
Citation: Capligins, F.; Litvinenko, A.;

Kolosovs, D.; Terauds, M.; Zeltins, M.;

Pikulins, D. FPGA-Based Antipodal

Chaotic Shift Keying Communication

System. Electronics 2022, 11, 1870.

https://doi.org/10.3390/

electronics11121870

Academic Editors: Costas

Psychalinos, Ahmed S. Elwakil,

Abdelali El Aroudi and Esteban

Tlelo-Cuautle

Received: 3 May 2022

Accepted: 12 June 2022

Published: 14 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

FPGA-Based Antipodal Chaotic Shift Keying
Communication System
Filips Capligins * , Anna Litvinenko , Deniss Kolosovs , Maris Terauds, Maris Zeltins and Dmitrijs Pikulins

Institute of Radioelectronics, Riga Technical University, Kalku St. 1, LV-1050 Riga, Latvia;
anna.litvinenko@rtu.lv (A.L.); deniss.kolosovs@rtu.lv (D.K.); maris.terauds@rtu.lv (M.T.);
maris.zeltins@rtu.lv (M.Z.); dmitrijs.pikulins@rtu.lv (D.P.)
* Correspondence: filips.capligins@rtu.lv

Abstract: The current work presents a novel digital chaotic communication system with antipodal
chaotic shift keying modulation, implemented in a field-programmable gate array (FPGA). Such
systems provide high security on the physical communication level and can be used in wireless
sensor network systems. A modified Chua circuit chaos generator and error linear feedback chaotic
synchronization are implemented in FPGA and used to develop a chaotic communication system with
digital transmitter and receiver an analog in-between signal transmission. Additionally, a validated
mathematical model of the communication system prototype is created in the Simulink environment,
which is used to compare the performance of the prototype and its nodes with the simulation and
simplify its development. The performance is evaluated using simulation with the additive white
Gaussian noise channel and analyzing the bit error ratio.

Keywords: chaos; chaos oscillator; chaotic synchronization; nonlinear systems; communication
system; signal processing; chaos shift keying

1. Introduction

The use of chaos generators in the development of communication systems has been
studied since the 1990s. One of the main advantages of chaotic communication systems is
increased security [1]. When chaotic oscillations are used as a carrier signal, it is difficult to
detect its presence and decode the information, as it is difficult to predict the characteristics
of the chaotic signal. The use of chaotic synchronization in communication schemes with
coherent detection increases security even more, as it requires having a chaos generator with
identical parameters and design at the receiver to synchronize and demodulate transmitted
data bits [2]. In addition, a chaotic signal is difficult to intercept, and it has relatively
good resistance to multipath propagation and targeted interference [3]. These properties
of chaotic systems make them promising and interesting for academic studies and secure
communication applications.

Several chaos generators, such as the Chua circuit [4] or the Sprott circuit [5], were orig-
inally based on an analog electronic circuit. They were based on resistors, capacitors, coils,
operational amplifiers, bipolar transistors, and diodes to obtain and maintain nonlinear
circuit oscillations in chaotic mode. Their chaotic behavior can be precisely mathematically
described using relatively simple ordinary differential equations (ODEs).

The practical application of analog chaos generators in the design of communication
systems raises several problems, such as component nominal value drift due to changes in
temperature, relative humidity, supply voltage, and other environmental and operating
conditions. Analog chaos generator parameter variations during the operation cannot
be effectively compensated. Such variations of the system’s parameters make the chaotic
synchronization task quite challenging, as it requires two chaos generators with identical
parameters, coupled together in an appropriate way. Additionally, there is no option

Electronics 2022, 11, 1870. https://doi.org/10.3390/electronics11121870 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11121870
https://doi.org/10.3390/electronics11121870
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-7440-0176
https://orcid.org/0000-0003-4734-2182
https://orcid.org/0000-0003-4062-6545
https://doi.org/10.3390/electronics11121870
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11121870?type=check_update&version=1

Electronics 2022, 11, 1870 2 of 23

to control the initial states of analog chaos generator state variables. These issues have
motivated some researchers and engineers to find alternative ways to implement dynamic
chaos generators. One of the approaches is using a discrete implementation in field-
programmable gate array (FPGA) technology. FPGA allows, with a certain approximation,
implementing a dynamic chaos generator in a discrete environment by synthesizing a fully
determined system that is free of the problem of component drift and has the potential for
high throughput and computational power. In addition, an FPGA enables rapid, highly
flexible prototyping with hardware description language and fast real-time parallel data
processing using pipelining. These features can be effectively utilized to develop a chaotic
FPGA-based communication system.

The FPGA-based ACSK communication system prototype, developed within the
present study, includes digital and analog parts. The digital part is implemented on
FPGA and contains an ACSK modulator, a demodulator, and transmitted and received
signal processing units. At the same time, transmission between the transmitter and
receiver is analog, using a digital-to-analog converter (DAC) and analog-to-digital converter
(ADC). In addition to the FPGA prototype, a verified Simulink mathematical model of
the communication system digital part was developed, which was used to compare the
performance of the prototype and its nodes with the simulation.

This study proposes an FPGA-based prototype and a Simulink mathematical model
of the ACSK communication system. The operation accuracy of the prototype and model is
analyzed. The study of noise immunity of the ACSK system in the AWGN channel case
is performed and represented in the form of BER analysis. The main goal of this study is
to demonstrate the proof of concept prototype of a novel chaotic communication system
implemented on FPGA. The main novelty aspects of the present work involve:

• A modified Chua circuit chaos generator, error feedback chaotic synchronization,
and a novel communication system with ACSK modulation are, for the first time,
developed in the discrete format applicable for hardware implementation in an FPGA;

• An accurate, verified Simulink mathematical model of the digital part of the proposed
communication system prototype is developed;

• The developed communication system is described in VHDL language, implemented
on FPGA, and successfully tested.

This paper is organized as follows. A review of the literature and a comparison of
existing implementations of chaotic systems based on FPGAs and the proposed system is
carried out in Section 2. Section 3 describes the general structure of the communication
system, including the chaos generator, chaotic synchronization, and ACSK modulation.
Section 4 explains the design flow and digital implementation structure of the system
prototype and signal processing applied to the transmitted and received signals. Section 5
describes a study of communication system noise immunity. Section 6 provides conclusions.

2. Literature Review

The rapid development of FPGA technology began in the 21st century when it became
widely available: the price decreased, and the number of logic elements and functionality
increased. It became possible to use FPGAs to develop novel solutions and improve existing
technologies, including chaos generator-based communication systems [6].

Demand for new, well-protected communication systems in a variety of applications
continues to grow today. Still, the analysis of several scientific articles about FPGA-based
chaos generators and chaotic communication systems (summarized below) reveals that
their number is relatively low compared to chaotic communication systems based on other
analog and digital bases [7]. The lack of research on the application of FPGAs in chaotic
communication can be explained by the relatively recent development of FPGAs and the
complexity of low-level hardware programming required for FPGA configuration. There-
fore, it is essential to make an advance on the topic of FPGA-based chaotic communication
systems to reveal their advantages, disadvantages, and potential applications.

Electronics 2022, 11, 1870 3 of 23

Some authors who have implemented dynamic chaos generators in FPGA are listed in
Table 1. In most cases, the author’s studies are limited to chaos generator implementation,
but four of them also include chaotic synchronization between master and slave chaos
generators. The FPGA-based chaotic systems comparative analysis parameters are chaos
generator type, chaotic synchronization method, the maximal clock frequency of the FPGA
prototype, ODE discrete solving method choice, and bit width of the system. Authors
emphasize the potential advantages of FPGA compared to analog implementations, such
as higher stability, fast parallel processing, and low power consumption.

Table 1. Summary of chaos generators and chaotic synchronization (if applicable) implemented
in FPGA.

Paper Chaos Generator
Chaotic

Synchronization
Method

FPGA Prototype
Max Clock

Frequency, MHz

ODE Discrete
Solving Method

Max Throughput,
Gbps

Bit Width of
a System

(Integers with
Sign + Fraction)

[8] Lorenz error linear
feedback 29.837 RK-4 0.95 32 (16 + 16)

[9] modified Lu none not mentioned not mentioned not mentioned 10 (4 + 6)

[10] Lorenz author’s 25.254 RK-4 0.81 32 (16 + 16)

[11] author’s adaptive control not mentioned not mentioned not mentioned 32 (16 + 16)

[12] author’s none not mentioned not mentioned not mentioned not mentioned

[13] Lorenz none 100.59 (32 bit),
136.13 (16 bit) Forward Euler 3.22 (32 bit), 2.18

(16 bit)
32 (14 + 18),
16 (11 + 15)

[14] Lorenz, Chen, Lu none 156.25 Forward Euler 5 32 (16 + 16)

[15] modified Chua none 80.053 Forward Euler 2.56 32 (8 + 24)

[16] author’s none 111.739 Forward Euler 3.58 32 (8 + 24)

[1] described in [17] adaptive control not mentioned Forward Euler not mentioned 32 (not mentioned)

[18] author’s none 117.4 RK-4 3.76 32 (7 + 25)

[19] Liu none 50 Forward Euler not mentioned 25 (not mentioned)

[20] Lorenz none 15 Forward Euler 0.96 64 (differently)

[21] modified Chua none 180.180 RK-4 5.77 32 (floating point)

[22] author’s none 97.96 Forward Euler 3.13 32 (13 + 19)

present modified Chua error linear
feedback 76 Forward Euler 1.06 master: 14 (6 + 8),

slave: 17 (9 + 8)

Table 2 presents the overview of the existing studies about FPGA-based chaotic com-
munication systems, which is the following and more advanced step after implementing
chaos generators and synchronization. The analyzed parameters are the same as in the
studies listed in Table 1, plus the modulation technique used for the communication.

One of the first articles on this topic [23] describes a chaotic communication system for
encoded image transmission. The system uses a modified FPGA-implemented Chua chaos
generator for information encoding and classic Pecora-Carroll chaotic synchronization [24]
for coherent demodulation. Another article [25] describes the FPGA implementation of
a generalized chaotic Lorentz system, which is used to design a communication system
in which chaotic synchronization occurs with a controlled chaos generator in the receiver,
implemented on a personal computer. Reference [26] is devoted to an FPGA-based com-
munication system using a novel chaos generator and the chaotic synchronization method
with the Hamiltonian form and the observer approach [27]. In another article [28], four
modifications of a simple chaos on-off keying (COOK) communication system with a Sprott
chaos generator were developed. Their performance was tested in three implementation
environments—FPGA, analog circuits, and Simulink mathematical model. By comparing
bit error ratio (BER) graphs, the authors concluded that the performance of the FPGA-based
communication system in the white noise channel is better than the performance of the

Electronics 2022, 11, 1870 4 of 23

analog counterpart. In another study [29], the authors propose an FPGA-based communica-
tion system using synchronization between Rossler chaos generators. It is noteworthy that
the prototype’s maximum clock frequency and throughput were significantly increased by
reducing the bit width from 32 to 19 bits. Reference [30] contains a study covering and com-
paring several chaos generators and various chaotic synchronization methods, including
the open-plus-closed-loop (OPCL) [31], and several discrete approaches for solving ODEs.

Table 2. Summary of chaotic communication systems implemented in FPGA.

Paper Chaos
Generator

Chaotic Syn-
chronization

Method
Modulation

FPGA Prototype
max Clock

Frequency, MHz

ODE Discrete
Solving
Method

Max Through-
put, Gbps

Bit Width of
a System

(Integers with
Sign + Fraction)

[23] modified Chua Pecora-Caroll
Author’s,

digital
algorithm

not mentioned Forward Euler not mentioned 32 (not mentioned)

[25] Lorenz author’s Chaotic
masking not mentioned Not mentioned not mentioned 27 (not mentioned)

[26] author’s Hamilton forms Chaotic
masking 275.71 Forward Euler 5.24 19 (15 + 4)

[28] author’s and
Sprott none COOK not mentioned not mentioned not mentioned not mentioned

[29] Rossler Pecora-Caroll Chaotic
masking 70.9 Forward Euler 2.85 19 (10 + 9)

[32] author’s Hamilton forms Chaotic
masking 1 Forward Euler not mentioned 28 (4 + 24)

[30] Sprott
Pecora-Caroll,

Hamilton forms,
OPCL

Chaotic
masking 116.4

Forward Euler,
trapezoidal,

RK-4
3.26 28 (7 + 21)

present modified Chua error linear
feedback ASCK 76 Forward Euler 1.06 master: 14 (6 + 8),

slave: 17 (9 + 8)

To analyze the parameters of overviewed FPGA-based chaotic system implementation
studies, listed in Tables 1 and 2, their advantages and disadvantages are discussed below.

In many cases, research is carried out with well-known chaos generators (Lorenz,
Chua, Sprott, Rossler, and others), although new chaos generators proposed by the authors
are sometimes used. The approach of FPGA employment makes it much easier to imple-
ment relatively complex chaos generators than it can be done in an analog circuit. Chaos
generators may be of different complexity, signal parameters, number of state variables,
and chaotic synchronization capabilities. However, any generator can be implemented in
FPGA and utilized to develop a secure communication system. What authors demonstrate
in their studies is the approach and methodology of such implementation, which can also
be applied to other chaos generators.

For chaotic synchronization methods within the studies, the classical Pecora-Carroll [24]
or more advanced Hamiltonian forms with an observer approach [27] are used most of-
ten. At the same time, the synchronization error feedback method [33] was used only
in one overviewed study. The choice of synchronization method generally comes from
an acceptable trade-off between synchronization complexity and quality. For example,
Pecora-Carroll synchronization is the first discovered and simplest chaotic synchronization.
In contrast, the synchronization error feedback method requires a more complex approach
but ensures faster and more stable chaotic synchronization between identical master and
slave chaos generators.

The overviewed communication systems mostly used chaotic masking modulation [7],
the simplest method for coherent detection that uses chaotic synchronization. In chaotic
masking, a relatively weak data signal (analog or digital) is added to a stronger chaotic
signal and transmitted. The received signal is used to recreate a synchronized copy of
the chaotic part of the received signal, which, by subtraction from the received signal,

Electronics 2022, 11, 1870 5 of 23

makes it possible to extract the added information signal. The simplicity of this method
makes it popular, but it has several disadvantages—low noise resistance, the data signal
itself weakens chaotic synchronization, and low data transmission security. Another
chaotic modulation mentioned in Table 2 is COOK, used in the noncoherent detection
communication system that does not utilize chaotic synchronization. In COOK, binary
data symbols are modulated simply by turning the transmission on or off. The method has
some advantages in terms of higher speed and lower multipath propagation impact on
transmission but provides virtually no data protection.

For numerical solving of ODEs, the forward Euler method [34] is used most often
because of its simplicity. It is discussed in more detail in Section 4 of the present paper.
The fourth-order Runge-Kutta (RK-4) method [32] is more advanced and complex for
FPGA implementation, but it provides a more precise ODE solution and is sometimes
preferred. Some chaos generators may be more sensitive to the accuracy of their ODEs
solutions than others due to the complexity and operation mode. Using the forward Euler
method does not guarantee convergent ODE solutions, a more accurate method such as
RK-4 is necessary.

The maximum operational clock frequency of the FPGA, at which the implementation
of the chaos generator works without errors, varies from 1.00 MHz to 275.71 MHz in
different experimental studies, depending on the system’s complexity. If the system clock
frequency is above a specific limit, metastability issues in logical element circuits on
the FPGA chip may become unavoidable, making system operation invalid. General
approaches to increasing the maximum clock frequency involve maximizing pipelining,
minimizing the amount of asynchronous data processing between registers, reducing the
bit width of data signals, and using logical or arithmetical bit shift instead of division or
multiplication by a constant value [35]. However, the design complexity of a specific chaos
generator significantly impacts this parameter so that general design optimizations may
have little effect on the maximum operational clock frequency available for a specific chaos
generator FPGA implementation.

The throughput rate is defined as the number of bits per unit of time. In a digital
system, the maximum throughput is calculated by multiplying the minimum number of
bits in the signal bus with the maximum clock frequency. For the analyzed studies, the
throughput varies from 0.81 to 5.77 Gbps. This parameter helps to evaluate the performance
of the digital implementation of the system, while it mainly depends on the achievable
maximum clock frequency.

The signal bit width of the chaos generator FPGA implementations in the overviewed
studies is between 10 and 64 bits, with different fixed-point locations. The number of bits
needed for the integer part of chaotic signal numeric values can be chosen from the consid-
eration that 2n−1 < k < 2n, where k is the maximal numeric value of any signal within the
system and n is the number of bits required to represent the value. Choosing the number of
bits for the fractional part of chaotic signals does not have well-defined and straightforward
rules. Increasing the number of bits for the fractional part will increase the accuracy of
chaotic solutions and the number of possible values that a chaotic signal can represent. Still,
it will decrease system maximal clock frequency and consume more hardware resources
for signal processing. Therefore, a moderate number of bits for the fractional part should
be chosen, depending on the required accuracy and available resources. The actual number
of bits for signals within the system may vary from the main number required to maintain
the accuracy of calculations within system nodes.

When comparing the present work and the literature by the same parameters, there
are several different and common aspects:

• The present system uses a specific modified Chua circuit chaos generator and error
feedback chaotic synchronization method. This chaos generator is not used in previous
studies, while error feedback chaotic synchronization is implemented in FPGA within
one research;

Electronics 2022, 11, 1870 6 of 23

• For modulation, the proposed communication system uses antipodal chaotic shift
keying (ACSK), which is more advanced than chaotic masking and has not been used
in any overviewed studies about FPGA-based chaotic communication systems;

• For ODE numerical solving, the present study also uses forward Euler, which provides
sufficient accuracy and stability of solutions;

• The maximum clock frequency of the FPGA in the prototype is equal to 76 MHz, but the
design utilizes a 50 MHz clock that is provided by the FPGA onboard peripheral resources;

• Concerning signal fixed-point bit widths, 14 bits for the transmitter and 17 bits for the
receiver are used (with one bit for the sign), allocating 8 bits to fractional values;

• The maximum throughput for master chaos generator output is 1.06 Gbps. This is
mainly determined by the maximum clock frequency limitations. The chaos generator
maximal throughput can be increased by redesigning the structure of the generator’s
digital implementation and performing pipelining on the addition and the discrete
integration. However, such an approach would increase the hardware resource usage
and the design complexity. The present study assumes that the optimization level is
sufficient to demonstrate the proof of concept for FPGA implementation of the novel
ACSK communication system.

The chaotic systems implemented on FPGA are also compared by the hardware
resource usage, as shown in Table 3. Only those research papers are listed where at
least partial resource usage information is provided. Resource usage numbers generally
represent chaos generator implementations, sometimes with simple additional units used
in different studies. Configurable Logic Block (CLB) is a Xilinx brand FPGA basic logic
block, while Adaptive Lookup Table (ALUT) is an Altera (presently owned by Intel) brand
FPGA basic logic block. They consist of registers, lookup tables (LUTs), multiplexers, full
adders, carry chain logic, and other basic digital elements depending on the FPGA brand
and series. These differences complicate resource usage comparison between different
FPGA, but they nevertheless provide good reference data for the estimation of design
complexity. Embedded memory is sometimes used for buffers necessary for processing
delay or information storage when registers and LUTs are insufficient due to the size of
information. The registers (flip-flops) are the key elements that synchronize signals within
FPGA to the clock and store the signal values until the next clock cycle. An increase of
the registers in the design implementation introduces small additional latency but allows
higher clock frequencies to be used. Moreover, digital signal processing (DSP) blocks are
separate hardware units within FPGA chips that provide support for common fixed-point
and floating-point arithmetic operations, most commonly—multiplication. The number
of DSP blocks in FPGA chips is typically small compared to logic blocks or registers, so
reducing the number of used DSPs in the design implementation is a good practice.

The current FPGA implementation of modified Chua’s circuit chaos generator uses
564 ALUTs, which is less than most other implementations, indicating relatively low design
complexity. Embedded memory is not employed in the present design, but 84 registers are
used, which is a small amount compared with other implementations and can be increased
for future optimization tasks. FPGA registers are single-bit, so 84 registers for 14-bit signals
can be interpreted as six 14-bit registers. Finally, 4 DSP multipliers are used for four weight
coefficients in the chaos generator’s output signal design, which is less than in most other
designs and can be reduced to zero by further optimization and replacing multiplication
with a combination of bit shifts and adders. Table 3 summary of resource usage for chaos
generators implemented in FPGA.

The main advantage of the proposed FPGA-based chaotic communication system over
others is the ACSK modulation method, which is a potentially more secure method for data
transmission than chaotic masking or COOK because it uses chaotic synchronization.

Electronics 2022, 11, 1870 7 of 23

Table 3. Summary of resource usage for chaos generators implemented in FPGA.

Paper FPGA Brand,
Series CLBs/ALUTs * Embedded Memory bits Registers DSPs/Multipliers

[8] Xilinx Virtex-II Pro 2038 813 not mentioned 40
[11] Xilinx Virtex-6 364 not mentioned 270 not mentioned

[13] Xilinx Zynq-7020 156 (16-bit system) not mentioned 48 (16-bit system) 2 (16-bit system)
336 (32-bit system) not mentioned 96 (32-bit system) 8 (32-bit system)

[14] Xilinx Zynq-7010 not mentioned 0 138 0
[15] Xilinx Artix-7 not mentioned not mentioned 787 64
[16] Xilinx Artix-7 118 119 not mentioned not mentioned
[18] Altera Cyclone IV 2064 100000 not mentioned 0
[20] Altera Cyclone IV 3543 not mentioned 736 48
[21] Xilinx Virtex-6 not mentioned not mentioned 21711 not mentioned
[22] Altera Cyclone IV 1375 not mentioned 777 48
[25] Altera Cyclone IV 1135 618496 789 not mentioned
[26] Altera Cyclone IV 49251 5836819 631 92
[29] Xilinx Zynq-7000 not mentioned not mentioned 54 2
[32] Altera Cyclone IV 1093 not mentioned 972 84
[30] Altera Cyclone IV 3350 not mentioned 1919 not mentioned

present Altera Cyclone V 564 0 84 4

* Configurable Logic Block (CLB)—for Xilinx, Adaptive Lookup Table (ALUT)—for Altera.

3. Communication System Based on Antipodal Chaotic Shift Keying

The proposed communication system uses ACSK modulation with chaotic synchro-
nization to transmit digital data using chaotic waveforms. The communication system
prototype is modeled in Simulink and implemented in Arrow SocKit development board
with Altera Cyclone V FPGA. The mathematical model is used to compare the performance
of the FPGA prototype and its nodes with the simulation, which simplifies the development
process of the prototype and allows verifying each system node’s behavior. The general
structure of the communication system is shown in Figure 1. The transmitter consists of
a master chaos generator, whose output signal becomes ACSK-modulated by the trans-
mitted binary data. Before passing the modulated chaotic signal to the analog channel
through DAC, it is up-converted to an intermediate frequency of 793.65 kHz and scaled.
The intermediate frequency prototype is used as the base for proof of concept. At the
same time, the analog signal is supposed to be FM-modulated and transmitted over the
air on a higher carrier frequency. AD9767 14-bit DAC and AD9248 14-bit ADC used in the
prototype are available on the Terasic THDB-ADA_HSMC daughterboard, attached to the
development kit. The analog signal gets transmitted by a 62 cm long coaxial cable. The
received signal is processed digitally in subsequent steps: down-converted to baseband,
filtered, and adjusted with automatic gain control.

Electronics 2022, 11, x FOR PEER REVIEW 8 of 24

validity of this approach and the verification that FPGA implementation matches Sim-

ulink mathematical model simulation have been shown in [36].

Figure 1. Simplified structure of the proposed chaotic communication system.

3.1. Chaos Generator

The proposed communication system uses a fourth-order modified Chua’s circuit

chaos generator [37], which is defined by the following set of equations:

{

𝑑𝑝1

𝑑𝑡
= −𝑔(𝑝1, 𝑝3) − 𝑝2
𝑑𝑝2

𝑑𝑡
= 𝑝1 + γ𝑝2

𝑑𝑝3

𝑑𝑡
= θ(𝑔(𝑝1, 𝑝3) − 𝑝4)

𝑑𝑝4

𝑑𝑡
= σ𝑝3

, (1)

with the piecewise linear function defined as:

𝑔(𝑝1, 𝑝3) = {
𝑐(𝑝1 − 𝑝3 − 𝑑) (𝑝1 − 𝑝3) > 𝑑

0 (𝑝1 − 𝑝3) ≤ 𝑑
, (2)

where pn is the system’s state variable and θ = 10, σ = 1.5, γ = 0.5, c = 3, and d = 1 are real

scalar parameters that ensure stable chaotic behavior of the generator, as has been shown

in [38].

The chaotic output from the generator is a weighted sum of the state variables and

piecewise linear function:

𝑟𝑜𝑢𝑡 = 𝑝1𝑘1 + 𝑝2𝑘2 + 𝑝3𝑘3 + 𝑝4𝑘4 + 𝑔(𝑝1, 𝑝3), (3)

where k1 = −2.6302, k2 = −0.6054, k3 = 0.5870, and k4 = 0.7763 are weight coefficients. These

coefficients allow controlling the parameters of the chaos generator’s output signal with-

out modifying the main chaotic ODEs and can be potentially used to develop a multiuser

communication system. Figure 2 shows an output signal of the chaos generator, repre-

senting obvious aperiodic chaotic oscillations. The spectrum of the chaotic output signal

is shown in Figure 3—most of the signal energy is below 250 kHz.

Figure 2. Waveforms at the output of the chaos generator.

Figure 1. Simplified structure of the proposed chaotic communication system.

Simulink mathematical model of each prototype unit was made to match the FPGA
functional implementation—the same number of registers, adders, and bits in a bus. The
validity of this approach and the verification that FPGA implementation matches Simulink
mathematical model simulation have been shown in [36].

Electronics 2022, 11, 1870 8 of 23

3.1. Chaos Generator

The proposed communication system uses a fourth-order modified Chua’s circuit
chaos generator [37], which is defined by the following set of equations:

dp1
dt = −g(p1, p3)− p2

dp2
dt = p1 + γp2

dp3
dt = θ(g(p1, p3)− p4)

dp4
dt = σp3

, (1)

with the piecewise linear function defined as:

g(p1, p3) =

{
c(p1 − p3 − d) (p1 − p3) > d
0 (p1 − p3) ≤ d

, (2)

where pn is the system’s state variable and θ = 10, σ = 1.5, γ = 0.5, c = 3, and d = 1 are real
scalar parameters that ensure stable chaotic behavior of the generator, as has been shown
in [38].

The chaotic output from the generator is a weighted sum of the state variables and
piecewise linear function:

rout = p1k1 + p2k2 + p3k3 + p4k4 + g(p1, p3), (3)

where k1 = −2.6302, k2 = −0.6054, k3 = 0.5870, and k4 = 0.7763 are weight coefficients.
These coefficients allow controlling the parameters of the chaos generator’s output signal
without modifying the main chaotic ODEs and can be potentially used to develop a
multiuser communication system. Figure 2 shows an output signal of the chaos generator,
representing obvious aperiodic chaotic oscillations. The spectrum of the chaotic output
signal is shown in Figure 3—most of the signal energy is below 250 kHz.

Electronics 2022, 11, x FOR PEER REVIEW 8 of 24

validity of this approach and the verification that FPGA implementation matches Sim-

ulink mathematical model simulation have been shown in [36].

Figure 1. Simplified structure of the proposed chaotic communication system.

3.1. Chaos Generator

The proposed communication system uses a fourth-order modified Chua’s circuit

chaos generator [37], which is defined by the following set of equations:

{

𝑑𝑝1

𝑑𝑡
= −𝑔(𝑝1, 𝑝3) − 𝑝2
𝑑𝑝2

𝑑𝑡
= 𝑝1 + γ𝑝2

𝑑𝑝3

𝑑𝑡
= θ(𝑔(𝑝1, 𝑝3) − 𝑝4)

𝑑𝑝4

𝑑𝑡
= σ𝑝3

, (1)

with the piecewise linear function defined as:

𝑔(𝑝1, 𝑝3) = {
𝑐(𝑝1 − 𝑝3 − 𝑑) (𝑝1 − 𝑝3) > 𝑑

0 (𝑝1 − 𝑝3) ≤ 𝑑
, (2)

where pn is the system’s state variable and θ = 10, σ = 1.5, γ = 0.5, c = 3, and d = 1 are real

scalar parameters that ensure stable chaotic behavior of the generator, as has been shown

in [38].

The chaotic output from the generator is a weighted sum of the state variables and

piecewise linear function:

𝑟𝑜𝑢𝑡 = 𝑝1𝑘1 + 𝑝2𝑘2 + 𝑝3𝑘3 + 𝑝4𝑘4 + 𝑔(𝑝1, 𝑝3), (3)

where k1 = −2.6302, k2 = −0.6054, k3 = 0.5870, and k4 = 0.7763 are weight coefficients. These

coefficients allow controlling the parameters of the chaos generator’s output signal with-

out modifying the main chaotic ODEs and can be potentially used to develop a multiuser

communication system. Figure 2 shows an output signal of the chaos generator, repre-

senting obvious aperiodic chaotic oscillations. The spectrum of the chaotic output signal

is shown in Figure 3—most of the signal energy is below 250 kHz.

Figure 2. Waveforms at the output of the chaos generator. Figure 2. Waveforms at the output of the chaos generator.

Electronics 2022, 11, x FOR PEER REVIEW 9 of 24

Figure 3. The spectrum of the chaos generator output signal.

3.2. Chaotic Synchronization

One of the fundamental properties of chaotic nonlinear systems—sensitive depend-

ence on initial conditions—determines that two identical chaos generators, even with

slightly different initial conditions, will produce different chaotic signals. However, if

these generators are coupled in a certain way, their state variables will follow the same

trajectories, resulting in a chaotic synchronization. The chaotic synchronization phenom-

enon is successfully utilized in chaotic communications with coherent detection.

The error linear feedback method is used in the present system for chaotic synchro-

nization, based on the following algorithm (see Figure 4). The chaotic signal from the mas-

ter chaos generator (constructed according to (3) and containing both the values of all state

variables pn and the piecewise linear function g) is applied to the slave chaos generator,

which does not have its own piecewise linear function. It is recovered using error feedback

subtraction from the incoming chaotic signal. The recovered piecewise linear function g’

can be described by:

𝑔′(𝑝1, 𝑝3) = 𝑟𝑖𝑛 − (𝑝′1𝑘1 + 𝑝′2𝑘2 + 𝑝′3𝑘3 + 𝑝′4𝑘4), (4)

where 𝑟𝑖𝑛 is the chaotic signal at the receiver’s input, which in the simplest case of direct

connection is equal to the transmitter output signal 𝑟𝑜𝑢𝑡.

Figure 4. Structure of chaotic synchronization and its error estimation method.

The output signal of the slave chaos generator is obtained the same way as in the

master chaos generator but with the use of the absolute value of the recovered piecewise

linear function. The signal representing the synchronization error is obtained by subtract-

ing the output signal of the slave chaos generator from its input signal, according to the

expression:

𝜀𝑆𝑌𝑁𝐶 = 𝑝′1𝑘1 + 𝑝′2𝑘2 + 𝑝′3𝑘3 + 𝑝′4𝑘4 + |𝑔′(𝑝1, 𝑝3)| − 𝑟𝑖𝑛. (5)

Figure 3. The spectrum of the chaos generator output signal.

Electronics 2022, 11, 1870 9 of 23

3.2. Chaotic Synchronization

One of the fundamental properties of chaotic nonlinear systems—sensitive depen-
dence on initial conditions—determines that two identical chaos generators, even with
slightly different initial conditions, will produce different chaotic signals. However, if these
generators are coupled in a certain way, their state variables will follow the same trajecto-
ries, resulting in a chaotic synchronization. The chaotic synchronization phenomenon is
successfully utilized in chaotic communications with coherent detection.

The error linear feedback method is used in the present system for chaotic synchroniza-
tion, based on the following algorithm (see Figure 4). The chaotic signal from the master
chaos generator (constructed according to (3) and containing both the values of all state
variables pn and the piecewise linear function g) is applied to the slave chaos generator,
which does not have its own piecewise linear function. It is recovered using error feedback
subtraction from the incoming chaotic signal. The recovered piecewise linear function g’
can be described by:

g′(p1, p3) = rin −
(

p′1k1 + p′2k2 + p′3k3 + p′4k4
)
, (4)

where rin is the chaotic signal at the receiver’s input, which in the simplest case of direct
connection is equal to the transmitter output signal rout.

Electronics 2022, 11, x FOR PEER REVIEW 9 of 24

Figure 3. The spectrum of the chaos generator output signal.

3.2. Chaotic Synchronization

One of the fundamental properties of chaotic nonlinear systems—sensitive depend-

ence on initial conditions—determines that two identical chaos generators, even with

slightly different initial conditions, will produce different chaotic signals. However, if

these generators are coupled in a certain way, their state variables will follow the same

trajectories, resulting in a chaotic synchronization. The chaotic synchronization phenom-

enon is successfully utilized in chaotic communications with coherent detection.

The error linear feedback method is used in the present system for chaotic synchro-

nization, based on the following algorithm (see Figure 4). The chaotic signal from the mas-

ter chaos generator (constructed according to (3) and containing both the values of all state

variables pn and the piecewise linear function g) is applied to the slave chaos generator,

which does not have its own piecewise linear function. It is recovered using error feedback

subtraction from the incoming chaotic signal. The recovered piecewise linear function g’

can be described by:

𝑔′(𝑝1, 𝑝3) = 𝑟𝑖𝑛 − (𝑝′1𝑘1 + 𝑝′2𝑘2 + 𝑝′3𝑘3 + 𝑝′4𝑘4), (4)

where 𝑟𝑖𝑛 is the chaotic signal at the receiver’s input, which in the simplest case of direct

connection is equal to the transmitter output signal 𝑟𝑜𝑢𝑡.

Figure 4. Structure of chaotic synchronization and its error estimation method.

The output signal of the slave chaos generator is obtained the same way as in the

master chaos generator but with the use of the absolute value of the recovered piecewise

linear function. The signal representing the synchronization error is obtained by subtract-

ing the output signal of the slave chaos generator from its input signal, according to the

expression:

𝜀𝑆𝑌𝑁𝐶 = 𝑝′1𝑘1 + 𝑝′2𝑘2 + 𝑝′3𝑘3 + 𝑝′4𝑘4 + |𝑔′(𝑝1, 𝑝3)| − 𝑟𝑖𝑛. (5)

Figure 4. Structure of chaotic synchronization and its error estimation method.

The output signal of the slave chaos generator is obtained the same way as in the master
chaos generator but with the use of the absolute value of the recovered piecewise linear
function. The signal representing the synchronization error is obtained by subtracting the
output signal of the slave chaos generator from its input signal, according to the expression:

εSYNC = p′1k1 + p′2k2 + p′3k3 + p′4k4 +
∣∣g′(p1, p3)

∣∣− rin. (5)

3.3. ACSK Baseband Modulation

The present novel chaotic communication system is based on ACSK modulation [39],
which uses one master chaos generator at the transmitter and two slave chaos genera-
tors at the receiver. Figure 5 shows the simplified structure of ACSK modulation and
demodulation with baseband channel, without intermediate frequency and transmitted
signal processing units, discussed in Section 4. The transmitter output is switched between
the direct and inverted version of the chaotic signal depending on the transmitted bit
value. ACSK receiver has two identical slave chaos generators—with direct and inverted
signal input. The chaotic synchronization occurs only at one of the slave chaos generators,
depending on the previous inversion state of the received chaotic signal. Estimating the
difference in synchronization errors between the two receiver slave chaos generators allows
demodulating the transmitted data.

Electronics 2022, 11, 1870 10 of 23

Electronics 2022, 11, x FOR PEER REVIEW 10 of 24

3.3. ACSK Baseband Modulation

The present novel chaotic communication system is based on ACSK modulation [39],

which uses one master chaos generator at the transmitter and two slave chaos generators

at the receiver. Figure 5 shows the simplified structure of ACSK modulation and demod-

ulation with baseband channel, without intermediate frequency and transmitted signal

processing units, discussed in Section 4. The transmitter output is switched between the

direct and inverted version of the chaotic signal depending on the transmitted bit value.

ACSK receiver has two identical slave chaos generators—with direct and inverted signal

input. The chaotic synchronization occurs only at one of the slave chaos generators, de-

pending on the previous inversion state of the received chaotic signal. Estimating the dif-

ference in synchronization errors between the two receiver slave chaos generators allows

demodulating the transmitted data.

Figure 5. Structure of ACSK modulation with baseband channel.

The obtained synchronization errors for the time equal to 1 symbol duration are

shown in Figure 6. For the slave chaos generator supplied with an inverted chaotic signal,

the synchronization error is unevenly distributed over time, which is related to the nature

of the piecewise linear function. To obtain a smoother and more accurate value of the

synchronization errors, it is necessary to average them over the time interval of a symbol

duration.

The duration of the symbol is equal to 8192 (213) samples, where one sample is equal

to 20 ns (the period of the 50 MHz clock oscillator used in the FPGA prototype). The iden-

tical sampling step is used in Simulink mathematical model. The choice of symbol dura-

tion is based on the following considerations:

1. Number of samples required for synchronization error average value calculation

with acceptable accuracy;

2. Number of samples required to establish chaotic synchronization;

3. The duration of the symbol should be expressed as 2n (n—natural number) since such

an approach greatly simplifies the mathematical operations in the FPGA implemen-

tation.

The chaotic synchronization typically requires about 200 samples to establish, which

is much lower than chosen symbol duration. The main reason for choosing the symbol

duration is the average value calculation accuracy of synchronization error (for the in-

verted input signal). The approximate relative calculation error for 212 samples long cha-

otic synchronization error signal is 20%, while it is 4% for 213 and 2% for 214. Based on these

data, we chose to use 8192 samples for the duration of one transmitted symbol, as a cal-

culation error of about 4% provides a reasonably high accuracy, which is essential for the

stable operation of the communication system in the presence of noise in the communica-

tion channel.

Figure 5. Structure of ACSK modulation with baseband channel.

The obtained synchronization errors for the time equal to 1 symbol duration are
shown in Figure 6. For the slave chaos generator supplied with an inverted chaotic
signal, the synchronization error is unevenly distributed over time, which is related to the
nature of the piecewise linear function. To obtain a smoother and more accurate value
of the synchronization errors, it is necessary to average them over the time interval of a
symbol duration.

Electronics 2022, 11, x FOR PEER REVIEW 11 of 24

Figure 6. Absolute value of the synchronization error signal at the direct (upper graph) and inverted

(lower graph) output signal of the master chaos generator applied to the slave generator.

4. Communication System Prototype Structure

This section describes the FPGA implementation of the ACSK receiver and transmit-

ter. As shown in Figure 7, the prototype setup consists of Altera Cyclone V

5CSXFC6D6F31C6N FPGA digital transmitter and receiver, clocked by the onboard 50

MHz clock source, and analog channel with AD9767 DAC and AD9248 ADC. A further

focus of this section is limited to the digital implementation of transmitter and receiver,

where modulation, demodulation, and signal processing are done.

Figure 7. The general structure of the prototype setup.

The design of an FPGA prototype is carried out in several stages, starting from the

concept and ending with the hardware implementation. System modules—e.g., chaos

generator, filter system, automatic gain control, and average value estimation—are first

developed and tested separately from other modules, incrementally connecting them to-

gether. The main stages of the design flow and methodology are shown in Figure 8.

At the start, a design concept is developed, considering the system module’s desired

functionality, parameters, and structure. The Simulink model is then developed that uses

only basic digital elements and fixed-point signals to closely match the module design to

be implemented in the FPGA.

Once the Simulink model has been validated and verified, the module design is de-

scribed using the VHDL hardware description language, manually defining the intercon-

nection of adders, registers, multipliers, and other elements. Editing, automated analysis,

and synthesis of modules described in VHDL files is performed in the Quartus Prime soft-

ware. A testbench file is written for each module to perform a functional simulation of the

synthesized FPGA design. The testbench file helps test the VHDL modules separately by

providing appropriate input signals to the synthesized module and checking the output

signals. The functional simulation is performed using the ModelSim software and verifies

the functionality of the designed module without evaluating the effect of the actual hard-

ware implementation in FPGA.

Figure 6. Absolute value of the synchronization error signal at the direct (upper graph) and inverted
(lower graph) output signal of the master chaos generator applied to the slave generator.

The duration of the symbol is equal to 8192 (213) samples, where one sample is equal to
20 ns (the period of the 50 MHz clock oscillator used in the FPGA prototype). The identical
sampling step is used in Simulink mathematical model. The choice of symbol duration is
based on the following considerations:

1. Number of samples required for synchronization error average value calculation with
acceptable accuracy;

2. Number of samples required to establish chaotic synchronization;
3. The duration of the symbol should be expressed as 2n (n—natural number) since such an

approach greatly simplifies the mathematical operations in the FPGA implementation.

The chaotic synchronization typically requires about 200 samples to establish, which
is much lower than chosen symbol duration. The main reason for choosing the symbol
duration is the average value calculation accuracy of synchronization error (for the inverted
input signal). The approximate relative calculation error for 212 samples long chaotic
synchronization error signal is 20%, while it is 4% for 213 and 2% for 214. Based on these
data, we chose to use 8192 samples for the duration of one transmitted symbol, as a
calculation error of about 4% provides a reasonably high accuracy, which is essential
for the stable operation of the communication system in the presence of noise in the
communication channel.

Electronics 2022, 11, 1870 11 of 23

4. Communication System Prototype Structure

This section describes the FPGA implementation of the ACSK receiver and transmitter.
As shown in Figure 7, the prototype setup consists of Altera Cyclone V 5CSXFC6D6F31C6N
FPGA digital transmitter and receiver, clocked by the onboard 50 MHz clock source, and
analog channel with AD9767 DAC and AD9248 ADC. A further focus of this section
is limited to the digital implementation of transmitter and receiver, where modulation,
demodulation, and signal processing are done.

Electronics 2022, 11, x FOR PEER REVIEW 11 of 24

Figure 6. Absolute value of the synchronization error signal at the direct (upper graph) and inverted

(lower graph) output signal of the master chaos generator applied to the slave generator.

4. Communication System Prototype Structure

This section describes the FPGA implementation of the ACSK receiver and transmit-

ter. As shown in Figure 7, the prototype setup consists of Altera Cyclone V

5CSXFC6D6F31C6N FPGA digital transmitter and receiver, clocked by the onboard 50

MHz clock source, and analog channel with AD9767 DAC and AD9248 ADC. A further

focus of this section is limited to the digital implementation of transmitter and receiver,

where modulation, demodulation, and signal processing are done.

Figure 7. The general structure of the prototype setup.

The design of an FPGA prototype is carried out in several stages, starting from the

concept and ending with the hardware implementation. System modules—e.g., chaos

generator, filter system, automatic gain control, and average value estimation—are first

developed and tested separately from other modules, incrementally connecting them to-

gether. The main stages of the design flow and methodology are shown in Figure 8.

At the start, a design concept is developed, considering the system module’s desired

functionality, parameters, and structure. The Simulink model is then developed that uses

only basic digital elements and fixed-point signals to closely match the module design to

be implemented in the FPGA.

Once the Simulink model has been validated and verified, the module design is de-

scribed using the VHDL hardware description language, manually defining the intercon-

nection of adders, registers, multipliers, and other elements. Editing, automated analysis,

and synthesis of modules described in VHDL files is performed in the Quartus Prime soft-

ware. A testbench file is written for each module to perform a functional simulation of the

synthesized FPGA design. The testbench file helps test the VHDL modules separately by

providing appropriate input signals to the synthesized module and checking the output

signals. The functional simulation is performed using the ModelSim software and verifies

the functionality of the designed module without evaluating the effect of the actual hard-

ware implementation in FPGA.

Figure 7. The general structure of the prototype setup.

The design of an FPGA prototype is carried out in several stages, starting from the
concept and ending with the hardware implementation. System modules—e.g., chaos
generator, filter system, automatic gain control, and average value estimation—are first
developed and tested separately from other modules, incrementally connecting them
together. The main stages of the design flow and methodology are shown in Figure 8.

Electronics 2022, 11, x FOR PEER REVIEW 12 of 24

When the functional simulation step is completed, Quartus performs a full compila-

tion to create a binary file used to program the FPGA chip. The main project setup param-

eter required for successful compilation is selecting the exact target FPGA device, in this

case—Altera Cyclone V 5CSXFC6D6F31C6N. Additionally, any FPGA pins used for pe-

ripheral devices and interfaces (such as clock source, buttons, LEDs used, etc.) must be

specified precisely in the Quartus Pin Planner settings before the compilation. Most of the

other Quartus compilation settings are used in the default configuration.

During a full compilation, automated analysis of the VHDL code and synthesis of

digital implementation structure is performed at the beginning. Then, fitting and assem-

bling operations are done by Quartus. The fitting determines the placement of all digital

logic elements on the FPGA chip and the signal routing logic. The assembling generates a

binary programming file used to program the FPGA chip.

Quartus provides a built-in Signal Tap logic analyzer tool that can be configured be-

fore the compilation to track specific signals to perform on-chip verification and debug of

an implemented and programmed module. Signal Tap can visualize monitored signals as

the time diagrams or export the recorded binary data for external processing. In the final

stage of the module design verification, module output signals are recorded from the pro-

grammed FPGA and exported to MATLAB software, where they are compared with mod-

ule outputs generated by simulation of the Simulink model.

The described approach is used not only for individual modules of the system but

also for their appropriate combination. At the final stage of the communication system

implementation, it is used for the entire prototype.

Figure 8. Flowchart of the design methodology for the FPGA implementation of prototype modules.

4.1. Transmitter

The transmitter structure is shown in Figure 9. The main module is the master chaos

generator that synthesizes the discrete chaotic signal to be inverted or not inverted, de-

pending on the transmitted bit value, which is the essence of the ACSK modulator. The

ACSK-modulated chaotic output signal is prepared for analog transmission by two pro-

cessing steps: digital up-conversion (DUC) and scaling. The implementation of the chaos

generator and processing units in the transmitter are described further.

Figure 9. The general structure of the transmitter.

Figure 8. Flowchart of the design methodology for the FPGA implementation of prototype modules.

At the start, a design concept is developed, considering the system module’s desired
functionality, parameters, and structure. The Simulink model is then developed that uses
only basic digital elements and fixed-point signals to closely match the module design to
be implemented in the FPGA.

Once the Simulink model has been validated and verified, the module design is
described using the VHDL hardware description language, manually defining the intercon-
nection of adders, registers, multipliers, and other elements. Editing, automated analysis,
and synthesis of modules described in VHDL files is performed in the Quartus Prime
software. A testbench file is written for each module to perform a functional simulation of
the synthesized FPGA design. The testbench file helps test the VHDL modules separately
by providing appropriate input signals to the synthesized module and checking the output
signals. The functional simulation is performed using the ModelSim software and veri-
fies the functionality of the designed module without evaluating the effect of the actual
hardware implementation in FPGA.

Electronics 2022, 11, 1870 12 of 23

When the functional simulation step is completed, Quartus performs a full compilation
to create a binary file used to program the FPGA chip. The main project setup parameter
required for successful compilation is selecting the exact target FPGA device, in this case—
Altera Cyclone V 5CSXFC6D6F31C6N. Additionally, any FPGA pins used for peripheral
devices and interfaces (such as clock source, buttons, LEDs used, etc.) must be specified
precisely in the Quartus Pin Planner settings before the compilation. Most of the other
Quartus compilation settings are used in the default configuration.

During a full compilation, automated analysis of the VHDL code and synthesis of dig-
ital implementation structure is performed at the beginning. Then, fitting and assembling
operations are done by Quartus. The fitting determines the placement of all digital logic
elements on the FPGA chip and the signal routing logic. The assembling generates a binary
programming file used to program the FPGA chip.

Quartus provides a built-in Signal Tap logic analyzer tool that can be configured
before the compilation to track specific signals to perform on-chip verification and debug
of an implemented and programmed module. Signal Tap can visualize monitored signals
as the time diagrams or export the recorded binary data for external processing. In the
final stage of the module design verification, module output signals are recorded from the
programmed FPGA and exported to MATLAB software, where they are compared with
module outputs generated by simulation of the Simulink model.

The described approach is used not only for individual modules of the system but
also for their appropriate combination. At the final stage of the communication system
implementation, it is used for the entire prototype.

4.1. Transmitter

The transmitter structure is shown in Figure 9. The main module is the master
chaos generator that synthesizes the discrete chaotic signal to be inverted or not inverted,
depending on the transmitted bit value, which is the essence of the ACSK modulator.
The ACSK-modulated chaotic output signal is prepared for analog transmission by two
processing steps: digital up-conversion (DUC) and scaling. The implementation of the
chaos generator and processing units in the transmitter are described further.

Electronics 2022, 11, x FOR PEER REVIEW 12 of 24

When the functional simulation step is completed, Quartus performs a full compila-

tion to create a binary file used to program the FPGA chip. The main project setup param-

eter required for successful compilation is selecting the exact target FPGA device, in this

case—Altera Cyclone V 5CSXFC6D6F31C6N. Additionally, any FPGA pins used for pe-

ripheral devices and interfaces (such as clock source, buttons, LEDs used, etc.) must be

specified precisely in the Quartus Pin Planner settings before the compilation. Most of the

other Quartus compilation settings are used in the default configuration.

During a full compilation, automated analysis of the VHDL code and synthesis of

digital implementation structure is performed at the beginning. Then, fitting and assem-

bling operations are done by Quartus. The fitting determines the placement of all digital

logic elements on the FPGA chip and the signal routing logic. The assembling generates a

binary programming file used to program the FPGA chip.

Quartus provides a built-in Signal Tap logic analyzer tool that can be configured be-

fore the compilation to track specific signals to perform on-chip verification and debug of

an implemented and programmed module. Signal Tap can visualize monitored signals as

the time diagrams or export the recorded binary data for external processing. In the final

stage of the module design verification, module output signals are recorded from the pro-

grammed FPGA and exported to MATLAB software, where they are compared with mod-

ule outputs generated by simulation of the Simulink model.

The described approach is used not only for individual modules of the system but

also for their appropriate combination. At the final stage of the communication system

implementation, it is used for the entire prototype.

Figure 8. Flowchart of the design methodology for the FPGA implementation of prototype modules.

4.1. Transmitter

The transmitter structure is shown in Figure 9. The main module is the master chaos

generator that synthesizes the discrete chaotic signal to be inverted or not inverted, de-

pending on the transmitted bit value, which is the essence of the ACSK modulator. The

ACSK-modulated chaotic output signal is prepared for analog transmission by two pro-

cessing steps: digital up-conversion (DUC) and scaling. The implementation of the chaos

generator and processing units in the transmitter are described further.

Figure 9. The general structure of the transmitter. Figure 9. The general structure of the transmitter.

4.1.1. Chaos Generator Implementation in Field Programmable Gate Array

The FPGA is intended to implement discrete digital systems, while the chosen chaos
generator is a continuous dynamic nonlinear system. Implementing a chaos generator in
an FPGA requires two considerations: the choice of a discrete ODE solution method and
the choice of a binary numeric data format for signals.

The forward Euler method [32] is used for solving ODE, which is simple, and there-
fore, consumes fewer physical FPGA resources than other methods and provides conver-
gent solutions. The following expression can describe the forward Euler numerical ODE
solution method:

yn+1 = yn + h f (yn), (6)

where yn is the present system state variable, yn+1 is the next estimated value, h is the
solution step size, and f (yn) is the increment function. The solution converges to the
actual value as step size approaches zero. Solution step size h = 1/1024 is chosen in the
system design, which provides acceptable precision, and is suitable for simple FPGA

Electronics 2022, 11, 1870 13 of 23

implementation. It has been assessed that with step size h = 1/256 system, ODE solutions
diverge because solution approximation precision becomes insufficient.

Applying the forward Euler method, (1) can be expressed as:
p1n+1 = p1n + h(−g(p1n , p3n)− p2n)

p2n+1 = p2n + h(p1n + γp2n)
p3n+1 = p3n + hθ(g(p1n , p3n)− p4n)

p4n+1 = p4n + hσp3n

. (7)

For a discrete numerical representation of system signals in the transmitter, a 14-bit
signed two’s complement fixed-point format is used, where 8 bits represent the fractional
part, and 5 bits are the integer part and sign. In the receiver, signal data width is generally
equal to 17 bits (8 bits for the fractional part, 9 bits for the integer part and sign), with some
exceptions inside signal processing modules.

The chaos generator equations (7) were implemented by separately designing and
interconnecting mathematical units as shown in Figure 10, where integrator is the forward
Euler ODE solution unit, which consists of adders and registers, and works according to
Equation (6), with increased bit width within the integrator and rounding at the output. The
piecewise linear function g(p1, p3) is designed according to the Equation (2) and consists of
three adders, a comparator, and a multiplexer, while bit width changes and rounding are
not required for its implementation. Now, coefficients θ, σ, and γ are constant and do not
require a digital multiplier to implement. For instance, multiplication by 0.5 for γ coefficient
equals a single logical bit shift to the right; therefore, division or multiplication by power of
2 requires no hardware resources. Multiplication by 1.5 for σ coefficient uses one adder; its
inputs are the signal to be multiplied and its right-shifted (by 1) copy. Multiplication by 10
for θ coefficient is implemented similarly, using one adder and two signal bit left-shifts (by
1 and by 2)—one of the shifted signals is supplied to the first adder input, and the other is
on the second adder input.

Electronics 2022, 11, x FOR PEER REVIEW 14 of 24

Figure 10. Structure of the master chaos generator.

Registers are only used in the integrators so that one clock period would correspond

to one iteration of solving ODEs according to the Forward Euler algorithm. This simplifies

design, but limits the maximum clock frequency at which the prototype can produce valid

solutions, since binary adders take a finite time to complete the carry chain during calcu-

lations. Increasing the number of registers between asynchronous digital parts would in-

crease the pipelining effect and maximal clock frequency limitations; however, this will

complicate the ODE discrete solving algorithm and increase hardware resource usage.

4.1.2. Signal Processing before Transmission

Figure 11 shows the structure of modulation and processing unit FPGA implemen-

tations—inversion controller, DUC, and scaling.

The arithmetic inversion of digital data values stored in fixed-point two’s comple-

ment format is performed in two simple steps—bits are bitwise inverted, and a 1 is added.

A multiplexer is used to select which type of chaotic signal is passed further, direct or

inverted, selected by the value of binary data transmitted.

In DUC, the chaotic baseband signal is multiplied by 793.65 kHz digitally synthesized

harmonic waveform (with amplitude equal to 1), moving the transmitted signal to an ap-

proximate frequency range between 579 kHz and 1009 kHz. Since a 50 MHz clock is used

as a sampling frequency in the FPGA prototype, there was no need for up-sampling

within the DUC module since the intermediate frequency of 793.65 kHz is significantly

below the Nyquist frequency.

The harmonic waveform signal is implemented using a LUT filled with 64 samples

(in 14-bit fixed-point format) of one sine period and a 6-bit phase counter. The free-run-

ning counter provides an instantaneous phase value that selects a LUT entry for the sine

generation. It uses multiplexers to select the appropriate LUT entry and an adder for the

counter. Multiplication of two 14-bit numbers results in a 28-bit product, from which only

14 bits are selected for the output, as previously mentioned.

Figure 11. Modulation and signal processing before transmission structure.

Figure 10. Structure of the master chaos generator.

On the output part of the master chaos generator, state variables p1–p4 are multiplied
by weight coefficients k1–k4 accordingly, using digital multipliers of FPGA DSP blocks. As
these coefficients are constant, it is possible to optimize their value and implementation in
future prototype designs to avoid the use of multipliers. Weight coefficients are represented
in 14 bit-width formats, the same as the multiplier input signals. When two 14-bit fixed-
point signals are multiplied, the product is represented by 28 bits, where the number of bits
for both fractional and integer parts is doubled. To reduce the number of the product bits
back to 14, some rounding is performed by taking only half of the bits before and after the
radix point position. Weighted signals of state variables are summed together and with the

Electronics 2022, 11, 1870 14 of 23

piecewise linear function g(p1, p3), using four adders to produce the chaotic output signal,
as shown in Figure 10.

Registers are only used in the integrators so that one clock period would correspond
to one iteration of solving ODEs according to the Forward Euler algorithm. This simplifies
design, but limits the maximum clock frequency at which the prototype can produce
valid solutions, since binary adders take a finite time to complete the carry chain during
calculations. Increasing the number of registers between asynchronous digital parts would
increase the pipelining effect and maximal clock frequency limitations; however, this will
complicate the ODE discrete solving algorithm and increase hardware resource usage.

4.1.2. Signal Processing before Transmission

Figure 11 shows the structure of modulation and processing unit FPGA implementations—
inversion controller, DUC, and scaling.

Electronics 2022, 11, x FOR PEER REVIEW 14 of 24

Figure 10. Structure of the master chaos generator.

Registers are only used in the integrators so that one clock period would correspond

to one iteration of solving ODEs according to the Forward Euler algorithm. This simplifies

design, but limits the maximum clock frequency at which the prototype can produce valid

solutions, since binary adders take a finite time to complete the carry chain during calcu-

lations. Increasing the number of registers between asynchronous digital parts would in-

crease the pipelining effect and maximal clock frequency limitations; however, this will

complicate the ODE discrete solving algorithm and increase hardware resource usage.

4.1.2. Signal Processing before Transmission

Figure 11 shows the structure of modulation and processing unit FPGA implemen-

tations—inversion controller, DUC, and scaling.

The arithmetic inversion of digital data values stored in fixed-point two’s comple-

ment format is performed in two simple steps—bits are bitwise inverted, and a 1 is added.

A multiplexer is used to select which type of chaotic signal is passed further, direct or

inverted, selected by the value of binary data transmitted.

In DUC, the chaotic baseband signal is multiplied by 793.65 kHz digitally synthesized

harmonic waveform (with amplitude equal to 1), moving the transmitted signal to an ap-

proximate frequency range between 579 kHz and 1009 kHz. Since a 50 MHz clock is used

as a sampling frequency in the FPGA prototype, there was no need for up-sampling

within the DUC module since the intermediate frequency of 793.65 kHz is significantly

below the Nyquist frequency.

The harmonic waveform signal is implemented using a LUT filled with 64 samples

(in 14-bit fixed-point format) of one sine period and a 6-bit phase counter. The free-run-

ning counter provides an instantaneous phase value that selects a LUT entry for the sine

generation. It uses multiplexers to select the appropriate LUT entry and an adder for the

counter. Multiplication of two 14-bit numbers results in a 28-bit product, from which only

14 bits are selected for the output, as previously mentioned.

Figure 11. Modulation and signal processing before transmission structure. Figure 11. Modulation and signal processing before transmission structure.

The arithmetic inversion of digital data values stored in fixed-point two’s complement
format is performed in two simple steps—bits are bitwise inverted, and a 1 is added. A
multiplexer is used to select which type of chaotic signal is passed further, direct or inverted,
selected by the value of binary data transmitted.

In DUC, the chaotic baseband signal is multiplied by 793.65 kHz digitally synthesized
harmonic waveform (with amplitude equal to 1), moving the transmitted signal to an
approximate frequency range between 579 kHz and 1009 kHz. Since a 50 MHz clock is
used as a sampling frequency in the FPGA prototype, there was no need for up-sampling
within the DUC module since the intermediate frequency of 793.65 kHz is significantly
below the Nyquist frequency.

The harmonic waveform signal is implemented using a LUT filled with 64 samples
(in 14-bit fixed-point format) of one sine period and a 6-bit phase counter. The free-
running counter provides an instantaneous phase value that selects a LUT entry for the
sine generation. It uses multiplexers to select the appropriate LUT entry and an adder for
the counter. Multiplication of two 14-bit numbers results in a 28-bit product, from which
only 14 bits are selected for the output, as previously mentioned.

Since the DAC interface supports straight offset binary (SOB) format input, the digital
scaling unit adds DC bias to convert data into a 14-bit SOB format. Additionally, the signal
amplification is done. The DC bias added is cancelled by the RF transformers after DAC,
so it does not affect the transmission.

4.2. Receiver

The received signal must be processed before passing it to the ACSK demodulator.
The 14-bit SOB format digital output signal from the ADC channel has an added binary
offset value of 213, which needs to be cancelled. Thus, the MSB bit inversion removes the
binary offset from the received signal by converting it to the signed two’s complement
format. At the same stage of scheme data bus bit-width is expanded from 14 to 17 bits
to prevent overflow in further processing stages. As shown in Figure 12, further digital
processing of the received signal includes converting the signal from the intermediate
frequency to baseband with digital down-conversion (DDC), filtering, and adjusting the

Electronics 2022, 11, 1870 15 of 23

signal level with automatic gain control (AGC) unit. The processed signal is passed to the
ACSK demodulator, where the transmitted bits are detected.

Electronics 2022, 11, x FOR PEER REVIEW 15 of 24

Since the DAC interface supports straight offset binary (SOB) format input, the digi-

tal scaling unit adds DC bias to convert data into a 14-bit SOB format. Additionally, the

signal amplification is done. The DC bias added is cancelled by the RF transformers after

DAC, so it does not affect the transmission.

4.2. Receiver

The received signal must be processed before passing it to the ACSK demodulator.

The 14-bit SOB format digital output signal from the ADC channel has an added binary

offset value of 213, which needs to be cancelled. Thus, the MSB bit inversion removes the

binary offset from the received signal by converting it to the signed two’s complement

format. At the same stage of scheme data bus bit-width is expanded from 14 to 17 bits to

prevent overflow in further processing stages. As shown in Figure 12, further digital pro-

cessing of the received signal includes converting the signal from the intermediate fre-

quency to baseband with digital down-conversion (DDC), filtering, and adjusting the sig-

nal level with automatic gain control (AGC) unit. The processed signal is passed to the

ACSK demodulator, where the transmitted bits are detected.

The implementation and structure of the DDC unit are similar to the DUC unit—the

digitally synthesized harmonic waveform is multiplied with the input signal using a DSP

multiplier. The only difference with DUC is that signals are 17-bit, including harmonic

waveform. Therefore, the multiplication product is 34-bit large, and rounding is per-

formed to provide 17-bit output. Mixing the input signal with the 793.65 kHz harmonic

wave signal in DDC results in splitting the signal into the baseband and the double inter-

mediate frequency (of 1587.30 kHz) components. The double-frequency spectral compo-

nents are filtered out in the next processing step. The digital structure of the filtering sys-

tem, AGC and ACSK demodulator units, is discussed next.

Figure 12. The general structure of the receiver.

4.2.1. Filtering System

The filtering system provides immunity to channel noise by filtering the signal spec-

trum outside the frequency regions most essential for chaotic synchronization, below 6

kHz and between 90 and 215 kHz. The implementation of a single filter with two passband

regions is possible, but it requires a high filter order and design complexity. Instead of

using a single-filter approach, the filtering is done by connecting several filters with low

order and simple design. It should be noted that all the sampling and signal frequencies

described are valid for 50 MHz clock use for the FPGA prototype. Increasing the FPGA

clock frequency proportionally increases the frequency of the chaotic signal.

The filter system design consists of down-sampling, bandstop filter, and up-sam-

pling. Only two filters were designed and used in the current implementation—the sixth-

order halfband lowpass IIR filter and twelfth order bandstop IIR filter. The cutoff fre-

quency of the halfband filter is equal to 0.546 of the sampling frequency. The bandstop

filter is used sequentially six times, and down-sampling by 2 is performed after each use.

This way, the sampling frequency is down-sampled by 2 six times—from 50 MHz to

781.25 kHz. When the halfband filter is applied last time in this stage of the filter system,

its actual cutoff frequency is 213.281 kHz, which is acceptably close to the desired value

of 215 kHz.

The down-sampling makes it possible to use a much simpler bandstop filter to cut

off frequencies between 6 and 90 kHz than it would be necessary at a 50 MHz sampling

frequency. After the bandstop filter, a six-stage up-sampling by 2 is performed to return

the signal sampling frequency to 50 MHz, at which point it needs to be further processed

Figure 12. The general structure of the receiver.

The implementation and structure of the DDC unit are similar to the DUC unit—the
digitally synthesized harmonic waveform is multiplied with the input signal using a DSP
multiplier. The only difference with DUC is that signals are 17-bit, including harmonic
waveform. Therefore, the multiplication product is 34-bit large, and rounding is performed
to provide 17-bit output. Mixing the input signal with the 793.65 kHz harmonic wave
signal in DDC results in splitting the signal into the baseband and the double intermediate
frequency (of 1587.30 kHz) components. The double-frequency spectral components are
filtered out in the next processing step. The digital structure of the filtering system, AGC
and ACSK demodulator units, is discussed next.

4.2.1. Filtering System

The filtering system provides immunity to channel noise by filtering the signal spec-
trum outside the frequency regions most essential for chaotic synchronization, below 6 kHz
and between 90 and 215 kHz. The implementation of a single filter with two passband
regions is possible, but it requires a high filter order and design complexity. Instead of
using a single-filter approach, the filtering is done by connecting several filters with low
order and simple design. It should be noted that all the sampling and signal frequencies
described are valid for 50 MHz clock use for the FPGA prototype. Increasing the FPGA
clock frequency proportionally increases the frequency of the chaotic signal.

The filter system design consists of down-sampling, bandstop filter, and up-sampling.
Only two filters were designed and used in the current implementation—the sixth-order
halfband lowpass IIR filter and twelfth order bandstop IIR filter. The cutoff frequency of
the halfband filter is equal to 0.546 of the sampling frequency. The bandstop filter is used
sequentially six times, and down-sampling by 2 is performed after each use. This way, the
sampling frequency is down-sampled by 2 six times—from 50 MHz to 781.25 kHz. When
the halfband filter is applied last time in this stage of the filter system, its actual cutoff
frequency is 213.281 kHz, which is acceptably close to the desired value of 215 kHz.

The down-sampling makes it possible to use a much simpler bandstop filter to cut
off frequencies between 6 and 90 kHz than it would be necessary at a 50 MHz sampling
frequency. After the bandstop filter, a six-stage up-sampling by 2 is performed to return the
signal sampling frequency to 50 MHz, at which point it needs to be further processed and
used for chaotic synchronization. After every up-sampling stage, the signal is multiplied
by 2 (using a single logical bit left-shift) to compensate for the energy loss in the baseband,
caused by signal spectral division into two parts—at the baseband and the half of the new
sampling frequency. The signal part, which is outside baseband frequencies, is filtered by
the halfband filter at every stage.

The generalized structure of the filtering system’s digital implementation is shown in
Figure 13. Filtering is performed with doubled signal bus bit width (34 bits) to achieve a
better calculation accuracy. The different sample rates are controlled by providing different
clock enable signal rates for the registers, while all registers keep using the same clock
signal. For example, to down-sample a signal by 2, the first down-sampling stage register
is enabled only once per 2 clock cycles, the second down-sampling stage register is enabled
once per 4 clock cycles, etc. Up-sampling is implemented in reverse order. A register with
inverted loopback is used to control a multiplexer with a clock enable signal with a twice
higher rate than the previous. The multiplexer divides every previous sample into two
samples, giving the second sample value of “0”.

Electronics 2022, 11, 1870 16 of 23

Electronics 2022, 11, x FOR PEER REVIEW 16 of 24

and used for chaotic synchronization. After every up-sampling stage, the signal is multi-

plied by 2 (using a single logical bit left-shift) to compensate for the energy loss in the

baseband, caused by signal spectral division into two parts—at the baseband and the half

of the new sampling frequency. The signal part, which is outside baseband frequencies, is

filtered by the halfband filter at every stage.

The generalized structure of the filtering system’s digital implementation is shown

in Figure 13. Filtering is performed with doubled signal bus bit width (34 bits) to achieve

a better calculation accuracy. The different sample rates are controlled by providing dif-

ferent clock enable signal rates for the registers, while all registers keep using the same

clock signal. For example, to down-sample a signal by 2, the first down-sampling stage

register is enabled only once per 2 clock cycles, the second down-sampling stage register

is enabled once per 4 clock cycles, etc. Up-sampling is implemented in reverse order. A

register with inverted loopback is used to control a multiplexer with a clock enable signal

with a twice higher rate than the previous. The multiplexer divides every previous sample

into two samples, giving the second sample value of “0”.

Figure 13. Filtering system structure.

The baseband spectrum of the transmitter output chaotic signal, manipulated with

random bit sequence, without any channel noise added, is shown in Figure 14. Figure 15

shows a frequency magnitude response of the whole filter system obtained by applying

white additive Gaussian noise of power level 0 dBm in the Simulink mathematical model.

Figure 14. Baseband spectrum of the transmitter output chaotic signal, modulated with random bit

sequence.

Figure 13. Filtering system structure.

The baseband spectrum of the transmitter output chaotic signal, manipulated with
random bit sequence, without any channel noise added, is shown in Figure 14. Figure 15
shows a frequency magnitude response of the whole filter system obtained by applying
white additive Gaussian noise of power level 0 dBm in the Simulink mathematical model.

Electronics 2022, 11, x FOR PEER REVIEW 16 of 24

and used for chaotic synchronization. After every up-sampling stage, the signal is multi-

plied by 2 (using a single logical bit left-shift) to compensate for the energy loss in the

baseband, caused by signal spectral division into two parts—at the baseband and the half

of the new sampling frequency. The signal part, which is outside baseband frequencies, is

filtered by the halfband filter at every stage.

The generalized structure of the filtering system’s digital implementation is shown

in Figure 13. Filtering is performed with doubled signal bus bit width (34 bits) to achieve

a better calculation accuracy. The different sample rates are controlled by providing dif-

ferent clock enable signal rates for the registers, while all registers keep using the same

clock signal. For example, to down-sample a signal by 2, the first down-sampling stage

register is enabled only once per 2 clock cycles, the second down-sampling stage register

is enabled once per 4 clock cycles, etc. Up-sampling is implemented in reverse order. A

register with inverted loopback is used to control a multiplexer with a clock enable signal

with a twice higher rate than the previous. The multiplexer divides every previous sample

into two samples, giving the second sample value of “0”.

Figure 13. Filtering system structure.

The baseband spectrum of the transmitter output chaotic signal, manipulated with

random bit sequence, without any channel noise added, is shown in Figure 14. Figure 15

shows a frequency magnitude response of the whole filter system obtained by applying

white additive Gaussian noise of power level 0 dBm in the Simulink mathematical model.

Figure 14. Baseband spectrum of the transmitter output chaotic signal, modulated with random bit

sequence.
Figure 14. Baseband spectrum of the transmitter output chaotic signal, modulated with random
bit sequence.

Electronics 2022, 11, x FOR PEER REVIEW 17 of 24

Figure 15. The spectrum of the filter system unit output signal with white noise applied to the input.

4.2.2. Automatic Gain Control

As the received signal and transmitter output signal levels may differ due to channel

noise, attenuation, and other factors, an AGC unit is required to adjust the received signal

gain to the estimated reference power. Thus, the signal power applied to the receiver slave

chaos generators is close enough to the power level of the master chaos generator in the

transmitter.

A feed-backwards type of AGC is implemented in the present prototype. As shown

in Figure 16, the incoming signal is multiplied by the feedback signal, obtained in the fol-

lowing way. Output signal absolute value is obtained using a comparator, an arithmetical

invertor, and a multiplexer. The multiplexer selects an inverted signal value when the

signal is below zero or a direct value when the signal is positive. The absolute value of the

input signal is subtracted from the reference and passed to the gain accumulator. The ref-

erence is the RMS value of the modulated output signal of the master chaos generator,

equal to 2.421. After the accumulator, the signal is divided by 2K (using a logical bit right

shift K times), closing the feedback loop. The choice of number K impacts the dynamic

range and operating speed. These parameters were evaluated for K values from 10 to 17

and input signal power from 10 times smaller to 10 times greater than the reference power

value. K value of 14 was chosen at which AGC performance provides an acceptable trade-

off between dynamic range and speed. The data bit width at the input and output of the

AGC is 17 bits. In the internal cycle, the bit width is increased to 34 bits to ensure that the

value stored in the accumulator is represented with an acceptable total rounding error.

The 34 bits represent twice the number of bits for the integer and fractional parts of fixed-

point values, which is enough to represent any result of multiplying two 17-bit fixed-point

binary numbers according to the rules of binary arithmetic.

Figure 16. Automatic gain control unit structure.

Figure 15. The spectrum of the filter system unit output signal with white noise applied to the input.

4.2.2. Automatic Gain Control

As the received signal and transmitter output signal levels may differ due to channel
noise, attenuation, and other factors, an AGC unit is required to adjust the received signal
gain to the estimated reference power. Thus, the signal power applied to the receiver
slave chaos generators is close enough to the power level of the master chaos generator in
the transmitter.

A feed-backwards type of AGC is implemented in the present prototype. As shown in
Figure 16, the incoming signal is multiplied by the feedback signal, obtained in the following

Electronics 2022, 11, 1870 17 of 23

way. Output signal absolute value is obtained using a comparator, an arithmetical invertor,
and a multiplexer. The multiplexer selects an inverted signal value when the signal is below
zero or a direct value when the signal is positive. The absolute value of the input signal is
subtracted from the reference and passed to the gain accumulator. The reference is the RMS
value of the modulated output signal of the master chaos generator, equal to 2.421. After
the accumulator, the signal is divided by 2K (using a logical bit right shift K times), closing
the feedback loop. The choice of number K impacts the dynamic range and operating
speed. These parameters were evaluated for K values from 10 to 17 and input signal power
from 10 times smaller to 10 times greater than the reference power value. K value of 14
was chosen at which AGC performance provides an acceptable trade-off between dynamic
range and speed. The data bit width at the input and output of the AGC is 17 bits. In the
internal cycle, the bit width is increased to 34 bits to ensure that the value stored in the
accumulator is represented with an acceptable total rounding error. The 34 bits represent
twice the number of bits for the integer and fractional parts of fixed-point values, which
is enough to represent any result of multiplying two 17-bit fixed-point binary numbers
according to the rules of binary arithmetic.

Electronics 2022, 11, x FOR PEER REVIEW 17 of 24

Figure 15. The spectrum of the filter system unit output signal with white noise applied to the input.

4.2.2. Automatic Gain Control

As the received signal and transmitter output signal levels may differ due to channel

noise, attenuation, and other factors, an AGC unit is required to adjust the received signal

gain to the estimated reference power. Thus, the signal power applied to the receiver slave

chaos generators is close enough to the power level of the master chaos generator in the

transmitter.

A feed-backwards type of AGC is implemented in the present prototype. As shown

in Figure 16, the incoming signal is multiplied by the feedback signal, obtained in the fol-

lowing way. Output signal absolute value is obtained using a comparator, an arithmetical

invertor, and a multiplexer. The multiplexer selects an inverted signal value when the

signal is below zero or a direct value when the signal is positive. The absolute value of the

input signal is subtracted from the reference and passed to the gain accumulator. The ref-

erence is the RMS value of the modulated output signal of the master chaos generator,

equal to 2.421. After the accumulator, the signal is divided by 2K (using a logical bit right

shift K times), closing the feedback loop. The choice of number K impacts the dynamic

range and operating speed. These parameters were evaluated for K values from 10 to 17

and input signal power from 10 times smaller to 10 times greater than the reference power

value. K value of 14 was chosen at which AGC performance provides an acceptable trade-

off between dynamic range and speed. The data bit width at the input and output of the

AGC is 17 bits. In the internal cycle, the bit width is increased to 34 bits to ensure that the

value stored in the accumulator is represented with an acceptable total rounding error.

The 34 bits represent twice the number of bits for the integer and fractional parts of fixed-

point values, which is enough to represent any result of multiplying two 17-bit fixed-point

binary numbers according to the rules of binary arithmetic.

Figure 16. Automatic gain control unit structure. Figure 16. Automatic gain control unit structure.

4.2.3. ACSK Demodulator

The general design and functionality of ACSK demodulator were previously discussed
in Section 3.3. The present subsection focuses on the digital implementation structure of
the demodulator modules, which is shown in Figure 17. The processed input signal is
divided into two parts. One part is applied to one of the slave chaos generators without
modifications, while the other part is arithmetically inverted before being applied to the
second slave chaos generator.

Electronics 2022, 11, x FOR PEER REVIEW 18 of 24

4.2.3. ACSK Demodulator

The general design and functionality of ACSK demodulator were previously dis-

cussed in Section 3.3. The present subsection focuses on the digital implementation struc-

ture of the demodulator modules, which is shown in Figure 17. The processed input signal

is divided into two parts. One part is applied to one of the slave chaos generators without

modifications, while the other part is arithmetically inverted before being applied to the

second slave chaos generator.

The implementation structure of the slave chaos generator is mostly identical to the

master chaos generator, with only a few differences:

• The signal bus is 17-bit, as in most of the receivers—one of the reasons for this is that

much higher signal values within the slave chaos generator can be observed when

chaotic synchronization is not established, which is the desired operation in one of

two generators during transmission;

• Piecewise linear function g(p1, p3) is absent and is reconstructed by a negative loop-

back, as shown in Figure 4;

• The output signal uses the absolute value of the reconstructed piecewise linear func-

tion.

The input signal of each slave chaos generator is subtracted from its output to obtain

a signal representing chaotic synchronization error. The absolute value of the error signal

is then averaged over the 8192 (213) samples with a sliding calculation window.

Sliding average value calculation is implemented using a FIFO memory buffer that

can store up to 8192 records of 17-bit words. The buffer constantly reads and outputs zeros

before the moment it fills up. After it is filled, it constantly outputs the stored values, start-

ing from the least recent. The FIFO buffer output signal is subtracted from the input signal

and passed to the accumulator. Signals within the accumulator loop are 30-bit, enough to

store accumulated value for 8192 bits. The accumulated value is divided by 8192 (right-

shifted by 13 bits) at the output to produce the estimated mean value.

Average chaotic synchronization error signals for both slave chaos generators are

subtracted one from another and compared to decide the value of the transmitted data bit.

Figure 17. ACSK demodulator structure.

5. Study of the Communication System

This section discusses the results of experimental studies of the developed commu-

nication system prototype. First, the performance of the prototype is tested by comparison

with the Simulink mathematical model. Then, the performance of the communication sys-

tem is evaluated in terms of noise immunity by adding additive white Gaussian noise to

the channel and obtaining the dependence of BER on the signal-to-noise ratio (SNR).

Figure 17. ACSK demodulator structure.

Electronics 2022, 11, 1870 18 of 23

The implementation structure of the slave chaos generator is mostly identical to the
master chaos generator, with only a few differences:

• The signal bus is 17-bit, as in most of the receivers—one of the reasons for this is that
much higher signal values within the slave chaos generator can be observed when
chaotic synchronization is not established, which is the desired operation in one of
two generators during transmission;

• Piecewise linear function g(p1, p3) is absent and is reconstructed by a negative loopback,
as shown in Figure 4;

• The output signal uses the absolute value of the reconstructed piecewise linear function.

The input signal of each slave chaos generator is subtracted from its output to obtain a
signal representing chaotic synchronization error. The absolute value of the error signal is
then averaged over the 8192 (213) samples with a sliding calculation window.

Sliding average value calculation is implemented using a FIFO memory buffer that
can store up to 8192 records of 17-bit words. The buffer constantly reads and outputs
zeros before the moment it fills up. After it is filled, it constantly outputs the stored values,
starting from the least recent. The FIFO buffer output signal is subtracted from the input
signal and passed to the accumulator. Signals within the accumulator loop are 30-bit,
enough to store accumulated value for 8192 bits. The accumulated value is divided by 8192
(right-shifted by 13 bits) at the output to produce the estimated mean value.

Average chaotic synchronization error signals for both slave chaos generators are
subtracted one from another and compared to decide the value of the transmitted data bit.

5. Study of the Communication System

This section discusses the results of experimental studies of the developed communica-
tion system prototype. First, the performance of the prototype is tested by comparison with
the Simulink mathematical model. Then, the performance of the communication system
is evaluated in terms of noise immunity by adding additive white Gaussian noise to the
channel and obtaining the dependence of BER on the signal-to-noise ratio (SNR).

5.1. Verification of the Prototype

The performance of the new chaotic communication system was initially tested both on
a noise-free communication channel on an FPGA prototype, transmitting a signal from the
DAC to the ADC via a coaxial cable (see Figure 18), and on a verified mathematical model
in the Simulink environment. Both tests demonstrated correct operation in modulation,
transmission, and demodulation of input data bits.

It should be noted that the developed communication system can also be successfully
implemented in any other FPGA chip than Altera Cyclone V. In the present prototype
design, only one FPGA chip is used, which is enough to test the concept. An ACSK
transmitter and receiver are implemented in separate parts of FPGA. However, it is also
possible to implement an ACSK transmitter and receiver on two separate FPGA chips.
The system design method used in the proposed communication system can also be used
with other chaos generators if parameters such as filter bandwidth, bit duration, and
AGC reference power level are adjusted in accordance with the properties of the output
chaotic signal.

The difference in average errors of chaotic synchronization (the signal used to decide
the transmitted bit value) in Simulink simulation and FPGA implementation was evaluated
and compared. The main difference between the two implementations is the analog channel.
The Simulink model used a simplified channel model that includes attenuation and delay.
At the same time, in the case of FPGA, the signal was transmitted via coaxial cable using
DAC and ADC. As seen in the bottom graph in Figure 19, the difference in the obtained
signals is minimal. It does not exceed 10% of the measured signal values, which indicates
that the Simulink model closely matches the FPGA implementation of the proposed ACSK
chaotic communication system.

Electronics 2022, 11, 1870 19 of 23

Electronics 2022, 11, x FOR PEER REVIEW 19 of 24

5.1. Verification of the Prototype

The performance of the new chaotic communication system was initially tested both

on a noise-free communication channel on an FPGA prototype, transmitting a signal from

the DAC to the ADC via a coaxial cable (see Figure 18), and on a verified mathematical

model in the Simulink environment. Both tests demonstrated correct operation in modu-

lation, transmission, and demodulation of input data bits.

It should be noted that the developed communication system can also be successfully

implemented in any other FPGA chip than Altera Cyclone V. In the present prototype

design, only one FPGA chip is used, which is enough to test the concept. An ACSK trans-

mitter and receiver are implemented in separate parts of FPGA. However, it is also possi-

ble to implement an ACSK transmitter and receiver on two separate FPGA chips. The

system design method used in the proposed communication system can also be used with

other chaos generators if parameters such as filter bandwidth, bit duration, and AGC ref-

erence power level are adjusted in accordance with the properties of the output chaotic

signal.

The difference in average errors of chaotic synchronization (the signal used to decide

the transmitted bit value) in Simulink simulation and FPGA implementation was evalu-

ated and compared. The main difference between the two implementations is the analog

channel. The Simulink model used a simplified channel model that includes attenuation

and delay. At the same time, in the case of FPGA, the signal was transmitted via coaxial

cable using DAC and ADC. As seen in the bottom graph in Figure 19, the difference in the

obtained signals is minimal. It does not exceed 10% of the measured signal values, which

indicates that the Simulink model closely matches the FPGA implementation of the pro-

posed ACSK chaotic communication system.

Figure 18. Communication system FPGA prototype setup on an Arrow SoCKit development board

with a Terasic THDB-ADA daughter board and a coaxial cable for analog signal transmission.
Figure 18. Communication system FPGA prototype setup on an Arrow SoCKit development board
with a Terasic THDB-ADA daughter board and a coaxial cable for analog signal transmission.

Electronics 2022, 11, x FOR PEER REVIEW 20 of 24

Figure 19. The signal of the difference between the mean values of the chaotic synchronization sig-

nals (at the direct and inverted signal input) obtained from the simulation of the Simulink model

with a simplified analog channel model (upper graph), from the FPGA prototype with physical

analog transmission via coaxial cable (middle graph), and the calculated difference between the two

signals (bottom graph). Signals are obtained by transmitting the bit sequence “101010”.

5.2. BER Analysis

The noise immunity of the communication system was tested, performing a simula-

tion with white Gaussian noise added to the transmitted signal. Up to 104 randomly gen-

erated bits per one SNR value were transmitted during the simulation. The model in-

cludes processing output and input signals and a simplified digital model of the analog

channel consisting of measured signal delay and attenuation between the DAC input and

the ADC output. White noise was added within the analog channel.

The transmitted and demodulated bits were loaded into the MATLAB working

memory, in which the communication system model was simulated several times to cal-

culate the BER. It should be noted that the SNR estimation includes only the filtered part

of the white noise power (14.1376 dB less than the white noise power in the full range

between 0 Hz and Nyquist frequency).

According to the results of this experiment shown in Figure 20, the probability of

error of the communication system is below 10−3 at the signal-to-noise power ratio above

5 dB—where the system can be considered operational and resistant to white noise. For

SNR values between 0 dB and 8 dB BER changes almost linearly. For the overall measure-

ment region, the BER curve does not have any noticeable jumps in values, which indicates

the predictability and stability of the communication system, depending on the level of

white noise in the communication channel. A certain number of erroneously decoded bits

can be detected and corrected by supplementing the communication system with a for-

ward error correction coding, making the system operational even at a BER level slightly

above zero. For the defined clock frequency of 50 MHz and the length of one symbol of

8192 samples, the data rate is 6.1 kilobits per second. Increasing the clock frequency will

also increase the transmission rate proportionally, although there are some limitations on

how fast the current prototype can work robustly and correctly. The current prototype’s

highest valid clock signal frequency is 76 MHz, but it can be slightly increased with dedi-

cated optimization of the FPGA module structure.

Figure 19. The signal of the difference between the mean values of the chaotic synchronization signals
(at the direct and inverted signal input) obtained from the simulation of the Simulink model with
a simplified analog channel model (upper graph), from the FPGA prototype with physical analog
transmission via coaxial cable (middle graph), and the calculated difference between the two signals
(bottom graph). Signals are obtained by transmitting the bit sequence “101010”.

Electronics 2022, 11, 1870 20 of 23

5.2. BER Analysis

The noise immunity of the communication system was tested, performing a simulation
with white Gaussian noise added to the transmitted signal. Up to 104 randomly generated
bits per one SNR value were transmitted during the simulation. The model includes
processing output and input signals and a simplified digital model of the analog channel
consisting of measured signal delay and attenuation between the DAC input and the ADC
output. White noise was added within the analog channel.

The transmitted and demodulated bits were loaded into the MATLAB working mem-
ory, in which the communication system model was simulated several times to calculate
the BER. It should be noted that the SNR estimation includes only the filtered part of the
white noise power (14.1376 dB less than the white noise power in the full range between
0 Hz and Nyquist frequency).

According to the results of this experiment shown in Figure 20, the probability of error
of the communication system is below 10−3 at the signal-to-noise power ratio above 5 dB—
where the system can be considered operational and resistant to white noise. For SNR
values between 0 dB and 8 dB BER changes almost linearly. For the overall measurement
region, the BER curve does not have any noticeable jumps in values, which indicates the
predictability and stability of the communication system, depending on the level of white
noise in the communication channel. A certain number of erroneously decoded bits can be
detected and corrected by supplementing the communication system with a forward error
correction coding, making the system operational even at a BER level slightly above zero.
For the defined clock frequency of 50 MHz and the length of one symbol of 8192 samples,
the data rate is 6.1 kilobits per second. Increasing the clock frequency will also increase
the transmission rate proportionally, although there are some limitations on how fast
the current prototype can work robustly and correctly. The current prototype’s highest
valid clock signal frequency is 76 MHz, but it can be slightly increased with dedicated
optimization of the FPGA module structure.

Electronics 2022, 11, x FOR PEER REVIEW 21 of 24

Figure 20. BER at different signal-to-noise power ratios.

6. Conclusions

A novel chaotic communication system prototype was designed and implemented

on FPGA within this work. It uses ACSK modulation, employing chaotic synchronization

and coherent detection, providing a base for secure communication applications in wire-

less network systems. A comparison with other FPGA-implemented chaotic systems has

been performed to show the relevance and novelty of the present study.

In addition to the FPGA prototype, a mathematical model of the prototype is devel-

oped in the Simulink environment that allows modeling the digital part of the communi-

cation system with high precision and under different conditions. This approach increases

the efficiency of system development, improvement, and research processes since FPGA

implementation is more complex and time-consuming than simulation. The system de-

sign method used in the proposed communication system can also be used with other

chaos generators, which gives more opportunities for the development and use of a multi-

user system.

The proposed communication system performance was evaluated with white noise

in the communication channel—the BER drops below 10−3 at SNR above 5 dB. The data

rate achievable for a 50 MHz clock and 8196 samples per symbol is 6.1 kilobits per second,

making the proposed system more suitable for applications that do not require high data

speed but additional security.

Considering the limitations of the proposed approach, the present ACSK communi-

cation system has lower noise immunity than most conventional digital communication

systems, since its performance highly depends on the quality of the chaotic synchroniza-

tion achieved during demodulation, which is another trade-off to increase the security of

the physical communication channel. The use of FPGA for modulation, demodulation,

and signal processing makes the system flexible to make any changes and optimizations

at any stage of system development without having to prototype a new hardware circuit

on a printed circuit board. This study aims to demonstrate the proof of concept of a novel

chaotic communication system implemented on FPGA. The implementation has been per-

formed without inter-module optimization, so the prototype can be easily modified. The

results of this study can be used in the next step of the ACSK communication system de-

velopment, in which additional performance optimization and functionality improve-

ments are intended.

Figure 20. BER at different signal-to-noise power ratios.

Electronics 2022, 11, 1870 21 of 23

6. Conclusions

A novel chaotic communication system prototype was designed and implemented on
FPGA within this work. It uses ACSK modulation, employing chaotic synchronization and
coherent detection, providing a base for secure communication applications in wireless
network systems. A comparison with other FPGA-implemented chaotic systems has been
performed to show the relevance and novelty of the present study.

In addition to the FPGA prototype, a mathematical model of the prototype is de-
veloped in the Simulink environment that allows modeling the digital part of the com-
munication system with high precision and under different conditions. This approach
increases the efficiency of system development, improvement, and research processes
since FPGA implementation is more complex and time-consuming than simulation. The
system design method used in the proposed communication system can also be used with
other chaos generators, which gives more opportunities for the development and use of a
multi-user system.

The proposed communication system performance was evaluated with white noise
in the communication channel—the BER drops below 10−3 at SNR above 5 dB. The data
rate achievable for a 50 MHz clock and 8196 samples per symbol is 6.1 kilobits per second,
making the proposed system more suitable for applications that do not require high data
speed but additional security.

Considering the limitations of the proposed approach, the present ACSK communi-
cation system has lower noise immunity than most conventional digital communication
systems, since its performance highly depends on the quality of the chaotic synchronization
achieved during demodulation, which is another trade-off to increase the security of the
physical communication channel. The use of FPGA for modulation, demodulation, and
signal processing makes the system flexible to make any changes and optimizations at any
stage of system development without having to prototype a new hardware circuit on a
printed circuit board. This study aims to demonstrate the proof of concept of a novel chaotic
communication system implemented on FPGA. The implementation has been performed
without inter-module optimization, so the prototype can be easily modified. The results of
this study can be used in the next step of the ACSK communication system development, in
which additional performance optimization and functionality improvements are intended.

The developed prototype of a chaotic communication system can be improved by
supplementing the receiver with automated symbol phase synchronization and a data-
packet protocol processing algorithm. The analog part of the prototype can be supple-
mented with radio modules that will provide wireless transmission of the chaotic signal
via frequency modulation.

Author Contributions: Conceptualization, F.C., A.L. and M.Z.; Funding acquisition, A.L.; Investi-
gation, F.C.; Methodology, F.C. and D.K.; Project administration, D.P.; Resources, M.T. and M.Z.;
Software, F.C.; Supervision, A.L.; Validation, D.K. and M.T.; Writing—original draft, F.C.; Writing—
review and editing, A.L., D.K. and D.P. All authors have read and agreed to the published version of
the manuscript.

Funding: This work has been supported by the European Regional Development Fund within the
Activity 1.1.1.2 “Post-doctoral Research Aid” of the Specific Aid Objective 1.1.1 “To increase the
research and innovative capacity of scientific institutions of Latvia and the ability to attract external
financing, investing in human resources and infrastructure” of the Operational Program “Growth
and Employment” (No.1.1.1.2/VIAA/2/18/345).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tami, T. Chaos secure communication’ implementation in FPGA. In Proceedings of the 2018 International Conference on Applied

Smart Systems, Medea, Algeria, 24–25 November 2018; pp. 1–6.
2. Çiçek, S.; Kocamaz, U.E.; Uyaroğlu, Y. Secure Chaotic Communication with Jerk Chaotic System Using Sliding Mode Control

Method and Its Real Circuit Implementation. Iran. J. Sci. Technol. Trans. Electr. Eng. 2019, 43, 687–698. [CrossRef]

http://doi.org/10.1007/s40998-019-00184-9

Electronics 2022, 11, 1870 22 of 23

3. Stavroulakis, P. Chaos Applications in Telecommunications; CRC Press: Boca Raton, FL, USA, 2006.
4. Chua, L.O.; Wu, C.W.; Huang, A.; Zhong, G.Q. A Universal Circuit for Studying and Generating Chaos—Part II: Strange

Attractors. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1993, 40, 745–761. [CrossRef]
5. Sprott, J.C. A new class of chaotic circuit. Phys. Lett. Sect. A Gen. At. Solid State Phys. 2000, 266, 19–23. [CrossRef]
6. Muthuswamy, B.; Banerjee, S. A Route to Chaos Using FPGAs; Springer International Publishing: Berlin/Heidelberg, Germany,

2015; Volume 16.
7. Kaddoum, G. Wireless Chaos-Based Communication Systems: A Comprehensive Survey. IEEE Access 2016, 4, 2621–2648.

[CrossRef]
8. Azzaz, M.S.; Tanougast, C.; Adoudi, S.; Bouridane, A.; Dandache, A. An FPGA implementation of a Feed-Back Chaotic

Synchronization for secure communications. In Proceedings of the 2010 7th International Symposium on Communication
Systems, Networks & Digital Signal Processing, CSNDSP 2010, Newcastle Upon Tyne, UK, 21–23 July 2010; pp. 239–243.
[CrossRef]

9. Qi, A.; Zhang, C.; Wang, H. A switched hyperchaotic system and its FPGA circuitry implementation. J. Electron. 2011, 28,
28383–28388. [CrossRef]

10. Sadoudi, S.; Azzaz, M.S.; Tanougast, C. Novel experimental synchronization technique for embedded chaotic communications. In
Proceedings of the 2014 International Conference on Control, Decision and Information Technologies (CoDIT), Metz, France, 3–5
November 2014; pp. 669–672. [CrossRef]

11. Babu, R.R.; Karthikeyan, R. Adaptive synchronization of novel chaotic system and its FPGA implementation. In Proceedings of
the 2015 International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy
and Materials (ICSTM), Avadi, India, 6–8 May 2015; pp. 449–454. [CrossRef]

12. Gunay, E.; Altun, K.; Unal, C. FPGA implementation of SC-CNN based chaos generator. In Proceedings of the 2018 International
Conference on Artificial Intelligence and Data Processing, Shenzhen, China, 28–30 September 2018; pp. 1–7. [CrossRef]

13. Zhang, L. System generator model-based FPGA design optimization and hardware co-simulation for Lorenz chaotic generator.
In Proceedings of the 2017 2nd Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), Wuhan, China, 6–18 June 2017;
pp. 170–174. [CrossRef]

14. Azzaz, M.S.; Krimil, M.A.; Labiod, F.; Kadir, A.; Teguig, D. FPGA Hardware Design of a Unified Chaotic System for CTRNG. In
Proceedings of the 2018 International Conference on Signal, Image, Vision and their Applications (SIVA), Guelma, Algeria, 26–27
November 2018; pp. 1–4. [CrossRef]

15. El-Maksoud, A.J.A.; El-Kader, A.A.A.; Hassan, B.G.; Abdelhamed, M.A.; Rihan, N.G.; Tolba, M.F.; Said, L.A.; Radwan, A.G.;
Abu-Elyazeed, M.F. FPGA implementation of fractional-order Chua’s chaotic system. In Proceedings of the 2018 7th International
Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 7–9 May 2018; pp. 1–4. [CrossRef]

16. Soliman, N.S.; Tolba, M.F.; Said, L.A.; Madian, A.H.; Radwan, A.G. FPGA Implementation of X- and Heart-shapes Controllable
Multi-Scroll Attractors. In Proceedings of the IEEE International Symposium on Circuits and Systems, Florence, Italy, 27–30 May
2018; Volume 2018, pp. 1–5. [CrossRef]

17. Wang, G.-Y.; Bao, X.-L.; Wang, Z.-L. Design and FPGA Implementation of a new hyperchaotic system. Chin. Phys. B 2008, 17,
3596–3602. [CrossRef]

18. Wang, F.; Wang, R.; Iu, H.H.C.; Liu, C.; Fernando, T. A Novel Multi-Shape Chaotic Attractor and Its FPGA Implementation. IEEE
Trans. Circuits Syst. II Express Briefs 2019, 66, 2062–2066. [CrossRef]

19. Dong, E.; Yuan, M.; Han, F.; Tong, J.; Du, S. Topological horseshoe analysis and FPGA implementation of a classical fractional
order chaotic system. IEEE Access 2019, 7, 129095–129103. [CrossRef]

20. Orabi, H.; Elnawawy, M.; Sagahyroon, A.; Aloul, F.; Elwakil, A.S.; Radwan, A.G. On the Implementation of a Rotated Chaotic
Lorenz System on FPGA. In Proceedings of the APCCAS 2019 2019 IEEE Asia Pacific Conference on Circuits and Systems Innov.
CAS Towards Sustainable Energy Technology Disruption, Bangkok, Thailand, 11–14 November 2019; pp. 417–422. [CrossRef]

21. Yu, F.; Shen, H.; Liu, L.; Zhang, Z.; Huang, Y.; He, B.; Cai, S.; Song, Y.; Yin, B.; Du, S.; et al. CCII and FPGA Realization: A
Multistable Modified Fourth-Order Autonomous Chua’s Chaotic System with Coexisting Multiple Attractors. Complexity 2020,
2020, 1–17. [CrossRef]

22. Vaidyanathan, S.; Sambas, A.; Tlelo-Cuautle, E.; El-Latif, A.A.A.; Abd-El-Atty, B.; Guillén-Fernández, O.; Benkouider, K.;
Mohamed, M.A.; Mamat, M.; Ibrahim, M.A.H. A new 4-D multi-stable hyperchaotic system with no balance point: Bifurcation
analysis, circuit simulation, FPGA realization and image cryptosystem. IEEE Access 2021, 9, 144555–144573. [CrossRef]

23. Luo, Y.; Yu, S.; Liu, J. Design and implementation of image chaotic communication via FPGA embedded ethernet transmission. In
Proceedings of the 2009 International Workshop on Chaos-Fractals Theories and Applications, Shenyang, China, 6–8 November
2009; pp. 148–152. [CrossRef]

24. Carroll, T.L.; Pecora, L.M. Synchronizing chaotic circuits. IEEE Trans. Circuits Syst. 1991, 38, 453–456. [CrossRef]
25. Chou, H.G.; Chuang, C.F.; Wang, W.J.; Lin, J.C. A fuzzy-model-based chaotic synchronization and its implementation on a secure

communication system. IEEE Trans. Inf. Forensics Secur. 2013, 8, 2177–2185. [CrossRef]
26. Tlelo-Cuautle, E.; Carbajal-Gomez, V.H.; Obeso-Rodelo, P.J.; Rangel-Magdaleno, J.J.; Núñez-Pérez, J.C. FPGA realization of a

chaotic communication system applied to image processing. Nonlinear Dyn. 2015, 82, 1879–1892. [CrossRef]
27. Sira-Ramirez, H.; Cruz-Hernandez, C. Synchronization of chaotic systems: A generalized Hamiltonian systems approach. Proc.

Am. Control Conf. 2000, 2, 769–773. [CrossRef]

http://doi.org/10.1109/81.246150
http://doi.org/10.1016/S0375-9601(00)00026-8
http://doi.org/10.1109/ACCESS.2016.2572730
http://doi.org/10.1109/csndsp16145.2010.5580426
http://doi.org/10.1007/s11767-011-0421-3
http://doi.org/10.1109/CoDIT.2014.6996976
http://doi.org/10.1109/ICSTM.2015.7225459
http://doi.org/10.1109/siu.2017.7960281
http://doi.org/10.1109/ACIRS.2017.7986087
http://doi.org/10.1109/SIVA.2018.8661042
http://doi.org/10.1109/MOCAST.2018.8376632
http://doi.org/10.1109/ISCAS.2018.8351760
http://doi.org/10.1088/1674-1056/17/10/011
http://doi.org/10.1109/TCSII.2019.2907709
http://doi.org/10.1109/ACCESS.2019.2938556
http://doi.org/10.1109/APCCAS47518.2019.8953183
http://doi.org/10.1155/2020/5212601
http://doi.org/10.1109/ACCESS.2021.3121428
http://doi.org/10.1109/IWCFTA.2009.38
http://doi.org/10.1109/31.75404
http://doi.org/10.1109/TIFS.2013.2286268
http://doi.org/10.1007/s11071-015-2284-x
http://doi.org/10.1142/S0218127401002778

Electronics 2022, 11, 1870 23 of 23

28. Gunay, E.; Altun, K. A performance comparison study of programmable platforms: FPAA and FPGA implementation of COOK
communication system. In Proceedings of the 2017 European Conference on Circuit Theory and Design (ECCTD), Catania, Italy,
4–6 September 2017; pp. 1–4. [CrossRef]

29. Schmitz, J.; Zhang, L. Rössler-based chaotic communication system implemented on FPGA. In Proceedings of the 2017 IEEE 30th
Canadian Conference on Electrical and Computer Engineering, Windsor, ON, Canada, 30 April–3 May 2017; pp. 1–4. [CrossRef]

30. Guillén-Fernández, O.; Meléndez-Cano, A.; Tlelo-Cuautle, E.; Núñez-Pérez, J.C.; de Rangel-Magdaleno, J. On the synchronization
techniques of chaotic oscillators and their FPGA-based implementation for secure image transmission. PLoS ONE 2019, 14,
e0209618. [CrossRef] [PubMed]

31. Jackson, E.A.; Grosu, I. An open-plus-closed-loop (OPCL) control of complex dynamic systems. Phys. D Nonlinear Phenom.
1995, 85, 1–9. [CrossRef]

32. Tlelo-Cuautle, E.; de la Fraga, L.G.; Pham, V.T.; Volos, C.; Jafari, S.; Quintas-Valles, A.d. Dynamics, FPGA realization and
application of a chaotic system with an infinite number of equilibrium points. Nonlinear Dyn. 2017, 89, 1129–1139. [CrossRef]

33. Kolumbán, G.; Kennedy, M.P.; Chua, L.O. The role of synchronization in digital communications using chaos—Part II: Chaotic
modulation and chaotic synchronization. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1998, 45, 1129–1140. [CrossRef]

34. Tlelo-Cuautle, E.; Rangel-Magdaleno, J.d.; de la Fraga, L.G. Engineering Applications of FPGAs: Chaotic Systems, Artificial Neural
Networks, Random Number Generators, and Secure Communication Systems; Springer International Publishing: Berlin/Heidelberg,
Germany, 2016.

35. Meyer-Baese, U. Digital Signal Processing with Field Programmable Gate Arrays, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2014.
36. Capligins, F.; Litvinenko, A.; Kolosovs, D. FPGA Implementation and Study of Antipodal Chaos Shift Keying Communication

System. In Proceedings of the 2021 IEEE Microwave Theory and Techniques in Wireless Communications (MTTW), Riga, Latvia,
7–8 October 2021; pp. 1–6. [CrossRef]

37. Hoang, T. Simulink Model for Observer Based Synchronization in Chua’s Systems. Available online: https://www.mathworks.
com/matlabcentral/fileexchange/26246-observer-based-synchronization-in-chua-s-systems (accessed on 12 February 2019).

38. Capligins, F.; Aboltins, A.; Litvinenko, A.; Kolosovs, D. FPGA Implementation and Study of Synchronization of Modified Chua’s
Circuit-Based Chaotic Oscillator for High-Speed Secure Communications. In Proceedings of the 2020 IEEE 8th Workshop on
Advances in Information, Electronic and Electrical Engineering (AIEEE), Vilnius, Lithuania, 22–24 April 2021; pp. 1–6. [CrossRef]

39. Bendoukha, S.; Abdelmalek, S.; Ouannas, A. Secure communication systems based on the synchronization of chaotic systems.
Stud. Syst. Decis. Control 2019, 200, 281–311. [CrossRef]

http://doi.org/10.1109/ECCTD.2017.8093237
http://doi.org/10.1109/CCECE.2017.7946729
http://doi.org/10.1371/journal.pone.0209618
http://www.ncbi.nlm.nih.gov/pubmed/30726236
http://doi.org/10.1016/0167-2789(95)00171-Y
http://doi.org/10.1007/s11071-017-3505-2
http://doi.org/10.1109/81.735435
http://doi.org/10.1109/mttw53539.2021.9607226
https://www.mathworks.com/matlabcentral/fileexchange/26246-observer-based-synchronization-in-chua-s-systems
https://www.mathworks.com/matlabcentral/fileexchange/26246-observer-based-synchronization-in-chua-s-systems
http://doi.org/10.1109/AIEEE51419.2021.9435783
http://doi.org/10.1007/978-3-030-12232-4_9

	Introduction
	Literature Review
	Communication System Based on Antipodal Chaotic Shift Keying
	Chaos Generator
	Chaotic Synchronization
	ACSK Baseband Modulation

	Communication System Prototype Structure
	Transmitter
	Chaos Generator Implementation in Field Programmable Gate Array
	Signal Processing before Transmission

	Receiver
	Filtering System
	Automatic Gain Control
	ACSK Demodulator

	Study of the Communication System
	Verification of the Prototype
	BER Analysis

	Conclusions
	References

