system can converge to the ideal equilibrium point in a given environment.
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3.3. State-Behavior Description Network

The deep neural network is a kind of neural network containing multiple hidden
layers, each of which can perform the nonlinear transformation on the output of the
previous layer. Therefore, compared with a shallow layer network, a deep neural network
has more excellent expression ability and can learn more complex function relations in a
more compact and concise way.

The Stacked Auto Encoder (SAE) deep neural network consists of multiple layers of
sparse autoencoder neural networks. The general idea of the training process is unsuper-
vised pre-training and supervised fine-tuning. In this network, in the unsupervised training
stage, the hidden feature representation learned by the previous layer of autoencoders is
used as the input of the latter layer of autoencoders. The training process of the parameters
of each layer will keep the parameters of other layers fixed. After the above-mentioned
pre-training process is completed, in the supervised fine-tuning stage, using the previously
trained parameters as the initial value of the network, the parameters can also be adjusted,
and then continue to train the neural network.

This algorithm adopts the multi-layer stacked self-encoding deep neural network
model to train and realize the mapping relationship between the system state and behavior,
which can quickly obtain the optimal decision-making behavior. The structure of the
SAE model is shown in Figure 4. The input layer of the model corresponds to the state
information of the system, and the number of neurons in the input layer is 3 ·M. The input
vector is composed of the current transmission state of the data generated by all nodes of the
WSNs, including the node where the data are currently located, the remaining hops, and the
remaining deadline. All input vectors are denoted as input = [c1 . . . cMh1 . . . hMt1 . . . tM].
The output layer represents the action selection information of the model, and each output
corresponds to each node to generate data in the system as the evaluation of the most
urgent data in the next time slot, so the number of neurons in the output layer is M. The
output vector is output = [a1 . . . aM]. The hidden layer is multi-layered, and the number of
neurons in each layer is related to the number of sensor nodes in the network.
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The neurons of the hidden layer in the SAE model are activation functions used for the
nonlinear transformation of the input information. Common activation functions include
ReLU function, sigmoid function, and tanh function. The nonlinear sigmoid function has a
large signal gain in the central area and relatively small signal gain on both sides, which
has a good effect on the feature space mapping of the signal. The activation function of this
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algorithm selects the sigmoid function. The loss function of the overall sample during the
training process is denoted as L(W, b).

L(W, b) =
1
N

N

∑
i=1

l(W, b) (13)

where N is the total number of input samples, l(W, b) is the loss function of a single sample,
and the calculation expression of l(W, b) is as follows:

l(W, b) =


1
2 (qeval − qtgt)

2,
∣∣∣qeval − qtgt

∣∣∣≤ 1∣∣∣qeval − qtgt

∣∣∣− 1
2 , otherwise

(14)

where qeval represents the calculated Q value, and qtgt represents the target Q value. When
the forward propagation process is over, the parameter W and the bias b are updated using
the gradient descent method.

3.4. Proposed Algorithm Description

The proposed real-time data transmission scheduling algorithm based on deep Q-
learning (RS-DQL) comprehensively considers the influences of communication constraints
and interference between sensor nodes in WSNs, the remaining cutoff time, and the vari-
ation of the remaining hop count in the process of data transmission and scheduling. It
uses deep neural networks to evaluate state-action mapping relationships and is updated
by Q-learning methods. In addition, the empirical replay was introduced to reduce data
relevance and adapt to the randomness of the training process.

The idea of RS-DQL algorithm is as follows: Firstly, the data transmission and commu-
nication interference model of WSNs is constructed to determine the concurrent node-set
based on the most urgent data. The Q-learning algorithm is used to acquire partial state
transfer information (including the current state, the action to be performed, the reward to
be obtained, and the next state) and store it into the experience pool after a certain time slot.
This process does not train the SAE network model. After a period of time, samples are
extracted from the experience pool and combined with the DQN network model for super-
vised training of the SAE network. In the process of network model learning and training,
the system gradually rewards the actions with less packet loss for data transmission to
achieve an approximate optimal scheduling algorithm.

The scheduling algorithm flow of RS-DQL is shown in Figure 5. Firstly, before the
experience pool is full, the SAE network model randomly selects actions. The Q-learning
algorithm learns a part of the state and action data based on the selected actions. After the
experience pool is full, the SAE network is gradually trained. Its parameters are updated
with supervision during the learning process. When the system shifts to the hidden state,
the SAE network recommends the system’s actions in this state, performs the actions,
updates the Q value network, etc. Repeat the learning process until the loss function
reaches the target accuracy or the expected number of training sessions. Finally, the data
transmission scheduling of the system is carried out by the state-action mapping in the
trained SAE network model.
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The process description of the real-time data transmission scheduling algorithm based
on deep Q-learning can be obtained from the above system model and scheduling strategy.
However, this algorithm studies the scheduling problem of multiple concurrent data
transmission in WSNs. How to allocate data transmission tasks in each time slot is related
to behavior acquisition and training effect in the process of deep Q-learning. According
to the exploration and development strategy, the most urgent data are first determined as
the current time slot execution action a. Based on the most urgent data and system status,
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multiple data that can execute the transmission task simultaneously in the current time slot
are determined. Add a to the waiting queue, and then select the data that do not conflict
with all data transmission in the waiting queue according to the degree of urgency. The
data that do not conflict with other data transmission in the waiting queue are selected
repeatedly until the maximum amount of data transmission is reached. The state process of
system state information is guided by action strategy. SAE network model establishes the
mapping relationship between states and actions. Finally, the DQN network model is used
for training to obtain the final node scheduling strategy. The specific algorithm description
is shown in Algorithm 1.

Algorithm 1 RS-DQL algorithm

1: Randomly initialize the parameters, import the WSNs environment, episode1 = 1
2: for episode = 1 to M do
3: Initialize the current state s, time slot number T, episode2 = 1
4: while episode2 < T, do
5: Action a is determined according to the exploration and development strategy, and it is added to
the transmission waiting queue L
6: Add the remaining theoretically reachable data (t ≥ h ) without conflicting data transmissions,
w = 100, a1 = −1
7: if L′ is not empty do
8: Take data i in turn from L′ and calculates hi/(ti · (ti − hi))
9: if hi/(ti · (ti − hi)) < w and ti ≥ hi, do
10: a1 = i, w = hi/(ti · (ti − hi))
11: else return to step 7
12: end if
13: if a1 > 0 do
14: Add a1 to queue L, and return to Step 6
15: else Determine the transmission queue L
16: end if
17: Perform the action a, calculate the reward R, and move to the next state s′
18: Put (s, a, r, s′) into the experience pool
19: if The experience pool is full do
20: Enter the learning process and calculate qeval , qtgt, loss
21: if Current loss is minimum do
22: Update loss and store the network parameter model
23: end if
24: s = s′, episode2+ = 1
25: end if
26: end while
27: if Loss meets the accuracy requirements do
28: break
29: end if
30: episode1+ = 1
31: end for
32: The training is completed and the final SAE network parameter model is obtained
33: The node scheduling strategy was obtained by importing WSNs environment and SAE network
parameter model

4. Simulation Results

The simulation experiment considers the network performance of WSNs data packets
with different random deadlines for transmission scheduling. The objective is to minimize
the number of lost packets (that is, the number of packets that are discarded when the
remaining deadline is less than the remaining hop count during data transmission). In the
simulation experiment, a long time slot is taken to analyze and compare the number of lost
packets in this time slot for convenient comparison. Other parameters of the simulation are
shown in Table 2.
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Table 2. Simulation parameters.

Parameters Value

Learning Rate ∂ = 0.01
Discount Factor γ = 0.9

Instant Reward r
k1 = k2 = 0.5

βi = 1

Delay Reward RL
ρ1 = 0.5, ρ2 = 0.3, ρ3 = 0.2

εmin = 0.01
Correlation Coefficient of Development

Strategy λ = 0.98
Tk = 1000

Episode 400
Number of Neurons in Each Layer of SAE [3M, 26, 26, 13, M]

Nodes Count 13
Nodes Topology Presented in Figure 1

Matrix of Interference between Nodes Presented in Figure 3
Packet Cutoff Time Randomly generated for each packet

The real-time data transmission scheduling algorithm based on deep Q-learning is
named the RS-DQL algorithm. There are two algorithms for comparison, including the
classical EDF algorithm and an enhanced dynamic multi-priority data scheduling algorithm
(EDP algorithm) [25]. The idea of the EDF algorithm is the earliest deadline first. The
transmission queue of each time slot system is composed of multiple non-conflicting nodes
with the shortest deadline. The idea of the EDP algorithm is to divide priority queues for
data characteristics in the system, such as emergency data and periodic data. In the same
queue, the priority of data transmission is determined according to the relationship between
the remaining time of the current transmission state of different data and the remaining
hop number. This chapter analyzes the network performance comparison between the
RS-DQL algorithm and the other two algorithms under different conditions such as data
deadline and the number of network nodes.

In Table 3, the network topology of the simulation experiment is based on the com-
munication interference diagram of WSNs sensor nodes in Figure 1. The data generation
cycle of each sensor node is randomly set as 1.5 to 3.5 times the total hop number of sensor
nodes. Therefore, small multiples represent short packet cutoff time, and large multiples
represent long packet cutoff time. As shown in the table, the performance of the RS-DQL
algorithm is significantly better than the other two algorithms, followed by the EDP al-
gorithm. The scheduling performance of the EDF algorithm is nearly half of that of the
RS-DQL algorithm, and it is the worst among the feasible algorithms.

Table 3. Average number of lost packets for different algorithms.

Algorithm EDF EDP RS-DQL

Number of lost packets 1569 1227 935
Number of successfully sent packets 1665 2007 2299

Packet loss rate 48.52% 37.94% 28.91%

Figure 6 considers the changes in packet loss of the three algorithms as the size of the
data generation cycle of the sensor node is an integer multiple of the total hop number
of the node. In WSNs, the generation period of sensor node data is increased by 1.5 to
4.5 times the total hop count of the node. As the data generation period lengthens, the
packet loss of the three algorithms decreases. The performance of the EDP algorithm is
poor before 2.5 times, and is basically the same as the RS-DQL algorithm after 2.5 times.
When the multiple is 4, the number of packets lost by EDP and RS-DQL is 0. However,
the RS-DQL algorithm has the best performance and is more stable in the whole process.
EDP algorithm has the largest variation with the increase in the data generation cycle. In
contrast, the EDF algorithm has the lowest overall performance.
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Figure 6. The number of lost packets as the data generation period increases.

Figure 7 considers the changes of packet loss of the three algorithms as the number
of sensor nodes increases from 5 to 25 in the case that the data generation cycle in WSNs
is 3 times the total hop number between sensor nodes and destination nodes. As the
number of nodes increases, the performance of the EDP algorithm is similar to the RS-DQL
algorithm. Although the EDP algorithm has a good advantage when the data generation
cycle of sensor nodes is a large integer multiple of the total hop number of data transmission,
such as 3 times or more, the RS-DQL algorithm is still superior to EDP algorithm in
overall network performance. The number of loss packets of the EDF algorithm is always
high. When the data generation cycle is an integer multiple of the total hop number, the
disadvantage of the EDF algorithm will be magnified. Therefore, the EDP and RS-DQL
algorithms are better than the EDF algorithm.

Figure 7. The number of lost packets as the sensor node increases.
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Figure 8 considers the changes of packet loss of the three algorithms in WSNs as the
number of nodes gradually increases from 5 to 25. At this point, the generation period of
sensor node data is a random value between 1.5 times and 3.5 times the total node hops.
As the number of nodes increases, the number of lost packets of the EDF algorithm changes
almost linearly. However, the EDP algorithm is not stable. With the increase of sensor
nodes to 20, the increase of packet loss of this algorithm is significantly more than the other
two algorithms. This indicates that the algorithm has inferior performance in WSNs with
a large number of nodes and random deadlines. The RS-DQL algorithm is stable, and
the number of lost packets is always the smallest, and the increase rate of lost packets is
relatively stable.

Figure 8. The number of lost packets under random data generation period.

It is worth noting that although the simulation results in this paper are based on the
topology in Figure 1, the strategies proposed in this paper are also applicable to other
structures. When the topology structure of the network changes, the conflict interference
matrix of Figure 3 needs to be calculated according to the topology structure. Then, the
network is retrained according to the process in Section 3.4, and the algorithm proposed in
this paper can be used in the new topology after the training is completed.

The RS-DQL algorithm proposed in this paper obtains the most urgent data through
the state-behavior description relationship of neural network in its Q-learning part. Ac-
cording to the network topology and data urgency, the concurrent node set based on the
most urgent data is determined, so as to obtain the optimal action selection strategy. In
the reward function formulation part, the goal is to transmit as much data as possible in
WSNs to the destination node within its deadline. Consider the influence of factors such
as communication constraints between nodes, data remaining deadline and remaining
hops, and give reward and punishment feedback after the agent performs the action. In
the deep learning part, a DQN network model is built. The SAE network model is used to
establish the mapping relationship between state and behavior. The data transmission slot
scheduling strategy of sensor nodes is obtained through DQN network model training.

5. Conclusions

This paper mainly studies the data transmission scheduling strategy in WSNs. It
proposes a real-time data transmission scheduling algorithm for WSNs based on deep Q-
learning in the case of parallel data transmission in wireless sensor networks. The proposed
algorithm solves the data transmission scheduling problem of WSNs with strict deadlines
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and minimizes the number of lost packets. The deep Q-learning method is introduced into
the field of WSNs, and its network performance is improved and optimized.

However, there are still problems to be studied in the future. The construction and
training of deep learning model is very critical and challenging. Although the SAE network
model built in this paper can improve the network performance of WSNs after training, the
DQN network model used is relatively simple. In the follow-up research, we can consider
optimizing the DQN network model, and there is more research work for the setting of
relevant parameters. In addition, the simulation experiment part of this paper was realized
by simulation on the computer side. It uses a relatively ideal network environment, which
deviates from the characteristics of the actual application scenario. In the future, hardware
equipment can be used to further improve the simulation part.
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