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Abstract: Vehicle state, including location and motion information, plays an essential role on the
Internet of Vehicles (IoV). Accurately obtaining the system state information is the premise of realizing
precise control. However, the statistics of system process noise are often unknown due to the complex
physical process. It is challenging to estimate the system state when the process noise statistics are
unknown. This paper proposes a new adaptive high-degree unscented Kalman filter based on the
improved Sage–Husa algorithm. First, the traditional Sage–Husa algorithm is improved using a high-
degree unscented transform. A noise estimator suitable for the high-degree unscented Kalman filter
is obtained to estimate the statistics of the unknown process noise. Then, an adaptive high-degree
unscented Kalman filter is designed to improve the accuracy and stability of the state estimation
system. Finally, the target tracking simulation results verify the proposed algorithm’s effectiveness.

Keywords: nonlinear system; state estimation; unknown system noise; Kalman filter; Sage-Husa;
adaptive filter

1. Introduction

The automotive industry has experienced decades of rapid growth, and will continue
to do so for the foreseeable future. Vehicle state information, including vehicle position,
speed, acceleration, orientation, etc., provides a vast opportunity to develop motion-sensing
technologies that facilitate the construction of driver assistance systems. Vehicle state esti-
mation is a crucial enabler of the Internet of Vehicles (IoV) [1,2]. To obtain accurate vehicle
state information, a significant challenge in vehicle state estimation is noise interference,
especially the system’s process noise and the sensors’ measurement noise. Kalman filtering
is essential for dealing with noise disturbances in linear systems. In 1960, Kalman pub-
lished the famous Kalman filtering method, which marked the establishment of modern
filtering theory [3]. The Kalman filter (KF) has been widely used due to the development of
numerical calculations. However, the system is often nonlinear in practical engineering
applications, especially measurement equations. It is hard to obtain an accurate optimal
filtering solution because the filtering of nonlinear systems requires infinite-dimensional
integration operations [4].

Bucy and Sunahara proposed an extended Kalman filter (EKF) based on the KF
framework and Taylor expansion [5]. This algorithm expands the nonlinear equation of
the system by Taylor expansion. Then, it truncates the first-degree linear expansion to
achieve the purpose of a linear approximation to the system equation, and finally, performs
Kalman filtering. However, the EKF has the disadvantages of poor stability, low accuracy,
and slow response to target maneuvering. Julier et al. proposed a new filter estimation
algorithm, namely the unscented Kalman filter (UKF) [6]. It calculates the predicted value
and measured value of the target by the unscented transform based on the method of
sampling points. However, it does not use the traditional way of linearizing the nonlinear
function such as the EKF [7,8]. UKF does not ignore the high-degree terms of Taylor
expansion linearization as in the extended Kalman filter. In this case, it avoids truncation
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errors. Due to the advantages of the UKF, the algorithm is widely used in target tracking,
airstrike, and navigation [9,10].

However, the UKF is prone to the curse of dimensionality for high-dimensional
system states. It causes the filtering performance to be significantly reduced, and fails
to keep up with the target. In the algorithm’s iterative process, the matrix’s square root
operation is needed. If the matrix is non-positive definite, the UKF will no longer apply.
The cubature Kalman filter (CKF) uses the spherical integration and radial integration
criterion to optimize the sigma point sampling strategy and weight distribution of the
UKF. It solves the problem of the dimensionality disaster. The algorithm also improves the
filtering accuracy and stability [11,12]. The CKF is a particular case of the UKF when the
free parameter equals zero. It provides a strictly theoretical basis for the degree of freedom
to be zero in the high-dimensional state estimation [13,14]. Reference [15] proposed a
high-degree unscented Kalman filter (HUKF) with the analytical solution based on the fifth-
degree cubature transform. Introduced free parameters eliminate the unknown degrees
of freedom in the solution of high-degree unscented transformation. Theoretical analysis
proves that the HUKF can obtain higher accuracy than above filters. Therefore, this paper
uses the HUKF framework to design the filter.

When targeted for the nonlinear filtering problem, the algorithms mentioned above
require the statistical characteristics of the system noise [16]. However, such a requirement
is often unaffordable in practice. Because the system noise is time-varying and unknown,
the direct application of the current filtering algorithms suffers from filtering divergence.
When the system noise variance is known or small, the literature [17,18] attempted to
use the Sage–Husa noise estimator to estimate the noise variance. However, due to the
subtraction operation in the estimation process, it is easy to lose the positive definiteness
of the estimated noise variance. Moreover, the weight of the noise is updated using the
exponential weighting method, resulting in the update rate of the weight knowledge not
changing with the noise change. In order to deal unknown noise statistics, the literature [19]
derived the conventional Sage–Husa noise estimation method. It solves the problem of
noise estimation for linear systems. The literature [20] pointed out that the Sage–Husa
noise estimator is only effective for estimating another unknown noise statistic under the
premise that the system noise statistic is known. The literature [21] conducted research
on the adaptive UKF algorithm and its application. The literature [22] conducted research
on nonlinear methods based on neural networks and Bayesian criteria. Thus, the esti-
mated result is inaccurate when the Sage–Husa noise estimator calculates the system noise
statistics. At the same time, the Sage–Husa algorithm cannot be directly embedded in the
HUKF algorithm.

To make full use of the superior characteristic meter of HUKF, the UKF algorithm
is studied under the unknown system noise statistics. Combined with the high-degree
unscented transform rules, this paper derives a noise estimator suitable for nonlinear
conditions based on the conventional Sage–Husa method. Furthermore, an adaptive
HUKF (AHUKF) algorithm is given to realize the purpose of real-time estimation and the
correction of noise statistics. The main contributions of this paper include:

(1) The traditional Sage–Husa algorithm is improved, and an accurate estimation method
of the process noise’s statistics is given for the nonlinear system.

(2) Based on the improved Sage–Husa algorithm, an AHUKF algorithm is provided,
which improves the accuracy and stability of the system state estimate. The simulation
example of target tracking illustrates the effectiveness of the proposed algorithm.

The remaining parts of this work are summarized as follows. Section 2 briefly intro-
duces the mathematical system model and the problem description. Section 3 presents
the high-degree unscented transform rules. The establishment of the HUKF is presented
in Section 4. Numerical simulation is presented in Section 5. Finally, Section 6 concludes
this paper.
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2. Problem Formulation

Consider the discrete nonlinear systems as follows:

xk = f(xk−1) + wk (1)

zk = h(xk) + vk (2)

where xk ∈ Rn, zk ∈ Rm, f, and h are nonlinear functions, {wk} is an independent Gaussian
system noise sequence with unknown mean qk and variance Qk, and {vk} is an independent
Gaussian observation noise sequence with known mean rk and variance Rk.

The KF requires both the system process and observation noise to be Gaussian white
noise. At the same time, these noises’ statistical properties need to be known. The system
noise is complex in practical engineering applications, and its statistical characteristics are
challenging to know in real-time. In this case, the traditional filtering algorithm cannot get
the system state’s optimal estimation. This paper assumes that the statistics of process noise
are entirely unknown, i.e., its mean and variance are unknown. Although the filter based
on the Sage–Husa algorithm can estimate the unknown system noise characteristics, the
estimation results are inaccurate when the system noise characteristics change in real-time.
The addressed problem is described as follows:

1. For the real-time change of the system noise mean and variance, how to improve the
Sage–Husa algorithm to estimate the noise statistics accurately.

2. How to design a HUKF to accurately estimate the state of a nonlinear system with
unknown system noise statistics.

3. High-Degree Unscented Transform Rules

For a general Gaussian random variable x ∼ N(x, Px), a high-degree unscented
transform can match high-degree principal moments of the random vector x. Thus, the
high-degree unscented transform has higher state estimation accuracy than the second-
degree unscented transform. Next, we give the first type of sigma points and weights:

χ0 = x, w0 =
−2n2 + (4− 2n)κ2 + (4κ + 4)n

(n + κ)2(4− n)
(3)

Then, sigma points and weights for the second type:
χi1 = x +

√
(n+κ)(4−n)
(κ+2−n) Pxei1

χi1+n = x−
√

(n+κ)(4−n)
(κ+2−n) Pxei1

w1 = (κ+2−n)2

2(n+κ)2(4−n)

(4)

where ei1
is the i1th unit column vector.

Further, the sigma points and weights for the third type can be given as follows:

χi2 = x +
√
(n + κ)Pxs+i2

χi2+0.5n(n−1) = x−
√
(n + κ)Pxs+i2

χi2+n(n−1) = x +
√
(n + κ)Pxs−i2

χi2+1.5n(n−1) = x−
√
(n + κ)Pxs−i2

w2 = 1
(n+κ)2

(5)

where i2 = 1, 2, . . . , 0.5n(n− 1). s+i2 and s−i2 are the sets of points as shown below:
{

s+i2

}
=
{√

1/2(ek + el)}{
s−i2

}
=
{√

1/2(ek − el)}
(6)
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Then, the following algebraic equation about κ is obtained:

(n− 1)κ2 + (2n2 − 14n)κ + n3 − 13n2 + 60n− 60 = 0 (7)

Remark 1. For two-dimensional and three-dimensional systems, κ has an optimal solution. Whenκ
takes the optimal value, the accuracy of the high-degree unscented transform is higher than that of
the fifth-degree cubature transform and fifth-degree unscented transform. For a four-dimensional
system,κ can only be set to 2. In this case, the high-degree unscented transform is equivalent to the
fifth-degree cubature transform and the fifth-degree unscented transform. For one-dimensional and
four-dimensional systems or more, there is no optimalκ from the perspective of accuracy, but from
the standpoint of numerical stability,κ = 2 can be set.

4. Adaptive High-Degree Unscented Kalman Filter
4.1. Filter Design

We first give an HUKF to facilitate the description of solving the statistical characteris-
tics of noise. The following subsection will provide the mean and variance of the system
noise involved in the AHUKF algorithm. The specific steps are as follows:

4.1.1. One-Step Prediction of the State

(1) Assume that Pk−1|k−1 is known, Sk−1|k−1 is obtained by Cholesky factorization
as follows:

Pk−1|k−1 = Sk−1|k−1ST
k−1|k−1 (8)

where Sk−1|k−1 is the Cholesky factorization of Pk−1|k−1.

(2) Calculate the sigma points and their weights for xk−1:

χ00,k−1|k−1 = x̂k−1|k−1 (9)

(3) Calculate the second type of sigma points χ1i1,k−1|k−1, χ2i1,k−1|k−1 and their weights:

 χ1i1,k−1|k−1 = x̂k−1|k−1 +
√

(n+κ)(4−n)
(κ+2−n) Sk−1|k−1ei1

χ2i1,k−1|k−1 = x̂k−1|k−1 −
√

(n+κ)(4−n)
(κ+2−n) Sk−1|k−1ei1

(10)

(4) Calculate the third type of sigma points χ3i2,k−1|k−1, χ4i2,k−1|k−1, χ5i2,k−1|k−1, χ6i2,k−1|k−1
and their weights:

χ3i2,k−1|k−1 = x̂k−1|k−1 +
√
(n + κ)Sk−1|k−1s+i2

. . .
χ6i2,k−1|k−1 = x̂k−1|k−1 −

√
(n + κ)Sk−1|k−1s−i2

(11)

(5) Combing the function f (·) , propagate the sigma points of xk−1 to obtain the
following points: 

χ∗00,k|k−1 = f (χ00,k−1|k−1)+q̂k−1

. . .
χ∗6i2,k|k−1 = f (χ6i2,k−1|k−1)+q̂k−1

(12)

where q̂k−1 is the estimated mean value of system noise, and its calculation will be
given in the next section.

(6) Calculate the one-step prediction value x̂k|k−1 of the state:

x̂k|k−1 = w0χ∗00,k|k−1 + w1

n

∑
i1=1

(χ∗1i1,k|k−1 + χ∗2i1,k|k−1) + w2

0.5n(n−1)

∑
i2=1

6

∑
l=3

χ∗li2,k|k−1 (13)
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(7) Calculate Pk|k−1 of the state:

Pk|k−1 = w0χ∗00,k|k−1χ∗T00,k|k−1 + w1
n
∑

i1=1
(χ∗1i1,k|k−1χ∗T1i1,k|k−1 + χ∗2i1,k|k−1χ∗T2i1,k|k−1)

+w2

0.5n(n−1)
∑

i2=1

6
∑

l=3
χ∗li2,k|k−1χ∗Tli2,k|k−1 − x̂k|k−1 x̂T

k|k−1 + Q̂k−1

(14)
where Q̂k−1 is the system noise variance estimated in real time, and its calculation
will be given in the next section.

4.1.2. One-Step Prediction of Measurement

(1) Decompose Pk|k−1 by Cholesky, and get Sk|k−1:

Pk|k−1 = Sk|k−1ST
k|k−1 (15)

(2) Compute the first type of sigma point χ00,k|k−1 of xk:

χ00,k|k−1 = x̂k|k−1 (16)

(3) Calculate the second type of sigma point χ1i1,k|k−1 and χ2i1,k|k−1:

 χ1i1,k|k−1 = x̂k|k−1 +
√

(n+κ)(4−n)
(κ+2−n) Sk|k−1ei1

χ2i1,k|k−1 = x̂k|k−1 −
√

(n+κ)(4−n)
(κ+2−n) Sk|k−1ei1

(17)

(4) Calculate the third type of sigma point χ3i2,k|k−1, χ4i2,k|k−1, χ5i2,k|k−1 and χ6i2,k|k−1:
χ3i2,k|k−1 = x̂k|k−1 +

√
(n + κ)Sk|k−1s+i2

. . .
χ6i2,k|k−1 = x̂k|k−1 −

√
(n + κ)Sk|k−1s−i2

(18)

(5) Compute the propagated sigma points of xk :


Z00,k|k−1 = f

(
χ00,k−1|k−1)+r̂k

. . .
Z6i2,k|k−1 = f

(
χ6i2,k−1|k−1)+r̂k

(19)

(6) Calculate ẑk|k−1 of the measurement:

ẑk|k−1 = w0Z00,k|k−1 + w1
n
∑

i1=1
(Z1i1,k|k−1 + Z2i1,k|k−1)+

w2

0.5n(n−1)
∑

i2=1
(Z3i2,k|k−1 + Z4i2,k|k−1 + Z5i2,k|k−1 + Z6i2,k|k−1)

(20)

(7) Calculate Pzz,k|k−1 of the measurement at time k:

Pzz,k|k−1 = w0Z00,k|k−1ZT
00,k|k−1 + w1

n

∑
i1=1

(Z1i1 ,k|k−1ZT
1i1 ,k|k−1 + Z2i1 ,k|k−1ZT

2i1 ,k|k−1) + w2

0.5n(n−1)

∑
i2=1

6

∑
l=3

Zli2 ,k|k−1ZT
li2 ,k|k−1 − ẑk|k−1 ẑT

k|k−1 + Rk (21)
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4.1.3. Filter Update

(1) Calculate the gain Wk of the HUKF at time k:

Wk = Pxz,k|k−1P−1
zz,k|k−1 (22)

(2) Calculate the estimate of the HUKF at time k:

x̂k|k = x̂k|k−1 + Wkεk (23)

(3) Compute Pk|k of the HUKF at time k:

Pk|k = Pk|k−1 −WkPzz,k|k−1WT
k (24)

Remark 2. For the systems (1) and (2), given the initial state of the state, the AHUKF can be
performed according to the above three steps to obtain a state estimate value, where the mean and
variance of the system noise in (12) and (14) are given in the next subsection.

4.2. System Noise Statistics Estimation

Under the case of time-invariant system noise, the system noise average estimation
formula based on the Sage–Husa algorithm is:

q̂k =
1
j

j

∑
k=1

[x̂k|k − f (x̂k−1|k−1)] (25)

Then, the estimation of qk of the system noise under the unscented transformation
rule is:

q̂k =
1
j

j

∑
k=1

[x̂k|k −
2

∑
i=0

wi f (x̂k−1|k−1)] (26)

The recursive formula of the system noise covariance matrix is:

Q̂k =
1
k
[(k− 1)Q̂k−1 +WkεkεT

k WT
k + Pk|k− (

2

∑
i1=0

wi(χ
∗
i,k−1|k−1χ∗Ti,k−1|k−1)x̂k|k−1 x̂T

k|k−1)] (27)

where εk is the innovation sequence, i.e., εk = zk − ẑk|k−1. When the system noise’s statistics
are unknown, the noise estimator is obtained:

q̂k = (1− µk)q̂k−1 + µk(x̂k|k −
2

∑
i=0

wi f (χi,k−1|k−1)) (28)

Q̂k = (1− µk)Q̂k−1 + µk[WkεkεT
k WT

k + Pk|k − (
2

∑
i1=0

wi(χ
∗
i,k−1|k−1χ∗Ti,k−1|k−1)x̂k|k−1 x̂T

k|k−1)] (29)

where µk = (1 − ϑ)/(1 − ϑk), ϑ is the forgetting factor. It is selected in the range of
0.95 < ϑ < 0.99.

Remark 3. The literature [23] derived the conventional Sage–Husa noise estimation algorithm
based on the Kalman filter framework and used it to solve the filtering problem of unknown noise
statistics under linear conditions. However, this algorithm is no longer applicable when the system
is nonlinear. We estimate the statistics of the system noise mean (26) and variance (29) in real-time
by introducing the unscented transformation rules, and finally, bring the estimation results into
Equations (12) and (14).
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Remark 4. The HUKF calculation steps are shown in Equations (3)–(24). Since the filter gain K
calculation includes the matrix inversion operation, the calculation amount is much more significant
than other equations. Compared with the HUKF, the calculation of AHUKF has more Equations
(25)–(29). The computation of these equations only includes multiplication and addition operations.
Therefore, AHUKF is only slightly more computationally intensive than HUKF.

5. Result and Discussion

In this section, a two-dimensional space is selected. The target state is a four-dimensional

vector x(k) =
[

xk vx
k yk vy

k

]T
, where xk and yk are the displacements due east and due north,

vx
k represents the velocity component of the target in the true east direction, and vy

k repre-
sents the velocity component of the target in the true north direction, and the sampling
period is T = 1. The target motion equation is:

xk = Fk−1xk−1 + wk−1 (30)

where Fk−1 =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

.

The observation equation is:

z(k) =

[ √
x2(k)+y2(k)

arctan
[

y(k)
x(k)

] ]
+ vk (31)

The system noise’s statistics are unknown. In order to verify the conclusion, it is set to
mean zero, and the covariance matrix is:

Qk =


aT3

3
aT2

2 0 0
aT2

2 aT 0 0
0 0 aT3

3
aT2

2
0 0 aT2

2 aT

 (32)

The a priori system noise parameter a = 0.1, and the actual system noise parameters
change in the following three stages:

a =


1 1 ≤ k ≤ 40
4 41 ≤ k ≤ 70
10 71 ≤ k ≤ 100

(33)

The covariance Rk of the measurement noise Rk = [0.15 0.01; 0.01 0.01]. Root mean
square error (RMSE) is defined as:

ERMSE =

√√√√ 1
N

N

∑
k=1

(xk − x̂k)
2 (34)

where N is the number of simulations.
The simulation results are shown from Figures 1–5 and from Tables 1–3, respectively.
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Table 1. Comparison of RMSE for four states.

Algorithm xk vx
k yk vy

k

AHUKF 5.2424 0.4358 4.0745 0.3021
HUKF 45.2371 1.2218 37.0694 1.2829

Table 2. RMSE with AHUKF at different stages.

Stages xk vx
k yk vy

k

1–40 times 4.1951 0.3598 3.5098 0.2334
41–70 times 5.5143 0.3820 3.8360 0.3080

71–100 times 6.1430 0.5607 4.9192 0.3697
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Table 3. RMSE with HUKF at different stages.

Stages xk vx
k yk vy

k

1–40 times 32.3877 0.5904 27.7310 0.5418
41–70 times 41.6727 1.1136 30.2155 0.8616

71–100 times 60.7130 2.0668 51.4019 1.9354

Both algorithms can track the target trajectory from the state tracking curve in Figure 1.
However, from Figures 2–5, the absolute tracking error value of the four states with AHUKF
is much smaller than that of HUKF algorithm. In general, the absolute error curve will rise
as the noise increases. The error curve of HUKF increases obviously with the growth of
noise, whereas the estimation error of AHUKF increases slowly with the more extensive
system noise. The result is that AHUKF can estimate noise in real time, but HUKF cannot.
According to the statistical results of Table 1, RMSE for the position of the AHUKF algorithm
is about one-tenth of the HUKF algorithm, and RMSE for speed is about one-eighth of
the latter.

From the statistical results of RMSE at each time stage in Tables 2 and 3, the RMSE
value of AHUKF for the four states changes slowly. On the contrary, the RMSE of HUKF to
the state becomes significantly large as the noise changes. In particular, in the 71–100 time
period, the RMSE increases faster than in the 41–70 time period. The result is that HUKF
cannot track the noise statistics if the noise statistical characteristics are unknown. At the
same time, AHUKF has a better estimation performance for unknown noise.

6. Conclusions

This paper uses a high-degree unscented transform to improve the traditional Sage–
Husa algorithm with unknown system noise statistics. Then, the real-time and accurate
estimation of the unknown system noise statistics is realized. Furthermore, an AHUKF al-
gorithm based on an improved Sage–Husa algorithm is given. According to the simulation
results, it is concluded that the proposed algorithm can effectively overcome the shortcom-
ings of low filtering accuracy and the divergence of traditional nonlinear algorithms where
the system noise is unknown. The proposed algorithm also improves the adaptability and
stability of the filter. However, system noise is non-Gaussian in some practical applications.
In the case of non-Gaussian noise, solving the state estimation problem of nonlinear sys-
tems is particularly important. Therefore, we will study the filtering problem of nonlinear
non-Gaussian systems in future work.
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